
Meta-Fibonacci Sequences, Binary Trees and Extremal

Compact Codes

Brad Jackson
Dept. of Mathematics

San Jose State University, USA
jackson@math.sjsu.edu

Frank Ruskey∗

Dept. of Computer Science
University of Victoria, CANADA
http://www.cs.uvic.ca/~ruskey

Submitted: Jun 14, 2005; Accepted: Mar 13, 2006; Published: Mar 21, 2006

Mathematics Subject Classifications: 05A15, 05A19, 68P30

Abstract

We consider a family of meta-Fibonacci sequences which arise in studying the
number of leaves at the largest level in certain infinite sequences of binary trees,
restricted compositions of an integer, and binary compact codes. For this family of
meta-Fibonacci sequences and two families of related sequences we derive ordinary
generating functions and recurrence relations. Included in these families of sequences
are several well-known sequences in the Online Encyclopedia of Integer Sequences
(OEIS).

1 Introduction

In a remarkable paper Emily Norwood studied the number of “compact codes” [7]. A
compact code can be thought of as the sorted sequence of level numbers of the leaves of
an extended binary tree. She provided a recurrence relation and table of the number of
trees classified according to their height and their number of leaves. We will prove that
if the outline of this table is considered as an increasing sequence of integers, then one of
the “meta-fibonacci” numbers arises, namely the one that satisfies the recurrence relation

a(n) = a(x(n) − a(n − 1)) + a(y(n) − a(n − 2)),

with x(n) = n − 1 and y(n) = n − 2. Sequences satisfying this recurrence, but with
different linear functions for x(n) and y(n) have been investigated by several authors in
recent years, but the general behavior of these sequences remains rather mysterious (e.g.,
Guy [4][Problem E31], Pinn [9]). Perhaps the most well-behaved sequences in the family

∗Research supported in part by NSERC.

the electronic journal of combinatorics 13 (2006), #R26 1

16 17

18

19 20 23

21

22 25

26 27241 2

3

5

6

7

84 9

10

11 12

13

14

15

Figure 1: The tree F0.

occur when x(n) = n and y(n) = n−1. For a given parameter s ≥ 0, we will show that the
sequences with x(n) = y(n)+ 1 = n− s are almost as well-behaved. In particular, we will
show that they occur in a natural combinatorial setting, that they satisfy a recurrence
relation of the form as(n) = f(n) + as(n − g(n)), and that they have a fairly simple
ordinary generating function.

The case of s = 1 was studied before by Tanny [10]. The case of s = 0 was considered
before by Conolly [2]. Our attempt here is to simplify, unify, generalize, and combinato-
rialize their results. In particular, for any fixed s ≥ 0, we give a new way of interpreting
the sequences; our interpretation is based on certain subtrees of a labeled infinite binary
tree.

2 Meta-Fibonacci Sequences and Complete Binary

Trees

Figure 1 shows part of an infinite ordered binary tree F . The forest of labelled trees in F
consists of a succession of complete binary trees of sizes 1, 1, 3, 7, . . . , 2h − 1, We refer
to the subtree with 2h − 1 nodes as subtree h, except for the leftmost subtree, which is
subtree 0. The nodes of these subtrees are labelled in preorder. Now to obtain F adjoin
an infinite path that connects the subtrees from left-to-right as shown in Figures 1, 2
and 3 using square nodes and thickly drawn edges. We will think of this path as being
parameterized by a value s that gives the delay between the preorder counts of successive
trees. Alternatively, we can think of the nodes along the path as being super-nodes,
where each super-node contains s ordinary nodes. This infinite tree is denoted Fs, with
our initial tree F = F0. The trees F0, F1, F2 are shown in Figures 1, 2, 3, respectively.

Denote by Ts(n) the tree induced by the first n labelled nodes of the infinite tree
Fs. Define as(n) to be the number of nodes at the bottom level in Ts(n). Also define
ds(n) to be 1 if the n-th node is a leaf and to be 0 if the n-th node is an internal node.
Finally, define ps(n) to be the positions occupied by the 1’s in the ds sequence. Table 1

the electronic journal of combinatorics 13 (2006), #R26 2

15 20 21 3023 24 28271412117631

2

4

105

8

9

16

25

17

18

13 19 22 26 29

31

Figure 2: The tree F1.

12

13

14 1815

16

171

10,11

98

7

5,6

4

2,3 33

343231

30

29

2827

26

2524

23

22

21

19,20

35

Figure 3: The tree F2.

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

a0 1 2 2 3 4 4 4 5 6 6 7 8 8 8 8 9 10 10 11 12
a1 1 1 2 2 2 3 4 4 4 4 5 6 6 7 8 8 8 8 8 9
a2 1 1 1 2 2 2 2 3 4 4 4 4 4 5 6 6 7 8 8 8

d0 1 1 0 1 1 0 0 1 1 0 1 1 0 0 0 1 1 0 1 1
d1 1 0 1 0 0 1 1 0 0 0 1 1 0 1 1 0 0 0 0 1
d2 1 0 0 1 0 0 0 1 1 0 0 0 0 1 1 0 1 1 0 0

p0 1 2 4 5 8 9 11 12 16 17 19 20 23 24 26 27 32 33 35 36
p1 1 3 6 7 11 12 14 15 20 21 23 24 27 28 30 31 37 38 40 41
p2 1 4 8 9 14 15 17 18 24 25 27 28 31 32 34 35 42 43 45 46

Table 1: The values of as(n) and ds(n) for s = 0, 1, 2 and 1 ≤ n ≤ 20.

the electronic journal of combinatorics 13 (2006), #R26 3

gives the values of as(n), ds(n), and ps(n) for s = 0, 1, 2 and 1 ≤ n ≤ 20. The values of
four of these table entries appear in OEIS1, namely a0(n) = A046699, a1(n) = A006949,
d0(n) = A079559, and p0(n) = A101925 = A005187(n)+1. For fixed s these numbers are
related as follows.

as(n) =

n
∑

j=0

ds(j) and ps(n) = min{j : as(j) = n}. (1)

Once we prove Theorem 2.1 below, certain results from [10] become obvious; e.g., that
the numbers a1(n) are increasing and that their successive differences are either 0 or 1.

The as(n) numbers satisfy the meta-Fibonacci recurrence relation stated in Theorem
2.1 below.

Theorem 2.1. If 0 ≤ n ≤ s+1, then as(n) = 1. If n = s+2 then as(n) = 2. If n > s+2,
then as(n) = as(n − s − as(n − 1)) + as(n − s − 1 − as(n − 2)).

Proof. First observe that if all the leaves at the last level are removed from Fs, then the
same structure remains, except that the leftmost super-node needs to be made into an
ordinary node (by subtracting s − 1). We will refer to this process as chopping the last
level (also used in [7] and [3]).

We split the proof into two broad cases depending on whether n is a leaf or not; i.e.,
whether ds(n) = 1 (Case 1) or ds(n) = 0 (Case 2).

Case 1a: If ds(n − 1) = ds(n) = 1 then n and n − 1 are sibling leaves and as(n) is
even. For example, node 28 in Figure 3. The trees Ts(n− 1) and Ts(n− 2) have the same
number of nodes, as(n)/2, at the penultimate level as does Ts(n). Thus by chopping the
last level from Ts(n − 1) and Ts(n − 2), we see that as(n − s − as(n − 1)) = as(n)/2 =
as(n − s − 1 − as(n − 1)).

Case 1b: If ds(n) = 1 and ds(n − 1) = 0 then n is a left child of its parent n − 1
and as(n) is odd. For example, node 27 in Figure 3. The tree Ts(n− 1) has (as(n) + 1)/2
nodes at the penultimate level and the tree Ts(n − 2) has (as(n) − 1)/2 nodes at the
penultimate level. Thus by chopping the last level from Ts(n − 1) and Ts(n − 2), we see
that as(n− s− as(n− 1)) = (as(n) + 1)/2 and as(n− s− 1− as(n− 1)) = (as(n)− 1)/2.

Case 2a: If ds(n) = 0 and ds(n− 1) = 1, then as(n) is even. For example, node 26 or
node 29 in Figure 3. The trees Ts(n − 1) and Ts(n − 2) have the same number of nodes,
as(n)/2, at the penultimate level. Node n may have been at the penultimate level in Ts(n),
but it is removed in Ts(n−1) and Ts(n−2). Thus by chopping the last level from Ts(n−1)
and Ts(n − 2), we see that as(n − s − as(n − 1)) = as(n)/2 = as(n − s − 1 − as(n − 1)).

Case 2b: If ds(n) = 0 and ds(n− 1) = 0, then as(n) is even. For example, node 22 or
node 30 in Figure 3. The trees Ts(n − 1) and Ts(n − 2) have the same number of nodes,
as(n)/2, at the penultimate level. Node n may have been at the penultimate level in Ts(n),
but it is removed in Ts(n−1) and Ts(n−2). Thus by chopping the last level from Ts(n−1)
and Ts(n− 2), we see that as(n− s−as(n− 1)) = as(n)/2 = as(n− s− 1−as(n− 1)).

1OEIS = Neil Sloane’s online encyclopedia of integer sequences.

the electronic journal of combinatorics 13 (2006), #R26 4

Define Ds to be the infinite string ds(1)ds(2)ds(3) · · · . Let Dn be the finite string
defined by D0 = 1 and Dn+1 = 0DnDn. Let En be the finite string defined by E0 = 1 and
En+1 = EnEn0.

Lemma 2.2.

D0 = D0D0D1D2D3 · · · = E∞ (2)

Proof. The first equality in (2) is implied immediately by the definition of F0; i.e., in
0DnDn the 0 is from the root (which is listed first in preorder) and DnDn is from the
left and right subtrees. By the definitions, ER

n = Dn, where the superscript R denotes
reversal of the string. Thus

D0D0D1 · · ·Dn = En · · ·E1E0E0.

Since En is a prefix of En+1 by definition, the expression E∞ is well-defined. Hence
D0 = E∞.

The sequence En has been considered before by Allouche, Betrema, and Shallit [1]
in a different context. It is interesting to note that the sequence D0 is the limit of the
morphism 0 7→ 0 and 1 7→ 110 (also discussed in [1], pg. 237). The following corollary is
equation (6; pg. 132) in [2].

Corollary 2.3. The numbers a0(n) satisfy the recurrence a0(2
h − 1 + k) = 2h−1 + a0(k)

for 0 ≤ k < 2h.

Proof. Since D0 = Eh−1Eh−10 · · · and |Eh−1| = 2h − 1, the value of d0(2
h − 1+k) = d0(k)

for 1 ≤ k ≤ 2h − 1. Since we defined d0(0) = 0 it also holds when k = 0. The number of
1’s in Eh−1 is #1(Eh−1) = 2h−1. Thus

a0(2
h − 1 + k) =

2h−1
∑

j=0

d0(j) +

k
∑

j=0

d0(2
h − 1 + j)

= #1(Eh−1) +

k
∑

j=0

d0(j)

= 2h−1 + a0(k).

Lemma 2.4.

as(n) =

{

a0(n − sh) if 2h + (s − 1)h + 1 ≤ n ≤ 2h+1 + (s − 1)h − 1,

2h−1 if 2h + (s − 1)h − s + 1 ≤ n ≤ 2h + (s − 1)h.

the electronic journal of combinatorics 13 (2006), #R26 5

Proof. The labels on the nodes in subtree h in Fs are exactly the values of n lying in
the first range above. This is true since there are 1 + 1 + 3 + · · · + (2h−1 − 1) = 2h − h
nodes in the subtrees to the left of subtree h, and sh super-nodes. Thus the lowest label
of a node in subtree h is 2h − h + sh + 1 = 2h + (s − 1)h + 1, and the highest label is
2h + (s − 1)h + 2h − 1. The difference between the labels on corresponding nodes in Fs

and F0 is sh if the nodes are in subtree h; thus as(n) = a0(n − sh).
In the second range the nodes are super-nodes lying between subtrees h−1 and h and

therefore having 2h−1 leaves in their left-subtree.

Corollary 2.5.

a1(n) = a0(n − blg nc).

Proof. Taking s = 1 in Lemma 2.4 we obtain a1(n) = a0(n − h) in the range 2h + 1 ≤
n ≤ 2h+1 − 1. In that range h = blg nc. We need only check what happens when n = 2h.
By the lemma a1(2

h) = 2h−1. However, in F0 the node 2h − h is the rightmost node in
subtree h and thus a0(2

h − h) = 2h−1.

The case s = 1 of the theorem below is roughly equivalent to equations (2.2) and (2.3)
in Tanny [10]. For proposition P the notation [[P]] means 1 if P is true and 0 if P is false.

Theorem 2.6. If 1 ≤ k ≤ 2h−1 − 1, then

as(2
h + (s − 1)h + k + 1) = 2h−2 + as(2

h−1 + (s − 1)h − s + k + 1).

If 1 ≤ k ≤ 2h−1 − 1, then

as(2
h + 2h−1 + (s − 1)h + k) = 2h−1 + as(2

h−1 + (s − 1)h − s + k + 1).

If 2h + (s − 1)h − s + 1 ≤ n ≤ 2h + (s − 1)h + 1, then as(n) = 2h−1 + [[n = s + 2]].

Proof. Let the node n be in the subtree h or the super-node, call it y, that is the parent
of subtree h. Let x be the root of that subtree and denote the left and right subtrees of
x by TL and TR. We will prove the following recurrence relation.

as(n) =











2h−1 + as(n − 2h − s + 1) if n ∈ TR,

2h−2 + as(n − 2h−1 − s) if n ∈ TL,

2h−1 + [[n = s + 2]] if n = x or n ∈ y.

(3)

Let T be the subtree whose root is the right child of the left child of y. In the first two
cases above we are mappping the subtree TL or TR to T , which has the same structure.
In the case of TR we skip over 2h−1 leaves and 2h + s − 1 nodes. In the case of TL we
skip over 2h−2 leaves and 2h−1 + s nodes. In the remaining case, if n = x or n ∈ y, then
as(n) = 2h−1 +[[n = s + 2]]; the test for n = s+2 is necessary because subtree 0 is special.

From the proof of the previous lemma we know that x = 2h + (s − 1)h + 1 and thus
that the root of TR is 2h +2h−1 +(s−1)h+1 and the root of TL is x+1 = 2h +(s−1)h+2.
Thus we know the exact range of n in each of the subtrees and the theorem statement is
another way of writing (3).

the electronic journal of combinatorics 13 (2006), #R26 6

Let r1, r2, r3, r4, . . . = 1, 2, 1, 3, 1, 2, 1, 4, 1, 2, 1, 3, 1, 2, 1 . . . be the transition sequence
of the binary reflected Gray code; this sequence is also known as the “ruler function”
(A001511). If the alternating 0’s are removed from the sequence r1 − 1, r2 − 1, r3 − 1, r4 −
1, . . . = 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0 . . . then the ruler function is again obtained. This
implies that the generating function, R(z), of the ruler function satisfies the functional
equation R(z) = z/(1 − z) + R(z2). This equation can be iterated to obtain

R(z) =
∑

k≥1

rkz
k =

∑

n≥0

z2n

1 − z2n . (4)

Lemma 2.7.

D0 = 110r1110r2110r3110r4 · · ·

= 10r1−110r2−110r3−110r4−1 · · ·

Proof. The ruler sequence is R∞ where R1 = 1 and Rn+1 = Rn, n + 1, Rn. Since |Rn| =
2n − 1, we have r2n+i = ri for 1 ≤ i ≤ 2n − 1 and r2n = n + 1. We will show that

En = 110r1110r2 · · · 110r
2n−1 ,

which will finish the proof of the first equality since D0 = E∞. By induction

En+1 = EnEn0

= 110r1110r2 · · ·110r
2n−1 110r1110r2 · · · 110r

2n−1 0

= 110r1110r2 · · ·110r
2n−1 110r

1+2n−1110r
2+2n−1 · · · 110r2n

−1110n+1,

as required. The second equality follows from the well-known property of the ruler se-
quence that R∞ = 1 + (0, r1, 0, r2, 0, r3, 0, r4, 0, . . .).

We can extend some of the previous results about D0 to Ds.

Lemma 2.8. Let sj = rj + s[[j is a power of 2]].

Ds = D00
sD00

sD10
sD20

sD30
s · · ·

Ds = 10s1−110s2−110s3−110s4−1 · · ·

Proof. The proof is similar to those used in Lemmata 2.7 and 2.2 and is omitted.

Since the ps(n) numbers give the positions of the 1’s in Ds the following corollary is
true.

Corollary 2.9. For all n ≥ 1,

ps(n + 1) − ps(n) = rn + s[[n is a power of 2]].

the electronic journal of combinatorics 13 (2006), #R26 7

2.1 Generating Functions

If S = s(1)s(2) · · ·s(m) is a string then we use S(z) to denote the ordinary generating
function S(z) =

∑

s(i)zi. Let As(z) and Ds(z) denote the ordinary generating functions
of the as(n) and ds(n) sequences, respectively. Directly from the definitions we get the
equation shown below:

As(z) =
Ds(z)

1 − z
.

Since As(z) is determined by Ds(z) and Ds(z) is easier to treat, we first concentrate our
attention on Ds(z).

Lemma 2.10.

Dn(z) = zn+1(1 + z)(1 + z3) · · · (1 + z2n−1) = zn+1

n
∏

j=1

(1 + z2j−1).

En(z) = z(1 + z)(1 + z3) · · · (1 + z2n−1) = z
n
∏

j=1

(1 + z2j−1).

Proof. From the recurrence relation D0 = 1 and Dn+1 = 0DnDn we obtain D0(z) = z and

Dn+1(z) = zDn(z) + z|0Dn|Dn(z) = z(1 + z2n+1−1)Dn(z).

Similarly E0(z) = z and En+1(z) = (1 + z2n+1−1)En(z). The result now follows by induc-
tion.

Corollary 2.11.

D0(z) = z(1 + z)(1 + z3)(1 + z7) · · · = z
∏

n≥1

(1 + z2n−1).

Proof. Follows at once from the the preceding lemma and the equation D0 = E∞ from
Lemma 2.2.

Theorem 2.12. The generating function Ds(z) is equal to

z(1 + zs+20

(1 + zs+21

[1 + z21−1](1 + zs+22

[1 + z22−1](1 + zs+23

[1 + z23−1](1 + · · · (5)

Proof. We need to translate the string D00
sD00

sD10
sD20

sD30
s · · · from Lemma 2.8 into

its generating function. Since

|D00
sD00

sD10
s · · ·Dn−10

s| = s + 1 +

n−1
∑

j=0

(2j+1 − 1 + s) = 2n+1 + (s − 1)(n + 1), (6)

the electronic journal of combinatorics 13 (2006), #R26 8

we can write

Ds(z) = z +
∑

n≥0

z2n+1+(n+1)(s−1)Dn(z) = z +
∑

n≥0

z2n+1+(n+1)(s−1)+1x1x2 · · ·xn, (7)

where xk = z(1 + z2k−1), so that Dn(z) = zx1x2 · · ·xn. Now rewrite (5) as

z(1 + zs+20

(1 + zs+21−1x1(1 + zs+22−1x2(1 + zs+23−1x3(1 + · · · . (8)

In (8), the coefficient of x1x2 · · ·xn is z raised to the power 1 + 2n+1 + (s − 1)(n + 1) by
the sum given in (6), agreeing with (7).

Theorem 2.13. If s ≥ 1, then

As(z) =
1 − zs

1 − z

(

z + z
∑

n≥1

n
∏

k=1

zs−1(z + z2k

)

)

(9)

Proof. Call the expression on the right Rs(z) and let y = zs−1. Multiply Rs(z) by 1 − z,
expand, and collect terms by increasing powers of y to obtain

(1 − z)Rs(z) = (1 − zy)

(

z + z
∑

n≥1

n−1
∏

k=1

y(z + z2k

)

)

= z + z
∑

n≥1

yn

n
∏

k=1

(z + z2k

) − z2y − z2y
∑

n≥1

n
∏

k=1

yn(z + z2k

)

= z + z
∑

n≥1

yn

(

n
∏

k=1

(z + z2k

) − zy

n
∏

k=0

(z + z2k

)

)

= z + z
∑

n≥1

yn

(

(z + z2n

)

n−1
∏

k=1

(z + z2k

) − z

n−1
∏

k=0

(z + z2k

)

)

= z + z
∑

n≥1

ynz2n

n−1
∏

k=1

(z + z2k

)

Note that this last expression is equal to Ds(z) by (7).

Jon Perry [8] has observed experimentally that a1(n) counts the number of composi-
tions of n such that, for some m,

x0 + x1 + · · ·+ xm = n where xi ∈ {1, 2i} for i = 0, 1, . . . , m.

He uses the notation 1 + [1, 2] + [1, 4] + [1, 8] + · · · to denote the set of such compositions
and notes that many other combinatorial objects are in one-to-one correspondence with
similar composition rules [8]. We call these rules specifications.

the electronic journal of combinatorics 13 (2006), #R26 9

Corollary 2.14. For s ≥ 1, the number of compositions of n with specification

[1, 2, . . . , s] + [s, 2 + s − 1] + [s, 4 + s − 1] + [s, 8 + s − 1] + · · ·

is as(n). For s = 0, the corresponding specification is

[N] + [0, 1] + [0, 3] + · · · + [0, 2j − 1] + · · ·

Proof. This is clear from the generating function for As(z) given in Theorem 2.13 once
z(1 − zs)/(1 − z) is written as z + z2 + · · ·+ zs.

As an example, for s = 2 and n = 8, the specification is [1, 2]+[2, 3]+[2, 5]+[2, 9]+ · · ·
and the a2(8) = 3 compositions are

8 = 1 + 2 + 5 = 1 + 3 + 2 + 2 = 2 + 2 + 2 + 2.

To finish this section we also develop a generating function for the ps(n) sequences.

Lemma 2.15. For all s ≥ 0,

∑

n≥0

ps(n)zn =
1

1 − z

(

1 + z
∑

k≥0

z2k

(

s +
1

1 − z2k

)

)

.

Proof. Let Ps(z) denote the ordinary generating function of the numbers ps(n). Then

∑

n≥1

(ps(n + 1) − ps(n))zn =
1

z
((1 − z)Ps(z) − 1) .

By Corollary 2.9 this expression is equal to

∑

n≥1

(rn + s[[n is a power of 2]]) zn =
∑

k≥0

(

sz2k

+
z2k

1 − z2k

)

,

where the equality follows from (4). Solving for Ps(z) finishes the proof.

3 Binary Compact Codes

A binary compact code can be represented by an extended binary tree. We use the term
extended binary tree in the sense of Knuth [6]: every node has either no children (a
leaf) or two children (an internal node). Since no other types of codes are considered
here, we shorten “binary compact code” to “code”. A code of order n can be represented
by a tree with n leaves in which the level numbers `1 ≥ `2 ≥ · · · ≥ `n of the leaves
are non-increasing. We will identify a compact binary code by the sequence of level
numbers (`1, `2, . . . , `n). For example, the codes for n = 5 are (3, 3, 3, 3, 1), (3, 3, 2, 2, 2),
and (4, 4, 3, 2, 1). Every code of order n corresponds to a unique partition of 1 into the n

the electronic journal of combinatorics 13 (2006), #R26 10

powers of 1/2 given by 1 = 2−`1 + 2−`2 + · · ·+ 2−`n. Thus (3, 3, 3, 3, 1) corresponds to the
partition 1 = 1/8 + 1/8 + 1/8 + 1/8 + 1/2.

The height h of a tree is the length of the longest path from the root to any leaf. For
a given height h and integer n, we consider here the problem of finding the maximum
number of leaves at the largest level h among all trees with n leaves, which we denote
by M(n, h). Clearly M(n, h) = 0 if h < dlg ne. A tree T with n vertices and height h
that has M(n, h) leaf pairs at the largest level is said to be an optimal tree. We will show
that our first two meta-Fibonacci sequences can be realized by certain families of optimal
trees. This will be done via a “greedy” algorithm for constructing a sequence of optimal
tree/codes for successive values of n and a fixed value h. We denote these trees Tn,h for
natural numbers n and h and call them greedy trees. Here is the greedy algorithm for
constructing Tn,h.

• If n = h + 1, then there is only one tree/code, namely h, h, h − 1, . . . , 2, 1.

• Given Tn,h the code Tn,h is obtained by replacing the leftmost level `i for which
`i < h by the two levels `i + 1, `i + 1.

We will also consider the trees Tn = Tn,dlg ne. They may be constructed greedily as
follows.

• If n = 0, then the tree is a leaf.

• If n = 2h, then Tn is a complete binary tree (all leaves are at level h). Tree Tn+1 is
the tree of height h + 1 whose left subtree is Tn and whose right subtree is a single
leaf.

• If n is not a power of 2, then expand the leftmost leaf which is not at the largest
level, as described above.

It is also interesting to consider the inverse process of obtaining Tn from Tn+1. The
inverse rule is very simple: Replace the rightmost equal pair `j = `j+1 by `j − 1.

We could also have defined a code by the number of internal nodes at each level in
the corresponding tree. Given a code of height h, let [τ0, τ1, . . . , τh−1] be the sequence in
which τi is the number of internal nodes at level i. For our example codes given earlier,
the corresponding level counts are [1, 1, 2], [1, 2, 1], [1, 1, 1, 1]. These counts clearly must
satisfy

τi ≤ 2τi−1, for 1 ≤ i ≤ h − 1 and

τ0 + τ1 + · · ·+ τh−1 = n − 1.

Subject to these two constraints M(n, h) is the largest value that τh−1 can attain.
Let k be the largest level for which τk < 2τk−1. The greedy algorithm simply replaces

τk by 1 + τk.

the electronic journal of combinatorics 13 (2006), #R26 11

Lemma 3.1. Let τ0, τ1, ..., τh−1 be the number of vertices at each level for the tree Tn,h

and suppose that t0, t1, ..., th−1 are the vertex numbers by level for any other tree T with n
leaves and height h. For any 0 ≤ j ≤ h − 1,

τj + · · ·+ τh−1 ≥ tj + · · · + th−1.

Proof. For any h, the result is true for n = h + 1 since there is only one tree with h + 1
leaves and height h. Similarly it is true for n = 2h.

Assume the result is true for all trees with n (for some n < 2h) leaves and height h. Let
τ ′
1, τ

′
2, . . . , τ

′
h−1 be the vertex numbers by level for Tn+1,h. Note that for some k > 0, we have

τ ′
k = 1+τk and τ ′

j = τj for all j 6= k. By the greedy algorithm τh−1 = 2τh−2, . . . , τk+1 = 2τk,
but τk < 2τk−1. Let T ′ be any tree with n + 1 leaves and height h and suppose that T
is the tree with n leaves and height h formed by removing from T ′ the rightmost pair of
leaves at level h. Suppose that t0, t1, . . . , th−1 are the vertex numbers by level for T . By
induction, we assume that tj + · · ·+th−2+th−1 ≤ τj + · · ·+τh−2+τh−1 for all 0 ≤ j ≤ h−1.
Let t′0, t

′
1, . . . , t

′
h−1 be the vertex numbers by level for for T ′. Note that t′h−1 = 1 + th−1

and t′j = tj for all j < h − 1. For all i ≤ k, we see that t′i + · · ·+ t′h−1 ≤ τ ′
i + · · · + τ ′

h−1.
Suppose t′i+ · · ·+t′h−1 > τ ′

i + · · ·+τ ′
h−1 for some i > k. Let m ≥ i be the smallest index

such that t′m > τ ′
m = τm. Since m > k we have τm = 2τm−1 = 2τ ′

m−1. Since m was chosen
to be smallest τ ′

m−1 ≥ t′m−1. Putting these inequalities together we have t′m > 2t′m−1 which
is a contradiction. Thus t′i + · · ·+ t′h−1 ≤ τ ′

i + · · ·+ τ ′
h−1 for all i and the result is true by

induction.

Theorem 3.2. The greedy algorithm produces optimal trees.

Proof. Let th−1 be the number of internal nodes in some code with n leaves and height h.
The previous lemma tells us that τh−1 ≥ th−1, where τh−1 is the number of internal nodes
at level h − 1 in Tn,h.

Corollary 3.3. The largest number of 1’s in a partition of 2h into powers of 2 consisting

of n parts is M(n, h).

Proof. Multiply the partition of 1 described above by 2h to obtain a partition of 2h.

Define a(n) to be the maximum number of leaf pairs at the largest level, taken over
all binary trees with n leaves. In other words, a(n) = max M(n, h) : 1 ≤ h ≤ n − 1.

Corollary 3.4. For any n, we have a(n) = M(n, dlg ne) = a1(n − 1).

Proof. For any k > h = dlg ne construct a optimal tree of height k with n leaves using
the greedy algorithm. The tree Tn,k has a subtree attached to an interior vertex at level
k − h which is ismorphic to Tn−k+h,h. Clearly M(n − k + h, h) ≤ M(n, h) and thus
a(n) = M(n, dlg ne). The tree T1(n) from Section 2 which defines the sequence a1(n)
has n + 1 leaves (since it has n interior vertices) and is equal to the greedy tree for
M(n + 1, dlg(n + 1)e). Only the order in which the vertices are added is different since
we add the vertices from the bottom in constructing T1(n).

the electronic journal of combinatorics 13 (2006), #R26 12

Similarly define b(n) by the equation b(n) = M(n + h, h) for h + 1 ≤ n + h ≤ 2h.

Corollary 3.5. The sequence b is well-defined and b(n) = a0(n).

Proof. For a given n, let h be the smallest height such that n + h ≤ 2h. For any larger
height k > h construct a optimal tree of height k with n + k leaves using the greedy
algorithm. The tree Tn+k,k has a subtree attached to an interior vertex at level k − h
which is equal to Tn+h,h. Thus M(n + k, k) = M(n + h, h). If h is the height of the
nth subtree Tn which defines the sequence a0, we see inductively that Tn has n + h − 1
internal nodes and thus n + h leaves. As before we see that Tn is equal to the greedy
tree for M(n + h, h). Thus Tn has b(n) leaf pairs at the largest level h, and we see that
b(n) = a0(n).

Thus we have shown that the first 2 meta-Fibonacci sequences in our family of se-
quences have concrete realizations as the solutions of optimization problems involving
binary compact codes/trees.

Acknowledgements: We wish to thank Don Knuth, Jon Perry, Jeff Shallit, Herb Wilf,
and Chris Deugau for helpful comments related to this research.

References

[1] J.-P. Allouche, J. Betrema, and J.O. Shallit, Sur des Points Fixes de Morphismes

d’un Monöıde Libre, Informatique théorique et Applications, 23 (1989) 235–249.

[2] B.W. Conolly, Meta-Fibonacci Sequences, Chapter XII in S. Vajda, Fibonacci & Lucas

Numbers, and the Golden Section, Ellis Horwood Limited, 1989.

[3] P. Flajolet and H. Prodinger, Level Number Sequences for Trees, Discrete Mathemat-
ics 65 (1987) 149–156.

[4] R.K. Guy, Unsolved Problems in Number Theory, Problem Books in Math., Springer,
New York, 1981.

[5] M. Khosravifard, M. Esmaeili, H. Saidi, and T.A. Gulliver, A Tree Based Algorithm

for Generating All Possible Binary Compact Codes with N Codewords, IEICE Trans-
actions on Fundamentals of Electronics, Communications and Computer Sciences,
Vol. E86-A (2003) 2510–2516.

[6] D.E. Knuth, The Art of Computer Programming, Volume 1: Fundamental Algo-

rithms, Addison-Wesley, 1968.

[7] Emily Norwood, The Number of Different Possible Compact Codes, IEEE Transac-
tions on Information Theory, vol. IT-13, no. 4, pp. 613–616, 1967.

[8] Jon Perry, Symmetric Ferrar Diagrams, website, www.users.globalnet.co.uk/

~perry/maths/symmetricferrars/symmetricferrars.htm, March 2005.

[9] K. Pinn, Order and chaos in Hofstadter’s Q(n) sequence, Complexity 4 (1999) 41–46.

[10] S.M. Tanny, A well-behaved cousin of the Hofstadter sequence, Discrete Mathematics,
105 (1992) 227–239.

the electronic journal of combinatorics 13 (2006), #R26 13

Corrigendum – submitted November 15, 2007

Here we list and fix some small errors/typos that occur in the paper:
Thanks to Steve Tanny and his students, Bala Balamohan and Li Zhiqang, for pointing

these out to us. We also make some remarks about references and extensions.

• In the definition of Ts(n) on page 2, by the “first n nodes” we are referring to the
labels on the nodes.

• In equation (1) the summation should start with j = 1.

• In the proof of Theorem 2.1, at the end of each case there is an as(n−s−1−as(n−1))
that occurs. In each case it should be as(n − s − 1 − as(n − 2)) instead.

• The proof of Theorem 2.13 is somewhat flawed. On the next page we provide a
better statement of this theorem and its proof.

• In the proof of Lemma 2.15 there are two places where a 1 should be a z: First in
the statement of the Lemma the right hand side should be

1

1 − z

(

z + z
∑

k≥0

z2k 1

1 − z2k

)

.

Second, the right hand side of the first equation in the proof should be 1
z
((1 −

z)Ps(z) − z). Note that these changes are only because the constant term of Ps(z)
is 0, not 1.

• Some of these results have been extended to k-ary trees in the paper C. Deugau and
F. Ruskey, Complete k-ary Trees and Generalized Meta-Fibonacci Sequences, Fourth
Colloquium on Mathematics and Computer Science: Algorithms, Trees, Combina-
torics and Probabilities, September 18-22, 2006, Institut lie Cartan, Nancy, France,
2006. DMTCS Proceedings Series, Volume AG, 203–214.

• The website of Jon Perry seems to have disappeared (reference [8]) but a copy may
be found at
web.archive.org/web/20060515224323/www.users.globalnet.co.uk/~perry/

maths/symmetricferrars/symmetricferrars.htm.

• Recent papers about sequences related to those discussed here include: Callaghan,
Chew, and Tanny, On the behavior of a family of meta-Fibonacci sequences, SIAM
J. Discrete Math. 18 (2005) 794–824; Balamohan, Kuznetsov, and Tanny, On the

Behavior of a Variant of Hofstadter’s Q-Sequence, Journal of Integer Sequences,
Vol. 10 (2007), Article 07.7.1.

the electronic journal of combinatorics 13 (2006), #R26 14

Theorem 2.13 (revised). If s ≥ 1, then

As(z) = z
1 − zs

1 − z

∑

n≥0

n
∏

k=1

zs−1(z + z2k

).

Proof. Call the expression on the right Rs(z) and let y = zs−1. Multiply Rs(z) by 1 − z,
expand, and collect terms by increasing powers of y to obtain

(1 − z)Rs(z) = z(1 − yz)
∑

n≥0

n
∏

k=1

y(z + z2k

)

= z
∑

n≥0

n
∏

k=1

y(z + z2k

) − z2y
∑

n≥0

n
∏

k=1

y(z + z2k

)

= z
∑

n≥0

yn

n
∏

k=1

(z + z2k

) − z2y
∑

n≥1

n−1
∏

k=1

y(z + z2k

)

= z
∑

n≥0

yn

n
∏

k=1

(z + z2k

) − z2
∑

n≥1

yn

n−1
∏

k=1

(z + z2k

)

= z + z
∑

n≥1

yn(z + z2n

)
n−1
∏

k=1

(z + z2k

) − z2
∑

n≥1

yn

n−1
∏

k=1

(z + z2k

)

= z + z
∑

n≥1

yn

(

(z + z2n

)

n−1
∏

k=1

(z + z2k

) − z

n−1
∏

k=1

(z + z2k

)

)

= z + z
∑

n≥1

ynz2n

n−1
∏

k=1

(z + z2k

).

Note that this last expression is equal to Ds(z) by (7).

the electronic journal of combinatorics 13 (2006), #R26 15

