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Abstract

An astral configuration (pq, nk) is a collection of p points and n straight lines in
the Euclidean plane where every point has q straight lines passing through it and
every line has k points lying on it, with precisely b q+1

2 c symmetry classes (transitivity
classes) of lines and bk+1

2 c symmetry classes of points. An odd astral configuration
is an astral configuration where at least one of q and k is odd. This paper presents
all known results in the classification of odd astral configurations where q and k are
both at least 4.

1 Introduction

There are two main kinds of objects which are referred to as (pq, nk) configurations. The
first kind is a combinatorial configuration, which is a set of p objects, called “points”,
and n collections of “points”, called “lines”, so that each “point” is contained in q of the
“lines” and each “line” contains k of the “points”. Combinatorial configurations have
been studied extensively since the mid-1800’s; for modern investigations, see [8], [5] and
[13]. The second kind of configuration is a geometric configuration. The “points” of
the combinatorial configuration become actual points in some Euclidean space (almost
always the plane), and the “lines” of the combinatorial configuration are straight lines in
the Euclidean space. For the remainder of the paper, the term “configuration” refers to
a geometric configuration, and all configurations will be in the Euclidean plane.

In [3] and [2], the author presented results on a particular variety of highly symmetric
geometric configurations, known as astral configurations, where q and k are both even.
The current work extends those results to some cases where q or k is odd and q and k are
both at least 4; for an example of such a configuration, see Figure 1. Astral configurations
initially were introduced in [9] and [10]; recently, astral configurations have been discussed
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as a special case of the more general notion of polycyclic configurations in [6]. Unless
otherwise stated, in figures in this paper, objects with the same color are members of the
same symmetry class.

Figure 1: An astral configuration (604, 485)

2 Definitions and preliminary lemmas

The following definitions and lemmas were presented in [2] (some have been restated
slightly). They are repeated here for clarity; all proofs may be found in [2].

An astral configuration (pq, nk) is a collection of p points and n straight lines in the
Euclidean plane with the following properties:

1. every point lies on q lines;

2. every line passes through k points;

3. there are precisely b q+1
2
c symmetry classes of lines;

4. there are precisely bk+1
2
c symmetry classes of points.

The symmetry classes of points or lines are precisely the transitivity classes of the
points or lines under the rotations and reflections of the plane that map the configuration
to itself. Note that in a (pq, nk) configuration, if a straight line in the plane has k points
on it, at most two of the points can be in the same symmetry class, and similarly with the
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lines, since two lines can intersect only at a single point. Therefore, bk+1
2
c (respectively,

b q+1
2
c) is the fewest number of symmetry classes of points (respectively, lines), and so the

most symmetry, that a configuration can have. Thus, the term astral configuration refers
to the kind of geometric configurations which have as much symmetry as possible.

A (pq, nk) configuration is called a configuration of class [q, k], or, usually, a [q, k]
configuration, when one is interested in emphasizing the kinds of incidences, rather than
in how many points and lines there are in the configuration. An astral configuration of
class [q, k] is called odd if at least one of q or k is odd; if both q and k are even, the
configuration is called even. Even astral configurations are completely classified in [2].
Most of the results in [2] and this paper originally appeared in the author’s Ph.D. thesis,
[4].

In an astral configuration with k points incident with each line, where k is odd, points
on a given line may be partitioned into pairs by symmetry class, leaving one point that
is not paired up. The collection of all such “leftover” points forms a symmetry class, and
this symmetry class of points is called the special symmetry class. For all other symmetry
classes of points, there will be exactly two points in the symmetry class incident with
each line. Similarly, in an astral [q, k] configuration with k odd, the special class of lines
is the single symmetry class of lines with exactly one line from the class incident with
each point.

Astral configurations come in two varieties. An astral [q, k] configuration of type
1 satisfies the condition that the set of points in every symmetry class of points in the
configuration forms the vertices of a regular polygon; such a configuration will be ab-
breviated as [q, k]1. For an example of an astral [4, 5]1 configuration, see Figure 2. In
an astral type 2 configuration, there is some symmetry class of points which does not
form the vertices of a regular polygon; astral type 2 configurations will be abbreviated as
[q, k]2. For example, neither the outer nor the inner ring of points in Figure 1, which is an
astral [4, 5]2 configuration, forms the vertices of a regular polygon, although the middle
ring does.

The size of a type 1 configuration is the cardinality of the largest symmetry class of
points that forms the vertices of a regular polygon. Note that the size of the configuration
given in Figure 2 is 30, although the special class of points has only 15 points in it. If a
type 1 configuration is of size m and it does not have the symmetries of a regular m-gon,
then it must have the symmetries of a regular m

2
-gon; the configuration in Figure 2 has the

symmetries of a 15-gon. Note that every even configuration of size m has the symmetries
of a regular m-gon.

2.1 Multiples of a configuration

Beginning with a type 1 astral configuration of size m with the symmetries of a regular
m-gon, additional type 1 configurations may be formed by adding r − 1 equally-spaced
concentric copies of the original configuration—i.e., the new configuration will have the
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Figure 2: An astral [4, 5]1 configuration of size 30

jth copy rotated by 2jπ
mr

radians. This new configuration is called an r-multiple, or, more
simply, a multiple of the original configuration.

In addition, taking two copies of a size m type 1 configuration, rotating one through
any angle α which is not an integer multiple of π

m
, and placing it concentrically on the first

one yields a type 2 astral configuration; that such a configuration is astral has been shown
in Lemma 2.1 (proved in [2]). The type 2 configurations produced from this process are
called ordinary type 2 configurations; other type 2 configurations are called extraordinary.

Lemma 2.1. Ordinary [q, k]2 configurations are astral.

2.2 Diametral points

Label the vertices of an m-gon consecutively as v0, . . . , vm−1. A diagonal of the m-gon is
of span c if it connects vertices vi and vi+c, where indices are taken modulo m (and in
general, 1 ≤ c ≤ m/2). In Figure 2, the green lines may be viewed as diagonals of the
outer 30-gon of span 10 and the blue lines as diagonals of span 12. Given a regular polygon
and a diagonal of span c, label the intersection points of the diagonal with other span c
diagonals as c1, c2, . . . , cbm

2
c, counted from the midpoint of the diagonal and travelling in

one direction (usually, to the left). Considering the set of points with symbol ci, if i > c,
the point is outside the polygon, if i = c the point is a vertex of the polygon, and if i < c
the point is interior to the polygon; see Figure 3. Also, the point with symbol c−d is the
d-th intersection point along the span c diagonal counted in the other direction.

A line is diametral with respect to a regular convex m-gon if it passes through the
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Figure 3: Examples of the symbols cd; in this example, c = 4.

center of the m-gon and one of the vertices of the polygon. Note that if m is even,
diametral lines correspond to the ordinary notion of diameters of a regular polygon, i.e,
they pass through two vertices and the center of the polygon and are lines of span m

2
.

A line in a type 1 configuration is diametral if it is diametral for the underlying regular
polygon formed by the ring of vertices that is farthest from the center of the configuration.
A line in a configuration is semidiametral if it passes through the center of the m-gon and
is the angle bisector of two diametral lines. A point is diametral if it lies on a diametral
line, and a point is semidiametral if it lies on a semidiametral line.

Lemma 2.2. Choose a span c diagonal of a regular, convex m-gon, and label the inter-
section points of the diagonal with other span c diagonals as c1, c2, . . . , cc, . . . , cbm

2
c. If m

is even, the intersection points ci which are diametral are precisely those for which the
parity of c and i is the same, and the other intersection points are semidiametral. If m is
odd, all points ci are diametral.

2.3 Polars

Given an astral [q, k] configuration in the extended Euclidean plane (that is, the Euclidean
plane with the line at infinity appended), a new [k, q] configuration may be constructed
by taking the polar of the configuration with respect to a circle concentric with the
configuration. The resulting configuration is astral in the ordinary Euclidean plane as
long as the original configuration contained no lines passing through the center of the
configuration. Taking polars is an easy way to produce new configurations from previously
classified ones.
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3 Theorems about even configurations

If only one of q or k is even, then odd astral configurations may be constructed using even
astral configurations. To see this, suppose that an astral [4, 5] configuration exists. It must
have three symmetry classes of points, one of which is the special class. Ignore the special
class of points, and the resulting configuration is an astral [4, 4] configuration. Thus, if
the [4, 5] configuration is to exist, it must be constructed using astral [4, 4] configurations,
and similarly for other odd configurations.

Hence, to prove results about [2s, 2t+1] and [2s+1, 2t] configurations, it is useful to
know results about the existence and nonexistence of various even astral configurations.
The following results were discussed and proved in [2] and [3].

A [4, 4]1 configuration of size m consists of two concentric m-gons corresponding to
the two symmetry classes of points. It is denoted as m#ab cd, where a and c are the spans
of diagonals of the m-gons corresponding to lines of the configuration. Since any [4, 4]
configuration must have four lines passing through each point and only four points on each
line, b and d must be chosen so that ab and cd are the same point of the configuration.

Theorem 3.1. All [4, 4]1 configurations are listed in the following: there are two infinite
families, (6k)#(3k − j)3k−2j (2k)j for j = 1, . . . , 2k − 1, k > 1, j 6= k and j 6= 3k

2
, and

(6k)#(3k − 2j)j (3k − j)2k, for k > 1, j = 1, . . . , k − 1. There are 27 connected sporadic
configurations, with m = 30, 42, and 60, listed in Table 1, where a configuration is sporadic
if it is not a member of one of the infinite families. Finally, there are multiples of the
sporadic configurations.

m = 30

30#41 76 30#61 74 30#61 1110

30#62 86 30#72 1211 30#81 1312

30#101 116 30#106 1210 30#107 1312

30#112 127 30#116 1413 30#121 138

30#124 1412 30#127 1310 30#136 1411

m = 42

42#61 1312 42#116 1817 42#121 136

42#125 1918 42#176 1811 42#185 1912

m = 60

60#92 2221 60#125 2524 60#143 2726

60#212 229 60#245 2512 60#263 2714

Table 1: The sporadic astral [4, 4]1 configurations
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In addition, [4, 4]2 configurations were classified in the following (slightly restated
from [3]):

Theorem 3.2. All [4, 4]2 configurations are ordinary.

The proof of Theorem 3.1 was the main content of [3].

Proposition 3.3. Every [2s, 2t]2 configuration is ordinary.

Following the notation introduced for astral [4, 4]1 configurations, an astral [6, 4]1

configuration is denoted by m#ab cd zw, where ab, cd, and zw represent the same point of
the configuration.

Theorem 3.4. These are all the astral [6, 4] configurations: the type 1 configurations
30#81 107 1312, 30#61 74 1110, 30#112 127 1310, 30#93 106 1210, 30#101 116 1413, multiples
of these, and ordinary type 2 configurations formed from the already-listed configurations.

Every astral [4, 6] configuration is formed as the polar of an astral [6, 4] configuration,
but it is convenient to list them separately. An astral [4, 6] configuration has two symmetry
classes of lines and three symmetry classes of points. If it is formed from two astral [4, 4]1

configurations m#ab cd and m#ae cf , it will be denoted m#(ab cd)(ae cf ), where each set
of symbols enclosed in parentheses represent one of the intersection points of the a and c
diagonals. That is, ab and cd represent the same point in the configuration, as do ae and
cf .

Proposition 3.5. The astral [4, 6] configurations are the following:
30#(121 138)(127 1310), 30#(104 117)(101 116), 30#(102 1311)(107 1312),
30#(103 129)(106 1210), 30#(131 1410)(136 1411), and their multiples, plus ordinary type 2
configurations formed from these.

Theorem 3.6. No astral configurations [2s, 2t] exist where s and t ≥ 3. Moreover, for
s ≥ 2 and t ≥ 4, there are no astral [2s, 2t] and [2t, 2s] configurations.

Lemma 3.7. If no astral [2s, 2t] configuration exists, then no astral [2s + x, 2t + y] con-
figuration exists either, where x, y = 0, 1, 2, . . ..

4 General results for [2s, 2t + 1]1 and [2s + 1, 2t]1 config-

urations

Suppose an astral [2s, 2t + 1]1 configuration exists; it has s line spans, called a1, ..., as.
Since 2t + 1 is odd, one of the symmetry classes of points is special. Removing this
special class of points yields an astral [2s, 2t]1 configuration. Consider one of the special
points. Since it lies on a 2s-diagonal intersection, in particular, it it lies on some span
a1 line and must be the e-th intersection point of that line with another span a1 line,
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counted from the midpoint in some direction; without loss of generality, it is to the left
of the midpoint. As usual, this point has symbol (a1)e. The symmetry of the underlying
[2s, 2t]1 configuration forces that the e-th intersection point to the right of the midpoint
also participates in a 2s-diagonal intersection, since the underlying [2s, 2t]1 configuration
has as one of its symmetries the mirror which passes through the center of the configuration
and the midpoint of the given span a1 line. Adding to the [2s, 2t]1 configuration both of
the possible points with symbol (a1)e on each line yields an astral [2s, 2t+2]1 configuration.
This discussion is summarized in the following lemma:

Lemma 4.1. If an astral [2s, 2t + 1]1 configuration exists, then an astral [2s, 2t + 2]1

configuration must also exist. Hence, if no astral [2s, 2t+2]1 configuration exists, then no
astral [2s, 2t + 1]1 configuration exists, either.

Corollary 4.2. If an astral [2t+1, 2s]1 configuration exists which does not use diameters,
then an astral [2t + 2, 2s]1 configuration must also exist. Hence, if no astral [2t + 2, 2s]1

configuration exists, then if an astral [2t+1, 2s]1 configuration exists, it must be constructed
by adding diameters to a [2t, 2s]1 astral configuration.

Proof. This follows from Lemma 4.1 by polarity.

5 Astral [4, 5]1 and [5, 4]1 configurations

5.1 Astral [4, 5]1 configurations

A [4, 5]1 configuration may be constructed by adding a class of points appropriately to
a [4, 4]1 configuration that has additional intersections of four diagonals. Astral [4, 6]1

configurations have the appropriate intersections, but they have 6 points on a line instead
of five.

If an astral [4, 5]1 configuration exists, Lemma 4.1 implies that it is constructed from
a [4, 6]1 configuration. Moreover, each line in the [4, 5]1 configuration must contain only
one point from the special class of points. Let S be the name of the symmetry class of
points in the [4, 6]1 configuration from which the special class of points is formed in the
[4, 5]1 configuration, and call the special class of points in the [4, 5]1 configuration Ŝ. The
symmetries of the [4, 5]1 configuration must act transitively on Ŝ, so locally, any point
in Ŝ looks like any other point in Ŝ. Imagine that the points used for Ŝ are colored
black, and the points in S \ Ŝ are colored red. Every line in the [4, 5]1 configuration must
contain one red point and one black point, so that it has five points on it rather than six,
so exactly half the points of S are used to form Ŝ.

Note that the points of S are concyclic. Say that two points in S are neighbors if
they are adjacent to each other viewed as points on the circle. In the situation of Figure
4, note that every red vertex has two black neighbors, and vice versa.
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Figure 4: A schematic of the symmetry class of points which includes the special class of
points, viewed on a circle to determine neighbors.

Since any point in the special class must look like any other, in particular, if one
black (special) point has a red neighbor, then all black points must have a red neighbor.
Therefore, travelling along the circle which passes through S, there are precisely two
possibilities: the pattern of special points within S is either two points in the special class
alternating with two points not in the symmetry class, so that each black point has a
black neighbor and a red neighbor, or every other point is in the special class of points,
so that each black point has only red neighbors.

Consider the case where the pattern of neighbors is two points in the special class
followed by two points not in the special class. For this pattern to be possible, the size of
the configuration, m, is congruent to 0 mod 4. If m ≡ 0 mod 4, it is necessary that q ≡ 0
mod 2, since m = 6 · 5q. In this case, by Lemma 2.2, every point of the configuration lies
on a diameter of the configuration. Given the constraints of the special class of points,
the available symmetries are mirrors which pass through the center of the configuration
at an angle halfway between two special points (so that every other semidiametral mirror
in the [4, 6] configuration is a symmetry) and rotations about the center with angle 4π

m
.

When applied to the configuration, these symmetries will map any point in the special
class of points to any other point in that class. Unfortunately, they will have the same
effect on points in the other symmetry classes of the [4, 6] configuration — if points in
the orbit are colored red and the other points which were in the same symmetry class
viewed in the [4, 6] configuration are colored black, then travelling along the circle which
passes through the symmetry class of points of the [4, 6] configuration under consideration
generates the pattern of two red points followed by two black points, etc. Thus, where
once there were three symmetry classes of points, now there are five symmetry classes, so
the resulting [4, 6] configuration is not astral.

In the case of using every other point, either the points in the special class are on
diameters or they are not. If the special class of points is formed from the only symmetry
class in the [4, 6] configuration which is not diametral, then the available symmetries are
the semidiametral mirrors and rotations through 2π

m
, and these two kinds of symmetries

suffice to map any point in a non-special symmetry class to any other point in that class.
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If in the [4, 6] configuration all three symmetry classes are diametral or if two of them
are non-diametral, applying the symmetries will cause the other symmetry class which
matches the special class (diametral if the special class is diametral, non-diametral if the
special class is non-diametral) to be partitioned into two orbits which interlace so that
every other point is in one orbit, breaking astrality.

Thus, [4, 5]1 configurations may only be constructed from [4, 6]1 configurations which
have one symmetry class of points which is not diametral and two which are, and they
must be constructed by taking every other point from the non-diametral symmetry class.
In particular, q must be odd. So, from Proposition 3.5, the available [4, 6] configurations
are: q · 30#(104 117)(101 116), q · 30#(102 1311)(107 1312), q · 30#(103 129)(106 1210), and
q · 30#(131 1410)(136 1411), where q is odd.

By m#(abcd)(aecf)* denote the configuration which has vertices with symbols (aa)i =
(cc)i, (ab)i = (cd)i for all i and (ae)i = (cf)i for i = 0, 2, 4, . . . , m − 2 (so that every other
vertex in the ae ring is used).

Theorem 5.1. The only astral [4, 5]1 configurations are
(30q)#((10q)(6q) (12q)(10q))((10q)(3q) (12q)(9q))*, where q is odd.

Proof. Given a [4, 5]1 configuration m#(ab cd)(ae cf )*, label the vertices with symbol aa

as vi, the vertices with symbol ab = cd as wi, and the vertices ae = cf as ui. Specifically,

ui =
cos(aπ

m
)

cos( eπ
m

)

(
cos
( π

m
(2i + a + e)

)
, sin

( π

m
(2i + a + e)

))
,

and note that only the points ui for i = 0, 2, 4, . . . , m − 2 are used in the configuration
m#(ab cd)(ae cf)*.

Note that the configuration q · (m#(ab cd)(ae cf )*) is not the same configuration as
(mq)#((aq)(bq) (cq)(dq))((aq)(eq) (cq)(fq))*; the first configuration has the special class of
lines passing through vi and vi+e for all i = 1, 2, ..., q.

A configuration m#(ab cd)(ae cf )* has five points lying on every line with symbol
ae = cf precisely when e and f are both odd. To see this, consider a span a diagonal. By
definition, it passes through points vi and vi+a for some choice of i = 0, 1, 2, . . . , m− 1. It
also passes through points with symbol ab; in particular, for some j = 0, 1, 2, . . . , m− 1 it
passes through points wj and wj+b, since the span a diagonals of the vi vertices are span
b diagonals when viewed as diagonals of the wj vertices. Similarly, for the points uk with
symbol ae, the span a diagonals are span e diagonals when viewed as the diagonals of the
points uk for k = 0, 1, 2, . . . , m − 1. Note that only the points uk with k even are points
of the possible configuration.

Thus, the span a diagonal passes through the points vi, vi+a, wj, wj+b, uk and uk+e.
However, sometimes uk and uk+e are points of the configuration and sometimes they are
not; we are interested in the case when for any choice of k, one is and one isn’t. But this
occurs precisely when e is odd. To see this, note if e is odd and k is even, e + k is odd,
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so uk is a point of the configuration and uk+e is not, while if e and k are both odd (so
that e + k is even), then uk+e is a point of the configuration and uk is not. Thus, if e is
odd, all span a diagonals contain five points of the configuration. On the other hand, if
e is even and k is odd, then neither uk nor uk+e are points of the configuration, so the
span a diagonal contains only four points of the configuration, while if e and k are both
even, both uk and uk+e are points of the configuration, so the span a diagonal contains
six points of the configuration. Thus, if e is even, half the span a diagonals contain six
points and the other half contain only four points of the configuration.

Similarly, if f is odd, the span c diagonals will contain precisely five points of the
configuration, while if f is even, half the diagonals will contain six points and the other
half will contain only four points.

There is exactly one infinite family of configurations m#(abcd)(aecf)* with both e and
f odd, namely, (30q)#((10q)(6q) (12q)(10q))((10q)(3q) (12q)(9q))*, for q any odd number.

5.2 Astral [5, 4]1 configurations

Since none of the configurations listed in Theorem 5.1 contains diagonals which pass
through the origin, their polars with respect to a concentric circle will be astral [5, 4]1

configurations. Note that these astral [5, 4]1 configurations may be written as

(30q)#(10q)(6q) (12q)(10q) (3q)(9q)*,

with q odd, where for the symmetry class of lines in the polar corresponding to the special
class of points in the original configuration (marked with * in the configuration symbol),
every other line is used, so that in the polar configuration, for the special class of lines,
for example, only the left-hand line is used. Figure 5 is an astral [5, 4]1 configuration
constructed as the polar of the configuration shown in Figure 2.

However, there are additional astral [5, 4]1 configurations which may be obtained by
adding diameters to appropriate astral [4, 4]1 configurations, as in Figure 6; these may be
determined by applying Lemma 2.2. Diameters may be added to a configuration m#ab cd

to form an astral [5, 4]1 configuration precisely when a ≡ b mod 2 (and, since ab and cd

are the same points, c ≡ d mod 2 as well); these will be denoted as m#ab cd, D.

Using Lemma 2.2 and the above remark, the following is proved:

Theorem 5.2. Diameters may be added to the following astral [4, 4] configurations to
yield astral [5, 4]1 configurations:

1. (2t) · m#ab cd for any astral configuration m#ab cd;

2. (6k)#(3k − j)(3k−2j) 2kj, if j is even and k is odd;

3. (6k)#(3k − 2j)j 3k − j2k, if j and k are both odd;
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Figure 5: The astral [5, 4]1 configuration 30#106 1210 93*

4. q · 30#62 86, q · 30#106 1210, q · 30#124 1412 for any odd q.

Recall from Proposition 3.6 that no astral configurations of class [q, k] exist if one
of q or k is at least 8 and the other is at least 4. In particular, there are no astral
configurations [4, 8], [8, 4], or [5, 8].

Corollary 5.3. There are no astral [4, 7]1 or [6, 5]1 configurations.

Proof. The nonexistence of astral [4, 7]1 configurations follows from the nonexistence of
astral [4, 8]1 configurations (Theorem 3.6) and Lemma 4.1; the nonexistence of astral
[6, 5]1 configurations follows from the nonexistence of astral [6, 6]1 configurations (also
Theorem 3.6) and Lemma 4.1 as well.

6 Mixed configurations

6.1 Extraordinary type 2 configurations

Given an astral [4, 2t]1 configuration of size m, with the two symmetry classes of lines of
span a and span c, there are many points of intersection of a single span a diagonal with
a single span c diagonal (i.e., not an intersection point that participates in a 4-diagonal
intersection); these points will be called embryonic. Choose one of them, called x; it is
not on a mirror of symmetry of the configuration. To see this, note that each point of
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Figure 6: A [5, 4]1 configuration formed by adding diameters to the configuration
24#82 108.

intersection of a span a diagonal with another span a diagonal lies on one of the lines of
symmetry of the [4, 2t]1 configuration, which has the symmetries of a regular m-gon. For
the chosen point of intersection to lie on a line of symmetry, it would also have to be part
of an a-a intersection, and symmetry would force it to be a 4-diagonal intersection point.
But it was chosen to be the intersection of precisely two diagonals, a span a-diagonal and
a span c-diagonal.

Assume the [4, 2t]1 configuration is centered at the origin with one of its vertices
located at the point (1, 0). Call α the angle formed by the ray 〈(0, 0), x〉 and horizontal.
Take another copy of the [4, 2t]1 configuration and rotate it through 2α about the origin;
color the original configuration black and the rotated configuration red. This yields a
configuration with four diagonals passing through point x: the black a and c diagonals that
passed through x originally and the red a and c diagonals from the rotated configuration.
If all of the points x formed in the same manner are taken as points of the configuration
as well, the result is an astral [4, 2t+1]1 configuration. A configuration constructed in this
fashion will be called a mixed configuration. Figure 7 shows a mixed [4, 5]2 configuration.
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Figure 7: An astral [4, 5]2 configuration mixed from two 18#62 75 configurations, using
the third a-c intersection. As in the discussion, the original configuration is colored black
and the rotated configuration is colored red, and the new points formed by the embryonic
points are colored green.

Lemma 6.1. Mixed [4, 2t + 1]2 configurations are astral.

Proof. Call the new points formed using the embryonic points the special points of the
configuration. Ignoring these special points yields an ordinary astral [4, 2t]2 configuration.
Thus, it suffices to show that the symmetries of the the ordinary [4, 2t]2 configuration map
any special point to any other special point. The symmetries of the underlying ordinary
configurations were rotations by 2π

m
and mirrors which pass halfway between the two

copies which form the ordinary configuration. The new points lie on every other mirror,
so the rotations of the ordinary configuration map any special point to any other special
point.

Suppose there exists a [2s, 2t]1 configuration. This configuration has s symmetry
classes of lines; assume that the spans are a1, a2, . . . , as. If there is a point which has
exactly one line of each of the spans a1, a2, . . . , as passing through it, then it is called
an s-embryonic point, and it can be used identically as with the embryonic points to
construct an astral mixed [2s, 2t + 1]2 configuration.

Lemma 6.2. The only astral [2s, 2t + 1]2 configurations are ordinary and mixed.

Proof. Any configuration [2s, 2t + 1]2 has a special class of points since 2t + 1 is odd.
If the special class of points is removed, the resulting configuration is an astral [2s, 2t]2
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configuration. According to Corollary 3.3, this configuration must be ordinary — that
is, it is constructed of two disjoint astral [2s, 2t]1 subconfigurations. Color one of the
subconfigurations black and the other subconfiguration red. Consider a point in the
special class of points in the [2s, 2t + 1]2 configuration; it must have 2s lines passing
through it, two from each of the s symmetry classes of lines, and suppose the s symmetry
classes of lines correspond to spans a1, a2, . . . , as. By symmetry, the lines passing through
the special point either are all red or all black, or there are s black lines and s red lines
passing through it.

Case 1: Without loss of generality, say all the lines are black; then the black con-
figuration together with the members of the special class which also have all black lines
passing through them forms an astral [2s, 2t + 1]1 configuration, as does the red config-
uration with the rest of the special points, so together the black and red configurations
with the special class of points forms an ordinary [2s, 2t + 1]2 configuration.

Case 2: There are s black lines and s red lines passing through the point. Since there
must be two lines of each of the spans a1, a2, . . . , as passing through the point, symmetry
forces that there must be black lines of each span a1, a2, . . . , as and red lines of each
span a1, a2, . . . , as passing through the point, Thus, the black lines of span a1, a2, . . . , as

intersect to form an s-embryonic point, so the [2s, 2t + 1]2 astral configuration may be
constructed as a mixed configuration using that s-embryonic point.

6.2 Explicit construction of mixed astral [4, 5]2 configurations

There are many astral [4, 5]2 configurations; their existence is discussed in Lemma 6.2 and
the preceding discussion.

Given an astral [4, 4] configuration m#ab cd, the a-c intersection points may be
classified. Travelling along a span a diagonal beginning at the midpoint and moving to
the left, one may label the a-c intersections (including the ones that participate in a 4-
diagonal intersection) as p1, p2, ..., pbm

2
c, where p1 is the first a-c intersection to the left of

the midpoint. Note that pi may be chosen where i > a; in this case the ring of embryonic
points is farther away from the center of the configuration than the rings of configuration
points with symbols aa = cc and ab = cd. An example of this case is shown in Figure 8.
Let

vi =

(
cos

(
2πi

m

)
, sin

(
2πi

m

))
;

and assume that the points with symbol aa = cc are vi for i = 0, . . . , m − 1. Suppose
that the a-line under consideration is the line 〈vi, vi+a〉. To properly construct a mixed
configuration using, say, pt, it is first necessary to determine which line 〈vj , vj+c〉 for some
j is the c-line which intersects p1.

Let A be the midpoint of the line 〈v0, va〉. We must determine the point (not usually
of the configuration) called vγ , at an angle of 2πγ

m
from horizontal on the unit circle, so

that A lies on 〈vγ , vγ+c〉; see Figure 9. Note that γ is unlikely to be an integer. If γ is
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Figure 8: A mixed [4, 5]2 configuration whose special class of points is farthest away from
the center

known, however, then the line 〈vbγc, vbγc+c〉 will intersect point p1.

To determine γ, let C be the midpoint of the line 〈vγ, vγ+c〉, and let O be the center
of the circle. Since the total angle from v0 to va is 2πa

m
, a little elementary geometry and

trigonometry shows that

A = cos
(aπ

m

)(
cos

(
2aπ

m

)
, sin

2aπ

m

)
(1)

and similarly,

C = cos
(cπ

m

)(
cos
( π

m
(2γ + c)

)
, sin

2π

m
(2γ + c)

)
. (2)

Determining when A is on the line 〈vγ, vγ+c〉 is equivalent to determining when the
point A lies on the halfplane with normal C, i.e., solving

C · C = C · A. (3)

Note that 0 < a, c, γ < m. Then, equation 3 implies (since cos2(θ) + sin2(θ) = 1):
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v0va

vγ

A

C

2p
γ/m

vγ+c

Figure 9: To determine γ for mixed [4, 5]2 configurations

cos2
(cπ

m

)
= cos

(cπ

m

)
cos
(aπ

m

)(
cos
(aπ

m

)
cos
(
(2γ + c)

π

m

)
+ sin

(aπ

m

)
sin
(
(2γ + c)

π

m

))
cos
(

cπ
m

)
cos
(

aπ
m

) = cos
(
(a − (2γ + c))

π

m

)

arccos

(
cos
(

cπ
m

)
cos
(

aπ
m

)
)

= (a − 2γ − c)
π

m

γ =

m

(
c − a + arccos

(
cos( cπ

m )
cos(aπ

m )

))
2π

(4)

Choose the tth intersection point pt, and note that it lies on the c-line 〈vt+bγc, vt+bγc+c〉.
For the following, it may be helpful to refer to Figure 10. Let d = d(O, pt) be the distance
from the origin to pt. Let α be the angle from the midpoint of the span a diagonal, which
will now be called Ma, to point pt and let β be the angle from the midpoint of the span
c diagonal, Mc, which also passes through pt to point pt. Note that

d =
cos
(

aπ
m

)
cos(α)

and d =
cos
(

bπ
m

)
cos(β)

(5)

Also,

α + β +
πa

m
=

2π

m
(bγc + t) +

cπ

m
,
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Figure 10: Determining α and β to construct a mixed configuration. Note q = t + bγc.

since that measures the distance from v0 to the midpoint of 〈vt+bγc, vt+bγc+c〉 in two ways.
Therefore,

β =
π (c − a + 2(t + bγc))

m
− α. (6)

For convenience, let

z =
π (c − a + 2(t + bγc))

m
.

Note that d(O, Ma) = cos
(

πa
m

)
and d(O, Mc) = cos

(
πc
m

)
. Using elementary right-

triangle trigonometry,

d(O, pt) =
d(O, Ma)

cos(α)
=

d(O, Mc)

cos(β)

cos(β)

cos(α)
=

cos(z − α)

cos(α)
=

cos
(

πc
m

)
cos
(

πa
m

)
cos z cos α + sin z sin α

cos α
=

cos
(

πc
m

)
cos
(

πa
m

)
cos z + sin z tan α =

cos
(

πc
m

)
cos
(

πa
m

)
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Hence,

α = arctan

(
cos
(

πc
m

)
cos
(

πa
m

)
sin
(

π(c−a+2(t+bγc))
m

) − cot

(
π (c − a + 2(t + bγc))

m

))
(7)

Therefore, given a particular choice of a-c intersection in a [4, 4]1 configuration, it is
possible to construct explicitly the corresponding mixed astral [4, 5]2 configuration; Figure
7 shows such a configuration.

Note that none of the mixed [4, 5]2 configurations have lines passing through the
center of the configuration, so their polars are astral [5, 4]2 configurations; for convenience,
these will also be known as mixed configurations. For example, see Figure 11.

Figure 11: A mixed astral [5, 4]2 configuration; it is the polar of the configuration in
Figure 7.

7 Other astral configurations

7.1 Astral [6, 5] configurations

It has been shown, in Corollary 5.3, that there are no astral [6, 5]1 configurations.
Lemma 6.2 says that the only possible astral [6, 5]2 configurations are ordinary and mixed;
however, since there are no [6, 5]1 configurations, there can be no ordinary type 2 config-
urations, either. The discussion preceding Lemma 6.2 shows that to construct a mixed
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[6, 5]2 configuration, it is necessary to have a [6, 4]1 configuration with a 3-embryonic point.
Such configurations do exist; for example, see Figures 12 and 13. In [12], B. Poonen and
M. Rubinstein characterize all intersections of three diagonals of a regular polygon which
are internal to that polygon.

Figure 12: A mixed astral [6, 5]2 configuration, formed from two copies of the [6, 4]1

configuration 30#101 116 1413.

Recall that no s-embryonic point lies on a line of symmetry of the astral [q, k]1

configuration which contains it. Thus, to determine whether a 3-diagonal intersection
listed in [12] may be 3-embryonic, it suffices to determine whether the angle between the
point and horizontal is an integral multiple of π

m
for m the size of the [6, 4]1 configuration.

Theorem 7.1. The only mixed astral [6, 5]2 configurations whose special class of points
lie closer to the center of the configuration than one of the non-special classes of points
are formed from the astral [6, 4]1 configurations 30#81 107 1312 and 30#101 116 1413.

Proof. In [12], Poonen and Rubinstein show that if points A, B, C, D, E, F are on the
circle with arclengths u, x, v, y, w, z, respectively, between successive points, then the three
diagonals formed by chords AD, BE, CF intersect precisely when
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sin(πU) sin(πV ) sin(πW ) = sin(πX) sin(πY ) sin(πZ) (8)

U + V + W + X + Y + Z = 1

where U = u/(2π), etc. [12, equation (2.2)]. Furthermore, they show that there are
three different types of solutions to the above equations:

1. Trivial solutions, where U +V +W = 1/2 and X, Y, Z are a permutation of U, V, W ;

2. Four 1-parameter families of solutions;

3. 65 sporadic solutions.

To match the notation of [12] with the notation of [6, 4] configurations, notice that
if a, c, z are the spans of the diagonals, then

a = 2m(U + X + V ) (9)

m − a = 2m(Y + W + Z) (10)

c = 2m(X + V + Y ) (11)

m − c = 2m(W + Z + U) (12)

z = 2m(V + Y + W ) (13)

m − z = 2m(Z + U + X) (14)

Let Ū = 2mU , etc. Since we are looking for mixed [6, 5]2 configurations to be
formed from [6, 4]1 configurations, in particular, we are interested in m-gons where m is
divisible by 30. Consider the possible trivial solutions. Suppose there is a trivial solution
associated with m = 30q which has spans which correspond to those which generate a
[6, 4]1 configuration. Previously, it has been shown that q divides the span, since any
[6, 4]1 configuration with m = 30q is constructed using q copies of the astral configuration
with m = 30. The trivial solution must be of the form Ū + V̄ + W̄ = 30q

2
, with X̄, Ȳ , Z̄

a permutation of Ū , V̄ , W̄ . Using this fact, equations 9 - 14 listed above, and the
elementary number-theoretic result that if α|(β+γ) and α|γ then α|β, it is straightforward
to show that q divides each of Ū , V̄ , W̄ , X̄, Ȳ , Z̄.

Thus, any trivial solution for m = 30q must be a trivial solution for m = 30 multi-
plied by q. Hence, it suffices to determine the 3-embryonic points associated with trivial
solutions for m = 30, those which arise from the sporadic solutions whose common denom-
inator is divisible by 30 (specifically, 30, 60, 90, 120, and 210), and those which arise from
the one-parameter families. This was accomplished by writing computer programs which,
when given a sequence (U, V, W, X, Y, Z), calculated the spans and the angle between the
point and horizontal. Those sequences which had angles which were not integral multiples
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of π
m

were selected and their spans were considered to see if the spans formed an astral
[6, 4] configuration.

To compute the trivial sequences, all compositions of 15 into three non-zero parts
were found and they were joined with all permutations of the compositions found. After
selecting for angles which were non-integral multiples of π

m
and points other than the

center and looking for acceptable spans, four sequences were found, all from the trivial
solutions.

(Ū , V̄ , W̄ , X̄, Ȳ , Z̄) = (1, 6, 8, 1, 6, 8) in 30#81 107 1312, (15)

(Ū , V̄ , W̄ , X̄, Ȳ , Z̄) = (1, 6, 8, 6, 8, 1) in 30#81 107 1312, (16)

(Ū , V̄ , W̄ , X̄, Ȳ , Z̄) = (2, 6, 7, 2, 6, 7) in 30#101 116 1413, (17)

(Ū , V̄ , W̄ , X̄, Ȳ , Z̄) = (2, 6, 7, 6, 7, 2) in 30#101 116 1413. (18)

Note the point determined by sequence (1, 6, 8, 6, 8, 1) is a rotation of the point determined
from (1, 6, 8, 1, 6, 8), and similarly for (2, 6, 7, 2, 6, 7) and (2, 6, 7, 6, 7, 2).

Checking the sporadic sequences was tedious but easy. Checking the families was
more complicated. It was necessary to change notation by setting t = j

30q
to achieve

m = 30q , noticing that the allowable values for j are j = q, 2q, 3q, 4q, 5q and then
calculating the spans. There was only one sequence with appropriate spans, and this
sequence participates in a six-diagonal intersection.

Note that this is not an exhaustive classification of all astral [6, 5]2 configurations;
in particular, Theorem 7.1 does not classify the [6, 5]2 configurations whose special class
of points is the farthest symmetry class from the center of the configuration. (For an
example of such a configuration, see Figure 13.) To classify these configurations, the
notion of isogonal conjugation is useful.

7.2 Isogonal conjugation

Suppose a triangle ABC has angle bisectors α bisecting ∠A, β bisecting ∠B, and γ
bisecting ∠C. If l is a line passing through A, the isogonal conjugate line l′ is the reflection
of l through α (see Figure 14 (a)). It is a well-known result (e.g., [1]) that given a point
P and the lines PA = l, PB = m, and PC = n, the isogonal conjugate lines l′, m′, and
n′ intersect in a single point P ′, the isogonal conjugate point of P (see Figure 14 (c)).

Given a triangle ABC and parallel lines l passing through A, m passing through B,
and n passing through C, it is known that the isogonal conjugate lines l′, m′, n′ intersect at
a point on the circumcircle of 4ABC (Figure 14 (b)). Since the isogonal conjugate lines
are constructed by reflecting over the appropriate angle bisectors, changing the angle of
lines l and n (assuming that m is between l and n) so that l, m, and n intersect at a point
P somewhere outside the circumcircle causes the isogonal conjugate point P ′ to move
interior to the circumcircle, since the change of angle is a continuous function (Figure 14
(c) again). Finally, note that isogonal conjugation is an involution.
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Figure 13: A mixed astral [6, 5]2 configuration, formed from two copies of the [6, 4]1

configuration 30#101 116 1413 with its special class of points farthest from the origin.

Corollary 7.2. Astral [6, 5]2 configurations whose special class of points is farthest from
the center of the origin may be mixed using appropriate 3-embryonic points in the astral
[6, 4]1 configurations 30#81 107 1312 and 30#101 116 1413.

Proof. Suppose an external 3-embryonic point P existed in some [6, 4]1 configuration.
Construct its isogonal conjugate with respect to a triangle whose vertices are chosen from
the points formed by the intersection of the diagonals with the circle passing through
the outer ring of points, with the restriction that for the middle line, the intersection
point closer to P is chosen. The isogonal conjugate is an internal 3-embryonic point.
Moreover, since isogonal conjugation is an involution, all external 3-embryonic points
must be (appropriate) isogonal conjugates of internal 3-embryonic points. By Theorem
7.1, all internal 3-embryonic points in any astral [6, 4] configuration have been classified.
Thus, astral [6, 5]2 configurations whose special class of points is farthest from the center of
the origin may be mixed using the isogonal conjugates of the 3-embryonic points discussed
in the proof of Theorem 7.1.
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Figure 14: Isogonal conjugation. (a) A line and its isogonal conjugate line. (b) A triangle
with its circumcircle and a set of three parallel lines, whose isogonal conjugate lines
intersect at a single point on the circumcircle. (c) Given a point P outside a circle which
is coincident with three lines, its isogonal conjugate point lies inside the circle.

7.3 Astral [5,6] configurations

The mixed configurations discussed in subsection 7.1 have polars in the Euclidean plane
which are astral [5, 6]2 configurations, since none of the mixed [6, 5]2 configurations contain
diameters.

In addition, there are astral [5, 6]1 configurations formed by adding diameters to
[4, 6]1 configurations, denoted as m#(ab cd)(ae cf), D. By looking at the list of astral [4, 6]1

configurations and applying Lemma 2.2, diameters may be added to any even multiple of
a [4, 6] configuration and to no others. These type 1 configurations also may be used to
generate ordinary astral [5, 6]2 configurations.

There are no other [5, 6]1 configurations since there are no astral [6, 6] configurations
from which to construct them, by Lemma 4.2.

7.4 Astral [7, 4] and [4, 7] configurations

By Theorem 3.6 there are no astral [4, 8]1 configurations from which half the lines of
a symmetry class could be removed, so the only astral [7, 4]1 configurations are those
formed by adding diameters to astral [6, 4]1 configurations, denoted as m#ab cd ef , D.
By inspecting the list of [6, 4]1 configurations and applying Lemma 2.2, it is possible
to add diameters to any even multiple of any [6, 4] configuration and to any multiple
of the configuration 30#93 106 1210. A [7, 4]1 configuration constructed in this fashion
using 30#93 106 1210 is displayed in Figure 15. Ordinary [7, 4]2 configurations may be
constructed, as usual, using the [7, 4]1 configurations.
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Figure 15: The astral [7, 4]1 configuration formed by adding diameters to the [6, 4] con-
figuration 30#106 1210 93.

There are no astral [4, 7]1 configurations: to see this, recall from Theorem 3.6 that
there are no [4, 8]1 configurations, and apply Lemma 4.1 with t = 3 and s = 2. Starting
with a [4, 6]1 configuration, it is easy to construct mixed [4, 7]2 configurations; use the
same embryonic points and construction methods which were used to construct mixed
[4, 5]2 configurations (see section 6.2). To see that this yields [4, 7]2 configurations, note
that the new points are a-c embryonic points, and so after rotation each will have precisely
4 lines passing through it, while each line will now have 7 points on it.

Since none of the lines of the mixed [4, 7]2 configurations are diameters, the polars
of these configurations will be [7, 4]2 configurations; for example, see Figure 17.

8 Some results on [5, 5] configurations

Recall that every [4, 5]1 configuration is constructed by taking every other point from a
suitable symmetry class of points in the appropriate [4, 6]1 configuration. Suppose that a
[5, 5]1 configuration could be constructed by adding diameters to a [4, 5]1 configuration.
Each diameter must pass through a point in the special class of points. It follows that

the electronic journal of combinatorics 13 (2006), #R27 25



Figure 16: A mixed astral [4, 7]2 configuration, formed from two copies of the configuration
30#(102 1311)(107 1312).

m ≡ 2 mod 4, since if m ≡ 0 mod 4 then some diameters would pass through two
special points and some would pass through none. In fact, each special point in the [5, 5]1

configuration would have to be “mirrored” by an unchosen point, so that the existence of
a [5, 5]1 configuration which uses diameters implies the existence of a [4, 5]1 configuration
where the diameters pass through points in each of the three symmetry classes of points.

Proposition 8.1. There are no astral [5, 5]1 configurations.

Proof. Case 1: An astral [5, 5]1 configuration is constructed by adding diameters to a
[4, 5]1 configuration. The only astral [4, 5]1 configurations which could have diameters
added to them are (30q)#((10q)(6q) (12q)(10q))((10q)(3q) (12q)(9q))* where q is odd (so that
30q ≡ 2 mod 4); but the diameters would not pass through the points with symbol
(10q)(3q) since by Lemma 2.2 the parity is wrong.

Case 2: The astral [5, 5]1 configuration is constructed by removing half the lines
from a symmetry class of an appropriate [6, 5]1 configuration. However, according to
Corollary 5.3, there are no [6, 5]1 configurations.

It follows that there are no ordinary [5, 5]2 configurations, either. So, if an astral
[5, 5]2 configuration does exist, it must be constructed as a mixed configuration. Either
it is mixed from a [5, 4]1 configuration or it is even more complicated, with an additional
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Figure 17: A mixed astral [7, 4]2 configuration, the polar of the configuration in Figure
16.

special class of points and an additional special class of lines added to an ordinary [4, 4]2

configuration. Such a configuration will be called twice-mixed.

Proposition 8.2. There are no astral [5, 5]2 configurations mixed from two [5, 4]1 config-
urations.

Proof. Suppose the proposition is false. To be constructed as a mixed configuration,
there must be a 3-embryonic point which is the intersection point of exactly one line of
each of three spans. Note that in a [5, 4]1 configuration which uses diameters, there are
no 3-embryonic points. Thus, the [5, 5]2 configuration would have to be mixed from the
configuration (30q)#(10q)(6q)(12q)(10q)(9q)(3q)*, constructed by removing half of one of the
symmetry classes of lines from the [6, 4] configuration (30q)#(10q)(6q)(12q)(10q)(9q)(3q) (see
Section 5.2). Through each point in the configuration (30q)#(10q)(6q) (12q)(10q) (9q)(3q)*
pass two lines of span 10q, two lines of span 12q, and one line of span 9q. In order to
be able to construct the mixed configuration, one of the underlying [5, 4]1 configurations
would need to have a 3-embryonic point (using all three spans, of course), and in the
corresponding position on the other underlying configuration, it would need to be a 2-
embryonic point using the 10q and 12q lines only. If this were the case, then rotating
the configurations appropriately and superimposing them as usual would lead to a point
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with the correct number of lines passing through it. In particular, one needs the [6, 4]
configuration (30q)#(10q)(6q) (12q)(10q) (9q)(3q) to contain 3-embryonic points. The same
computer calculations which determined the possible mixed [6, 5]2 configurations shows
that there are no 3-embryonic points inside the circle which passes through the points
with symbol 99 = 1010 = 1212; these will be called internal 3-embryonic points. Thus , to
show that there are no astral [5, 5]2 configurations mixed from two [5, 4]1 configurations,
it remains to show that there are no external 3-embryonic points in the configuration
(30q)#(10q)(6q) (12q)(10q) (9q)(3q). For convenience in the subsequent argument, suppose
that this circle is chosen to be the unit circle.

It follows that if a 3-embryonic point P existed in the [6, 4] configuration
(30q)#(10q)(6q) (12q)(10q) (9q)(3q) that was exterior to the unit circle, then its isogonal
conjugate point (with respect to a triangle whose vertices are chosen from the points
formed by the intersection of the diagonals with the circle with the restriction that for the
middle line, the intersection point closer to P is chosen, say) will exist and be an internal
3-embryonic point. But no such point exists, so no external 3-embryonic point can exist
either.

Thus, the only possible remaining candidate for an astral [5, 5] configuration is if it is
possible to construct one from two [4, 4] configurations, i.e., by starting with a mixed [4, 5]2

configuration and adding a new, special class of lines (this is equivalent to constructing a
twice-mixed configuration). Note that to ensure that every point would only have 5 lines
passing through it, the new class of lines would have to be perpendicular to the rays from
the center of the configuration which pass through the special class of points. While no
examples have been found of configurations which are constructed in this fashion, so far
an argument showing that no such configurations exist has not been found.

Conjecture 1. There are no astral [5, 5] configurations.

9 Astral [7, 5] and [5, 7] configurations.

Since there are no [4, 7]1 configurations, it is impossible to construct a [5, 7]2 configuration
mixed from two [4, 7]1 configurations. Moreover, beginning with a [7, 4]1 configuration and
trying to mix a [7, 5]2 configuration by adding a special class of points fails also, because
the special class of points would have to be formed from an a-c embryonic point, none of
which lie on a diameter, and so the special class of lines, which are diameters, would not
pass through the new points. Hence no such configuration can exist.

The lack of [6, 5]1 configurations implies the lack of type 1 and ordinary type 2 [7, 5]
configurations, by Lemma 3.7. Also, there are no astral [7, 5]2 configurations formed by
mixing two [7, 4]1 configurations, since the only [7, 4]1 configurations contain diameters and
diameters don’t pass through embryonic points. Similarly, the lack of [4, 7]1 configurations
implies the lack of [5, 7]1 configurations and ordinary [5, 7]2 configurations, by Lemma 3.7.
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There might be twice-mixed [7, 5]2 or [5, 7]2 configurations formed from adding a
special class of points and a special class of lines to two [6, 4]1 or [4, 6]1 configurations,
respectively; their existence or nonexistence will be determined when it is known whether
there are twice mixed [5, 5] configurations, since the twice mixed [7, 5] and [5, 7] configu-
rations may be constructed by adding a non-special class of lines or points, respectively,
to a twice mixed [5, 5] configuration.

Conjecture 2. There are no astral [7, 5] and [5, 7] configurations.

10 Summary of Configuration Notation

Table 2: Notation for type 1 astral configurations

[q, k] configuration Notation comments
[4, 4]1 m#ab cd ab = cd

[6, 4]1 m#ab cd zw ab = cd = zw

[4, 6]1 m#(ab cd)(ae cf) ab = cd and ae = cf

[4, 5]1 m#(ab cd)(ae cf )* Uses half the ae points
[5, 4]1 m#ab cd ef* Uses half the ab points
[5, 4]1 m#ab cd, D includes diameters
[5, 6]1 m#(ab cd)(ae cf), D includes diameters
[7, 4]1 m#ab cd ef , D includes diameters

Table 2 summarizes the different notation for various type 1 astral configurations.
Type 2 configurations either are constructed using two copies of these (ordinary type 2) or
as mixed configurations. The method of constructing mixed configurations was discussed
extensively, but there is no specific notation for them.

11 Open Questions

The case of astral [3, 3] configurations is quite different than the case of astral [q, k] config-
urations when q and k are at least four. For example, a single discrete symbol describing a
configuration may correspond to more than one [3, 3] configuration. In addition, although
all [q, k] configurations with q, k ≥ 4 have dihedral symmetry, there exist astral [3, 3] con-
figurations with only cyclic symmetry. For an example of these, see Figure 18; note that
both configurations pictured correspond to the same discrete parameters. Finally, some
astral n3 configurations come in continuous families; part of one such family is shown in
Figure 19.
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B. Grünbaum presents some results on astral [3, 3] configurations with only cyclic
symmetry in [11, §26], where a single discrete symbol usually corresponds to a pair of
polar configurations; the example in Figure 18 shows such a pair. Additionally, [3, 3]
configurations were discussed in [7]. I have a few results on astral [3, 3] configurations
with dihedral symmetry (see Figure 19): in this case, a single discrete symbol usually
correspond to a continuous family of configurations, where a single parameter may vary
continuously. (One way of viewing the continuous parameter is that it measures the angle
between two vertices in the same symmetry class, where one vertex is the reflection in
the horizontal of the other; in Figure 19, the continuous parameter measures then angle
between a pair of blue (inner) points and varies between 0 and 2π

5
in increments of π

5
.)

Figure 18: Two [3, 3] configurations with cyclic symmetry

Figure 19: Members of a continuous family of astral [3, 3] configurations with dihedral
symmetry. (Note that the points and lines of the configuration are not always distinct.)

The question of astral [3, k] and [k, 3] configurations, where k > 3, appears to be
almost totally open; a few results are discussed in [11, §§17–19].
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[11] Grünbaum, B. Configurations. Unpublished manuscript/class notes. Spring 2004.

[12] Poonen, B. and M. Rubinstein. The number of intersection points made by the
diagonals of a regular polygon. SIAM J. Discrete Math. 11 (1998), 135 – 156.

[13] Sturmfels, B. and N. White. All 113 and 123 configurations are rational. Aequationes
Mathematicae 39 (1990) 254 – 260.

the electronic journal of combinatorics 13 (2006), #R27 31


