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Universitat Politècnica de Catalunya
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Abstract

The geometric thickness of a graph G is the minimum integer k such that there
is a straight line drawing of G with its edge set partitioned into k plane subgraphs.
Eppstein [Separating thickness from geometric thickness. In Towards a Theory of
Geometric Graphs, vol. 342 of Contemp. Math., AMS, 2004] asked whether every
graph of bounded maximum degree has bounded geometric thickness. We answer
this question in the negative, by proving that there exists ∆-regular graphs with
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arbitrarily large geometric thickness. In particular, for all ∆ ≥ 9 and for all large
n, there exists a ∆-regular graph with geometric thickness at least c

√
∆ n1/2−4/∆−ε.

Analogous results concerning graph drawings with few edge slopes are also pre-
sented, thus solving open problems by Dujmović et al. [Really straight graph draw-
ings. In Proc. 12th International Symp. on Graph Drawing (GD ’04), vol. 3383 of
Lecture Notes in Comput. Sci., Springer, 2004] and Ambrus et al. [The slope param-
eter of graphs. Tech. Rep. MAT-2005-07, Department of Mathematics, Technical
University of Denmark, 2005].

1 Introduction

A drawing of an (undirected, finite, simple) graph represents each vertex by a distinct
point in the plane, and represents each edge by a simple closed curve between its endpoints,
such that the only vertices an edge intersects are its own endpoints. Two edges cross if
they intersect at a point other than a common endpoint. A drawing is plane if no two
edges cross.

The thickness of an (abstract) graph G is the minimum number of planar subgraphs
of G whose union is G. Thickness is a classical and widely studied graph parameter; see
the survey [23]. The thickness of a graph drawing D is the minimum number of plane
subgraphs of D whose union is D. Every planar graph can be drawn with its vertices at
prespecified locations [14, 25]. It follows that a graph with thickness k has a drawing with
thickness k [14]. However, in such a representation the edges might be highly curved1.

This motivates the notion of geometric thickness, which is a central topic of this paper.
A drawing is geometric, also called a geometric graph, if every edge is represented by a
straight line segment. The geometric thickness of a graph G is the minimum thickness of
a geometric drawing of G; see [7, 10, 11, 13, 15]. Geometric thickness was introduced by
Kainen [18] under the name real linear thickness.

Consider the relationship between the various thickness parameters and maximum
degree. A graph with maximum degree at most ∆ is called degree-∆. Wessel [35] and
Halton [14] independently proved that the thickness of a degree-∆ graph is at most d∆

2
e,

and Sýkora et al. [31] proved that this bound is tight. Duncan et al. [11] proved that the
geometric thickness of a degree-4 graph is at most 2. Eppstein [13] asked whether graphs
of bounded degree have bounded geometric thickness. The first contribution of this paper
is to answer this question in the negative.

Theorem 1. For all ∆ ≥ 9 and ε > 0, for all large n > n(ε) and n ≥ c∆, there exists a
∆-regular n-vertex graph with geometric thickness at least

c
√

∆ n1/2−4/∆−ε,

for some absolute constant c.

1In fact, a polyline drawing of a random perfect matching on n vertices in convex position almost
certainly has Ω(n) bends on some edge [25].
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A number of notes on Theorem 1 are in order. Eppstein [13] proved that geometric
thickness is not bounded by thickness. In particular, there exists a graph with thickness
3 and arbitrarily large geometric thickness. Theorem 1 and the above result of Wessel
[35] and Halton [14] imply a similar result (with a shorter proof). Namely, there exists a
9-regular graph with thickness at most 5 and with arbitrarily large geometric thickness.

A book embedding is a geometric drawing with the vertices in convex position. The
book thickness of a graph G is the minimum thickness of a book embedding of G. Book
thickness is also called page-number and stack-number ; see [9] for over fifty references
on this topic. By definition, the geometric thickness of G is at most the book thickness
of G. On the other hand Eppstein [12] proved that there exists a graph with geometric
thickness 2 and arbitrarily large book thickness; also see [5, 6]. Thus book thickness is
not bounded by any function of geometric thickness.

Theorem 1 is analogous to a result of Malitz [19], who proved that there exists ∆-
regular n-vertex graphs with book thickness at least c

√
∆n1/2−1/∆. Malitz’s proof is

based on a probabilistic construction of a graph with certain expansion properties. The
proof of Theorem 1 is easily adapted to prove Malitz’s result for ∆ ≥ 3. The difference
in the bounds (n1/2−4/∆ and n1/2−1/∆) is caused by the difference between the number
of order types of point sets in general and convex position (≈ n4n and n!). Malitz [19]
also proved an upper bound of O(

√
m) ⊆ O(

√
∆n) on the book thickness, and thus the

geometric thickness, of m-edge graphs.
The other contributions of this paper concern geometric graph drawings with few

slopes. Wade and Chu [33] defined the slope-number of a graph G to be the minimum
number of distinct edge slopes in a geometric drawing of G. If G has a vertex of degree
d, then the slope-number of G is at least dd/2e. Dujmović et al. [8] asked whether every
graph with bounded maximum degree has bounded slope-number. Since edges with the
same slope do not cross, the geometric thickness of G is at most the slope-number of G.
Thus Theorem 1 immediately implies a negative answer to this question for ∆ ≥ 9, which
is improved as follows2.

Theorem 2. For all ∆ ≥ 5 there exists a ∆-regular graph with arbitrarily large slope-
number.

The proofs of Theorems 1 and 2 are simple. We basically show that there are more
graphs with bounded degree than with bounded geometric thickness (or slope-number).
Our counting arguments are based on two tools from the literature that are introduced in
Section 2. Theorem 1 is then proved in Section 3. In Section 4 we study a graph parameter
recently introduced by Ambrus et al. [3] that is similar to the slope-number, and we solve
two of their open problems. The proofs will also serve as a useful introduction to the
proof of Theorem 2, which is presented in Section 5.

2Note that Pach and Pálvölgyi [24] independently obtained the following strengthening of Theorem 2:
For all ∆ ≥ 5 there exists a ∆-regular n-vertex graph whose slope-number is at least n1/2−1/(∆−2)−o(1).
The proof is also based on Lemma 1.
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2 Tools

All of our results are based on the following lemma, versions of which are due to Petrovskĭı
and Olĕınik [26], Milnor [22], Thom [32] and Warren [34]. The precise version stated here
is by Pollack and Roy [27]; see [20]. Let P = (P1, P2, . . . , Pt) be a system of d-variate real
polynomials. A vector σ ∈ {−1, 0, +1}t is a sign pattern of P if there exists an x ∈ R

d

such that the sign of Pi(x) is σi, for all i = 1, 2, . . . , t.

Lemma 1 ([27]). Let P = (P1, P2, . . . , Pt) be a system of d-variate real polynomials, each
of degree at most D. Then the number of sign patterns of P is at most(

50 Dt

d

)d

.

Some of our proofs only need sign patterns that distinguish between zero and nonzero
values. In this setting, Rónyai et al. [29] gave a better bound with a short proof; see [20].

Our second tool is a corollary of more precise bounds due to Bender and Canfield [4],
Wormald [36], and McKay [21]; see Appendix A.

Lemma 2 ([4, 21, 36]). For all integers ∆ ≥ 1 and n ≥ c∆, the number of labelled
∆-regular n-vertex graphs is at least ( n

3∆

)∆n/2

,

for some absolute constant c.

3 Geometric Thickness: Proof of Theorem 1

Observe that a geometric drawing with thickness k can be perturbed so that the vertices
are in general position (that is, no three vertices are collinear). Thus in this section we
consider point sets in general position without loss of generality. (We cannot make this
assumption for drawings with few slopes.)

Lemma 3. The number of labelled n-vertex graphs with geometric thickness at most k is
at most 472knn4n+o(n).

Proof. Let P be a fixed set of n labelled points in general position in the plane. Ajtai
et al. [1] proved that there are at most cn plane geometric graphs with vertex set P , where
c ≤ 1013. Santos and Seidel [30] proved that we can take c = 472. A geometric graph
with vertex set P and thickness at most k consists of a k-tuple of plane geometric graphs
with vertex set P . Thus P admits at most 472kn geometric graphs with thickness at most
k.

Let P = (p1, p2, . . . , pn) and Q = (q1, q2, . . . , qn) be two sets of n points in general
position in the plane. Then P and Q have the same order type if for all indices i < j < k
we turn in the same direction (left or right) when going from pi to pk via pj and when
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going from qi to qk via qj. Say P and Q have the same order type. Then for all i, j, k, `,
the segments pipj and pkp` cross if and only if qiqj and qkq` cross. Thus P and Q admit
the same set of (at most 472kn) labelled geometric graphs with thickness at most k (when
considering pi and qi to be labelled i). Alon [2] proved (using Lemma 1) that there are at
most n4n+o(n) sets of n points with distinct order types. The result follows.

It is easily seen that Lemmas 2 and 3 imply a lower bound of c(∆ − 8) log n on the
geometric thickness of some ∆-regular n-vertex graph. To improve this logarithmic bound
to polynomial, we now give a more precise analysis of the number of graphs with bounded
geometric thickness that also accounts for the number of edges in the graph.

Lemma 4. Let P be a set of n labelled points in general position in the plane. Let g(P, m)
be the number of m-edge plane geometric graphs with vertex set P . Then

g(P, m) ≤
{(

n
2m

) · 4722m , if m ≤ n
2

472n , if m > n
2
.

Proof. As in Lemma 3, g(P, m) ≤ 472n regardless of m. Suppose that m ≤ n
2
. An m-edge

graph has at most 2m vertices of nonzero degree. Thus every m-edge plane geometric
graph with vertex set P is obtained by first choosing a 2m-element subset P ′ ⊆ P , and
then choosing a plane geometric graph on P ′. The result follows.

Lemma 5. Let P be a set of n labelled points in general position in the plane. For every
integer t such that 2m

n
≤ t ≤ m, let g(P, m, t) be the number of m-edge geometric graphs

with vertex set P and thickness at most t. Then

g(P, m, t) ≤
(

ctn

m

)2m

,

for some absolute constant c.

Proof. Fix nonnegative integers m1 ≤ m2 ≤ · · · ≤ mt such that
∑

i mi = m. Let
g(P ; m1, m2, . . . , mt) be the number of geometric graphs with vertex set P and thickness
t, such that there are mi edges in the i-th subgraph. Then

g(P ; m1, m2, . . . , mt) ≤
t∏

i=1

g(P, mi).

Now m1 ≤ n
2
, as otherwise m > tn

2
≥ m. Let j be the maximum index such that mj ≤ n

2
.

By Lemma 4,

g(P ; m1, m2, . . . , mt) ≤
(

j∏
i=1

(
n

2mi

)
4722mi

)
(472n)t−j .
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Now
∑j

i=1 mi ≤ m − 1
2
(t − j)n. Thus

g(P ; m1, m2, . . . , mt) ≤
(

j∏
i=1

(
n

2mi

))(
4722m−(t−j)n

) (
472(t−j)n

) ≤ 4722m

t∏
i=1

(
n

2mi

)
.

We can suppose that t divides 2m. It follows (see Appendix B) that

g(P ; m1, m2, . . . , mt) ≤ 4722m

(
n

2m/t

)t

.

It is well known [17, Proposition 1.3] that
(

n
k

)
<
(

en
k

)k
, where e is the base of the natural

logarithm. Thus with k = 2m/t we have

g(P ; m1, m2, . . . , mt) <

(
236etn

m

)2m

.

Clearly

g(P, m, t) ≤
∑

m1,...,mt

g(P ; m1, m2, . . . , mt),

where the sum is taken over all nonnegative integers m1 ≤ m2 ≤ · · · ≤ mt such that∑
i mi = m. The number of such partitions [17, Proposition 1.4] is at most(

t + m − 1

m

)
<

(
2m

m

)
< 22m.

Hence

g(P, m, t) ≤ 22m

(
236etn

m

)2m

≤
(

ctn

m

)2m

.

As in Lemma 3, we have the following corollary of Lemma 5.

Corollary 1. For all integers t such that 2m
n

≤ t ≤ m, the number of labelled n-vertex
m-edge graphs with geometric thickness at most t is at most

n4n+o(n)

(
ctn

m

)2m

,

for some absolute constant c.

Proof of Theorem 1. Let t be the minimum integer such that every ∆-regular n-vertex
graph has geometric thickness at most t. Thus the number of ∆-regular n-vertex graphs
is at most the number of labelled graphs with 1

2
∆n edges and geometric thickness at most

t. By Lemma 2 and Corollary 1,( n

3∆

)∆n/2

≤ n4n+o(n)

(
ct

∆

)∆n

≤ n4n+εn

(
ct

∆

)∆n

,

for large n > n(ε). Hence t ≥ √
∆ n1/2−4/∆−ε/(c

√
3).
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It remains open whether geometric thickness is bounded by a constant for graphs with
∆ ≤ 8. The above method is easily modified to prove Malitz’s lower bound on book
thickness that is discussed in Section 1.

Theorem 3 ([19]). For all ∆ ≥ 3 and n ≥ c∆, there exists a ∆-regular n-vertex graph
with book thickness at least

c
√

∆ n1/2−1/∆,

for some absolute constant c.

Proof. Obviously the number of order types for point sets in convex position is n!. As in
the proof of Theorem 1,

( n

3∆

)∆n/2

≤ n!

(
ct

∆

)∆n

≤ nn

(
ct

∆

)∆n

.

Hence t ≥ √
∆n1/2−1/∆/(c

√
3). (The constant c can be considerably improved here; for

example, we can replace 472 by 16.)

4 The Slope Parameter of Ambrus et al. [3]

Ambrus et al. [3] introduced the following slope parameter of graphs. Let P ⊆ R
2 be a

set of points in the plane. Let S ⊂ R∪ {∞} be a set of slopes. Let G(P, S) be the graph
with vertex set P where two points v, w ∈ P are adjacent if and only if the slope of the
line vw is in S. The slope parameter of a graph G, denoted by sl(G), is the minimum
integer k such that G ∼= G(P, S) for some point set P and slope set S with |S| = k. Note
that sl is well-defined, since sl(G) ≤ |E(G)|. Slope parameter and slope number are not
necessarily related. For example, Jamison [16] proved that the slope-number of Kn is n,
but the slope parameter of Kn is 1 (just use n collinear points). In this section we address
the following two questions of Ambrus et al. [3]:

• what is the maximum slope parameter of an n-vertex graph?

• do graphs of bounded maximum degree have bounded slope parameter?

Lemma 6. The number of labelled n-vertex graphs G with slope parameter sl(G) ≤ k is
at most (

50n2k

2n + k

)2n+k

.

Proof. Let Gn,k denote the family of labelled n-vertex graphs G with slope parameter
sl(G) ≤ k. Consider V (G) = {1, 2, . . . , n} for every G ∈ Gn,k. For every G ∈ Gn,k, there is
a point set P = {(xi(G), yi(G)) : 1 ≤ i ≤ n} and slope set S = {s`(G) : 1 ≤ ` ≤ k}, such
that G ∼= G(P, S), where vertex i is represented by the point (xi(G), yi(G)). Fix one such
representation of G. Without loss of generality, xi(G) 6= xj(G) for distinct i and j. Thus

the electronic journal of combinatorics 13 (2006), #R3 7



every s`(G) < ∞. For all i, j, ` with 1 ≤ i < j ≤ n and 1 ≤ ` ≤ k, and for every graph
G ∈ Gn,k, we define the number

Pi,j,`(G) := (yj(G) − yi(G)) − s`(G) · (xj(G) − xi(G)).

Consider
P := {Pi,j,` : 1 ≤ i < j ≤ n, 1 ≤ ` ≤ k}

to be a set of
(

n
2

)
k degree-2 polynomials on the set of variables

{x1, x2, . . . , xn, y1, y2, . . . , yn, s1, s2, . . . , sk}.

Observe that Pi,j,`(G) = 0 if and only if ij is an edge of G and ij has slope s` in the
representation of G.

Consider two distinct graphs G, H ∈ Gn,k. Without loss of generality, there is an edge
ij of G that is not an edge of H . Thus (yj(G) − yi(G)) − s`(G) · (xj(G) − xi(G)) = 0 for
some `, and (yj(H)−yi(H))−s`(H) · (xj(H)−xi(H)) 6= 0 for all `. Hence Pi,j,`(G) = 0 6=
Pi,j,`(H). That is, any two distinct graphs in Gn,k are distinguished by the sign of some
polynomial in P. Hence |Gn,k| is at most the number of sign patterns determined by P.
By Lemma 1 with D = 2, d = 2n + k, and t =

(
n
2

)
k we have

|Gn,k| ≤
(

50 · 2 · (n
2

)
k

2n + k

)2n+k

<

(
50n2k

2n + k

)2n+k

.

In response to the first question of Ambrus et al. [3], we now prove that there exist
graphs with surprisingly large slope parameter. In this paper all logarithms are binary
unless stated otherwise.

Theorem 4. For all ε > 0 and for all sufficiently large n > n(ε), there exists an n-vertex
graph G with slope parameter

sl(G) ≥ n2

(4 + ε) log n
.

Proof. Suppose that every n-vertex graph G has slope parameter sl(G) ≤ k. There are

2(n
2) labelled n-vertex graphs. By Lemma 6,

2(n
2) ≤

(
50n2k

2n + k

)2n+k

.

For large n > n(ε),

2(n
2) =

(
50n2

)(n
2)/ log(50n2)

>
(
50n2

)(n
2)/(2+ε/2) log n

>
(
50n2

)2n+n2/(4+ε) log n
.
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We have 50n2k ≤ 50n2(2n + k). Thus

(
50n2

)2n+n2/(4+ε) log n
< 2(n

2) ≤
(

50n2k

2n + k

)2n+k

<
(
50n2

)2n+k
.

Hence

k >
n2

(4 + ε) log n
.

The result follows.

Now we prove that the slope parameter of degree-∆ graphs is unbounded for ∆ ≥ 5,
thus answering the second question of Ambrus et al. [3] in the negative. It remains open
whether sl(G) is bounded for degree-3 or degree-4 graphs G.

Theorem 5. For all ∆ ∈ {5, 6, 7, 8}, for all ε with 0 < ε < ∆− 4, and for all sufficiently
large n > n(∆, ε), there exists a ∆-regular n-vertex graph G with

sl(G) > n(∆−4−ε)/4.

Proof. Let k := n(∆−4−ε)/4. Suppose that for some ∆ ∈ {5, 6, 7, 8}, every ∆-regular
n-vertex graph G has sl(G) ≤ k. By Lemmas 2 and 6,

( n

3∆

)∆n/2

≤
(

50n2k

2n + k

)2n+k

< (25nk)2n+k < (25n)(∆−ε)(2n+k)/4 .

For n > (3∆(25)1−ε/2)2/ε,

(25n)(2∆−ε)n/4 <
( n

3∆

)∆n/2

< (25n)(∆−ε)(2n+k)/4 .

Thus 2∆n−εn < 2∆n+∆k−2εn−εk. That is, (∆−ε)n(∆−8−ε)/4 > ε. Thus ∆−8−ε ≥ 0
for large n > n(∆, ε), which is the desired contradiction for ∆ ≤ 8.

For ∆ ≥ 9 there are graphs with linear slope parameter.

Theorem 6. For all ∆ ≥ 9 and ε > 0, and for all sufficiently large n > n(∆, ε), there
exists a ∆-regular n-vertex graph G with slope parameter

sl(G) > 1
4
((1 − ε)∆ − 8)n.

Proof. Suppose that every ∆-regular n-vertex graph G has sl(G) ≤ αn for some α > 0.
By Lemmas 2 and 6, ( n

3∆

)∆n/2

≤
(

50α n2

2 + α

)(2+α)n

.

For n > (3∆ · 81−ε)1/ε,

(8 n)(1−ε)∆n/2 <
( n

3∆

)∆n/2

≤
(

50α n2

2 + α

)(2+α)n

< (8 n)2(2+α)n .
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Thus

α >
(1 − ε)∆ − 8

4
.

Thus sl(G) ≥ 1
4
((1 − ε)∆ − 8)n for some ∆-regular n-vertex graph G.

Note that the lower bound in Theorem 6 is within a factor of 2+ ε of the trivial upper
bound sl(G) ≤ 1

2
∆n.

5 Slope-Number: Proof of Theorem 2

In this section we extend the method developed in Section 4 to prove a lower bound on
the slope-number of graphs with bounded degree.

Lemma 7. The number of labelled n-vertex m-edge graphs with slope-number at most k
is at most (

50n2(k + 1)

2n + k

)2n+k (
k(n − 1)

m

)
.

Proof. Consider V (G) = {1, 2, . . . , n} for every labelled n-vertex m-edge graph G with
slope-number at most k. For every such graph G, fix a k-slope drawing of G represented
by a point set {(xi(G), yi(G)) : 1 ≤ i ≤ n} and slope set {s`(G) : 1 ≤ ` ≤ k}. Thus for
every edge ij of G, the slope of the line through (xi(G), yi(G)) and (xj(G), yj(G)) equals
s`(G) for some `. Without loss of generality, every s`(G) < ∞. Define P as in the proof
of Lemma 6. In addition, for all i, j with 1 ≤ i < j ≤ n, define Qi,j(G) := xi(G)− xj(G).
Let Q := {Qi,j : 1 ≤ i < j ≤ n}. By Lemma 1 with D = 2, d = 2n+k, and t =

(
n
2

)
(k+1),

the number of sign patterns of P ∪ Q is at most(
50n2(k + 1)

2n + k

)2n+k

.

Fix a sign pattern σ of P∪Q. As in Lemma 6, from σ restricted to P we can reconstruct
the collinear subsets of vertices. Moreover, from σ restricted to Q, we can reconstruct the
order of the vertices within each collinear subset. Observe that at most n − 1 edges have
the same slope in a geometric drawing. Thus every k-slope graph representable by σ is a
subgraph of a fixed graph with at most k(n − 1) edges. Hence σ corresponds to at most(

k(n−1)
m

)
labelled k-slope graphs on m edges. The result follows.

Proof of Theorem 2. Suppose that for some ∆ ≥ 5 and for some integer k, every ∆-regular
graph has slope-number at most k. By Lemmas 2 and 7, for all n,

( n

3∆

)∆n/2

≤
(

50n2(k + 1)

2n + k

)2n+k (
k(n − 1)

1
2
∆n

)
.

Let ε = ε(∆) > 0 be specified later. For large n > n(k, ∆, ε) there is a constant c = c(k, ∆)
such that (

k(n − 1)
1
2
∆n

)
≤ cn = nn/ logc n < nεn.
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Thus ( n

3∆

)∆n/2

≤
(

50n2(k + 1)

2n + k

)2n+k

nεn < (25n(k + 1))(2+ε)n+k .

For n > (3∆(25(k + 1))1−ε)1/ε we have

(25n(k + 1))(1−ε)∆n/2 <
( n

3∆

)∆n/2

< (25n(k + 1))(2+ε)n+k .

Thus (1 − ε)∆n < (4 + ε)n + 2k. Choose ε > 0 such that (1 − ε)∆ > 4 + ε. We obtain
a contradiction for large n > 2k

(1−ε)∆−(4+ε)
. Thus there exists a ∆-regular graph with

slope-number greater than k

It remains open whether slope-number is bounded by a constant for all degree-3 or
degree-4 graphs.
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A Derivation of Lemma 2

Let f(n, ∆) denote the number of labelled ∆-regular n-vertex graphs. The first asymp-
totic bounds on f(n, ∆) were independently determined by Bender and Canfield [4] and
Wormald [36]. Refining these results, McKay [21] proved that for all ∆ with 1 ≤ ∆ < 2

9
n,

f(n, ∆) =
(∆n)!

(∆n/2)! 2∆n/2 (∆!)n e(∆2−1)/4−O(∆3/n)
.

The version of Stirling’s formula due to Robbins [28] states that for all t ≥ 1,

t! =
√

2πt

(
t

e

)t

er(t),

where 1/(12t + 1) < r(t) < 1/12t. Thus, for some constant c,

f(n, ∆) ≥
√

2π∆n
(

∆n
e

)∆n
er(∆n)

√
π∆n

(
∆n
2e

)∆n/2
er(∆n/2) 2∆n/2 ∆∆n ec∆2

≥
√

2
( n

∆

)∆n/2

/ exp

(
∆n

2
− 1

12∆n
+

1

6∆n + 1
+ c∆2

)
.

With n > 200c∆, we have

∆n

2
− 1

12∆n
+

1

6∆n + 1
+ c∆2 <

102 ∆n

200
.

Thus

f(n, ∆) >
( n

e1.02∆

)∆n/2

>
( n

3∆

)∆n/2

.

Lemma 2 follows.

B Products of Binomials

Lemma 8. Let n and t be positive integers. Let x1, x2, . . . , xt be nonnegative integers with
each xi ≤ n. Let a and b be the unique integers such that

∑
i xi = (t− b)a + b(a + 1) and

0 ≤ b ≤ t − 1. Then
t∏

i=1

(
n

xi

)
≤
(

n

a

)t−b(
n

a + 1

)b

.

Proof. Choose x1, x2, . . . , xt to maximise
∏

i

(
n
xi

)
. Suppose on the contrary that two of

the xi differ by at least two. Without loss of generality x1 ≥ x2 + 2. Let x′
i := xi except

for x′
1 := x1 − 1 and x′

2 := x2 + 1. Thus 0 ≤ x′
i ≤ n. By assumption

∏
i

(
n
xi

) ≥ ∏i

(
n
x′

i

)
.

Hence
(

n
x1

)(
n
x2

) ≥ ( n
x1−1

)(
n

x2+1

)
. It follows that x1 ≤ x2 +1. This contradiction proves that

all pairs of the xi differ by at most one. Thus
∏

i

(
n
xi

)
is maximised when t − b of the xi

equal a, and b of the xi equal a + 1.
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