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Abstract

Using two backtrack algorithms based on different techniques, designed and im-
plemented independently, we were able to determine up to isomorphism all strongly
regular graphs with parameters v = 45, k = 12, A = p = 3. It turns out that
there are 78 such graphs, having automorphism groups with sizes ranging from 1 to
51840.

1 Introduction

A strongly regular graph with parameters (v, k, A, i), denoted by srg(v, k, A, i), is a graph
on v vertices that is regular of degree k such that each pair of adjacent vertices has A
common neighbours, and each pair of non-adjacent vertices has y common neighbours. If
A denotes the v x v adjacency matrix of such a graph then

A=kl +AA+pu(J —1 - A), (1)

where, as usual, I is the identity matrix and J the all-one matrix, both of size v. From
this it is easily seen that A has three distinct eigenvalues, viz., 8y = k of multiplicity
mg = 1 and two others, §; > 6, say, which are the solutions of % + (u — Nz + (n — k) =
0, of multiplicities m; and ms, determined by the equations 1 4+ m; + my = v and
k 4+ mi0; + meby = 0. (Some authors prefer the notations r = 60y, s = 6y, f = my,
g = my.) To avoid trivial examples we assume that 0 < k < v — 1. Moreover, since the
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complement of an srg(v, k, \, p) is also an srg(v,v — 1 — k,v — 2k + p — 2,v — 2k + ),
we have the further conditions that v — 2k 4+ pu —2 > 0 and v — 2k + A > 0. In addition,
there is also the condition that k(k —1 — \) = p(v — 1 — k), which is obtained from (1)
by multiplying both sides by J.

The question of existence, and ultimately, classification, of strongly regular graphs
satisfying these necessary conditions has occupied the minds of many over the years. The
smallest case for which these conditions are satisfied, but for which no strongly regular
graph exists, is given by (21,10,5,4). At present all strongly regular graphs on v < 36
vertices are known. See, for example [2] in conjunction with [10]. In addition to those
whose uniqueness can be established without the use of a computer, there are some
sporadic cases where the classification is complete. See [4], [6] and [11]. The smallest set
of feasible parameters (v, k, A, ;1) for which the existence of the corresponding strongly
regular graph is in doubt is (65,32,15,16). This is a particular example of the case
when the two eigenvalues 6; and 6, are non-integral, the so-called half case. They have
parameter sets (4t+1,2t,t—1,t¢) and have been completely classified for ¢ < 7. A complete
classification for any value of t > 7 seems hopeless, unless of course it can be proved that
the strongly regular graph does not exist. Thus, apart from the half case, the parameters
(45,12, 3,3) are the first for which the complete classification has not yet been achieved,
and it is these which we consider in this paper.

One example of an srg(45,12,3,3) is provided by the point graph of the generalized
quadrangle GQ(4,2), and there are others already known, in fact 58 in total. These
were found in [7] by R. Mathon and the third author in a search for such graphs with a
particular block structure.

In an exhaustive search, the computer programs (of which more details are given in
Sections 2-4) have extended this list to a total of 78 pairwise non-isomorphic graphs,
providing a complete classification. These results are presented in Section 5.

Some notation: we write p ~ ¢ to indicate that two vertices p and ¢ of the graph are
adjacent (p # ¢), and p £ ¢ when p ¢ g and p # ¢. For a given vertex p of a graph T,
the neighbourhood graph of that vertex, denoted by I'(p), is the subgraph of I" induced
by all vertices that are adjacent to p.

2 Exhaustive search

The classification of the strongly regular (45,12, 3,3) graphs was done by two computer
programs that where designed and implemented independently. The central theme of the
algorithms used is recursive backtracking with isomorphism rejection.

An srg(45,12,3,3) is represented on the computer by its adjacency matrix. This is
a 45 x 45 symmetric (0,1) matrix A with zero diagonal, where rows and columns are
indexed by the vertices of the graph. The matrix entry A, , is 1 if p ~ ¢ and 0 otherwise.

A backtrack algorithm basically generates all possible matrices of this kind in a recur-
sive way, trying each of the two possible values for each of the (upper diagonal) entries,
and filters out those that do not satisfy the definition of an srg(45, 12,3, 3).
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Different techniques are used to do this in an intelligent way and make the program
complete its search within reasonable time. Most of them amount to ‘pruning’ the search
tree at points where A is only partially determined, either because it is known that it will
never be possible to complete it to a strongly regular graph with the required properties,
or because the partially completed matrix can be proved to be isomorphic to an instance
which was already encountered (or is sure to be considered later). Also the order in which
the various entries are filled in may influence the speed of the algorithm dramatically.

Below we provide some details on the various methods of this kind we have used for
this particular problem. Apart from what we describe below we have also made use of
forward checking and dynamic variable ordering techniques similar to those of [3].

3 Constraints

Several properties of strongly regular graphs can be used to prune the search tree. For
example, because the graphs to be generated are regular of degree k = 12 we may prune
the search as soon as a row or column of A contains more than 12 entries equal to 1, or
more than v — k — 1 = 32 entries that are 0 (excluding the diagonal entry).

Also, each pair of vertices in the resulting graph must have exactly three common
neighbours, so the search tree can be pruned as soon as the partially constructed matrix
has two vertices p and ¢ that have more than three neighbours in common. In fact,
from the parameters of the strongly regular graphs similar constraints can be deduced for
numbers of vertices that are adjacent to p but not to ¢, adjacent to ¢ but not to p and
adjacent to neither p nor q. We list the corresponding numbers in the following tables:

when p ~ ¢ when p [ ¢
~q| Lq ~q| Lyq

~p| 3 8 ~pl| 3 9
Lp| 8 | 24 Lpl 9 | 22

Note that these numbers depend on whether p and ¢ are adjacent or not, and this may
not be known for a given pair p, ¢ when A is not yet completely filled in. In that case we
can still use a weaker constraint: the number is then bounded above by the maximum of
the corresponding bounds for p ~ ¢ and p £ q. When the adjacency of p and ¢ is finally
determined, we can check this constraint again for the correct bound.

The adjacency matrix A of the graph has some interesting algebraic properties which
can be used to speed up the search. (We refer to [1] for more information on how these
properties are derived.) The eigenvalues of A are 6y = 12, 6; = 3, and 6, = —3 with
corresponding multiplicities my = 1, m; = 20 and me = 24. It is a consequence of
the interlacing of eigenvalues (a very good reference for which is [5]) that every principal
submatrix P of A has all its eigenvalues except the largest one lying in the interval [—3, 3].
Moreover, if P has order n it must have an eigenvalue —3 with multiplicity at least n —21
and an eigenvalue 3 with multiplicity at least n — 25.
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Hence, during the backtrack search, whenever a partially completed matrix is available
that fully defines the entries of a principal submatrix P, we compute the eigenvalues of
P and check whether they satisfy the above interlacing property. If not, we may prune
the search at that point. In practice this turns out to be computationally expensive,
and therefore we do not check every principal submatrix, but typically only the top left
submatrices, and not at every point in the search process, and only whenever we have
completed a new column of A.

For each eigenvalue 0; we may define a corresponding minimal idempotent matrix E;.
Ejy is the all-1 matrix J and Fy, E5 can be computed as follows:

(A0 D)(A—0,1) 1

B, = = —(A-12D)(A-31),
! (6, — 60)(6; — 65) 50 I )
(A—0, I)(A—6,1) 1
E, = = (A—12D)(A+31
? (62 — 0)) (02 — 6,) 7 I )
and then
4 1 1 8 9 1
Bi=-T+4+-A——(J—A-1 EBy=—T— At —(J—A—1).
1=5'79 18(J ) 27 15 15 +30(‘] )

In other words, Ej is the 45 x 45 matrix with values 4/9 on the diagonal, 1/9 on positions
that correspond to adjacent points and —1/18 elsewhere, while Ey has values 8/15 on the
diagonal, —2/15 on ‘adjacent’ positions and 1/30 everywhere else.

Two important properties of these minimal idempotents F; are the following: they
have rank m; and they are positive semidefinite. It follows that any principal submatrix
of E; must have rank < m,; and must be positive semidefinite. We may use this to prune
the search tree in much the same way as the interlacing property was used above.

In fact, both methods tend to prune at approximately the same points in the search
process and there seemed to be no point in applying them both at the same time. We
have therefore used one method in one program and the other method in the other.

4 Extending subgraphs

4.1 Subgraph induced by I'(xz) UT'(y)

The generation of the graphs proceeds in several stages.

In a preliminary stage we consider the plausible neighbourhood graphs I'(x) of a vertex
x in an srg(45,12,3,3). It is clear that such a neighbourhood graph has 12 vertices and
is regular of degree 3. There exist (up to isomorphism) 94 regular graphs of order 12 and
degree 3 (they can easily be generated using geng [8]). Of these, 21 can immediately be
discarded as plausible neighbourhood graphs because they contain at least one pair of
vertices that have more than two common neighbours (which together with z violate the
A = p = 3 constraint).

In a further stage, the 73 matrices Ny, ... N73 obtained in this way are extended to
(symmetric) principal submatrices M of order 21 which correspond to possible subgraphs
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induced by I'(x) UT'(y), where y € I'(x). Without loss of generality we may reorder the

rows and columns of M in such a way that M, with vertices vy, vq,...,v21, say, takes
the form as depicted in Figure 1. Here x = vy, y = v, I'(x) has vertices vy, vs, ..., v13
and ['(y) has vertices vy, v3, vyg, Vs, V14, . . ., U2;. Thus, assuming I'(z) and I'(y) have been
found, the only part of M that is unknown corresponds to the adjacencies between vertices
Vg, U7, . . ., V13 and vy, V15, . . ., U271, denoted by X in Figure 1.
8 times 8 times
—— —
r— /011111 e e
y— | 1/0/111]0---0]1---1
1]1] I'(x)
111} N
111] I(y)
M= 10
: X
110
01
: X7
01

Figure 1: General form of the principal submatrix induced by I'(z) U T'(y).

We copy each of the matrices /N; in turn into the part of M which corresponds to
the subgraph induced by I'(z) (cf. light grey part of Figure 1). In each case we then
generate all possibilities for the adjacencies between vertices vz, vy, ...,v13 and vertices
V14, V15, - - -, V21 and the mutual adjacencies between vertices vy, v1s, ..., v (cf. X and
dark grey part of Figure 1). As mentioned earlier, two different methods were used to
achieve this. Both methods employ a recursive algorithm that prunes the search using
the constraints described in Section 3. We give a brief description of each.

The first method recursively fills the upper diagonal matrix entries of columns 14 to
21, column by column, starting with column 14. This method involves a pruning criterion
based on the maximum clique size of the strongly regular graph I'. From A = 3 it follows
that I" can have cliques of size at most 5, (and certainly must have one of size 3) and
hence that neighbourhood graphs in I' can have cliques of size at most 4. We list the
number of graphs N; with a given clique size in Table 1.

Maximum clique size || 4 | 3 | 2
Number of graphs 5150 |18

Table 1: Maximum clique size of plausible neighbourhood graphs.
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Since M is to be embedded in the adjacency matrix of an srg(45, 12, 3, 3), if we assume
that that adjacency matrix has maximum clique size s (3 < s < 5), we may also assume
the same to be true for M. Moreover, we may assume that both x and y belong to a
clique of maximum size. Thus both I'(x) and I'(y) will have maximum clique size s — 1.
In the extension process to the matrix of order 21 we prune the search tree whenever we
meet a clique which has a size larger than s.

Searching for such small cliques is not very expensive in time, because we already
need to keep track of the number of common neighbours of any two points in order to
check some of the constraints listed in Section 3. As in [4], we use a look-back strategy
to further improve the clique search. Suppose that the choice of 1 for the matrix entry
(M), 4 completes a clique of size d+1 (with d the size of a maximum clique), which means
that we are able to prune the search at this point. Then this choice remains forbidden, so
that M, , = 0, until a backtrack occurs to the second last choice of entry that contributed
to the same clique.

We also make use of another isomorphism rejection technique: we fix an ordering of the
list Nq,..., N73 in such a way that the maximum clique size decreases while we traverse
the list from front to back. Then, whenever we have fully generated the submatrix I'(y)
we determine using McKay’s program nauty [9], the index of the unique graph in this list
which is isomorphic to I'(y). If this index is smaller than the index of T'(x), we discard
the result. Indeed, the matrix we obtain by interchanging x and y in this result will also
be generated during the search and yields an isomorphic subgraph.

A final pruning criterion that avoids the construction of too many isomorphic subma-
trices M, is that we require for each p,q € I'(y) \ {I'(z) U {z}} with p < ¢ that the tuple
(Mpa, ..., M,9) is lexicographically smaller then or equal to the tuple (M1, ..., M,21).
This first method produced approximately 35,000,000 pairwise non-isomorphic candi-
dates M.

The second method of generating possible 21 x 21 submatrices differed essentially in
only one way. Instead of using maximum cliques to order the matrices Ny, No, ..., Nr3,
they were assumed to be in standard form and ordered lexicographically. The standard
form of the adjacency matrix A of a graph, denoted by St(A), is defined to be the
greatest binary integer obtained by permuting the rows and corresponding columns of A,
and concatenating the rows in the upper diagonal part of the resulting matrix.

Given I'(x) = N;, for some i, the first stage in the construction of M involved finding
all pairwise non-isomorphic matrices M with X = 0 and St(I'(y)) > N;, and for which
the inner product of any two distinct rows was at most 3.

When it came to filling in the entries of X in the matrix M of Figure 1, these were
generated column by column, starting with column 14. Whenever column s (14 < s <
21) was completed satisfactorily according to the constraints outlined in Section 2, the
corresponding s x s principal submatrices of E; and E, were tested to ensure that not only
were they positive semidefinite, but also that all their eigenvalues were bounded above
by 1.

In the end this method produced approximately 21,000,000 pairwise non-isomorphic
candidates M.
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4.2 Extension to the full matrix A

In the last stage, having produced a list of non-isomorphic candidate submatrices M, we
attempt recursively to extend each of them to a full adjacency matrix A. Again we apply
all the constraints from Section 3.

Most of the time the extension fails rather quickly. The application in this last stage of
forward checking and dynamic variable ordering techniques similar to those of [3] certainly
contributes to this behaviour.

Since most of the time the extension fails rather quickly and checking which of the N;
is isomorphic to I'(z) for a given z € I'(z) is a rather costly operation, it turns out to be
no longer necessary in this last stage to compare neighbourhood graphs of other points
of I'(x) with the list Ny,..., N73. We still prune on maximum clique sizes, because that
check is fairly quick.

As in the first stage we we require for each p, ¢ € I'(y) \{I'(z)U{z}} with p < ¢ that the
row (A,1,...,A,45) is lexicographically smaller or equal than the row (A, 1,..., Ag45).

Finally we use nauty [9] to filter out isomorphic matrices A among the results obtained
so that we retain exactly one representative from each isomorphism class.

Maximum clique size 5 Maximum clique size 4
|Aut (srg)| ‘ number of srgs || |Aut (srg)] ‘ number of srgs
51840 1 162 1
1152 1 54 1
216 1 18 5
72 2 9 1
48 3 6 16
36 1 3 7
18 1 2 15
12 3 1 8
10 1
8 3
4 5
2 2
Total 24 | Total | 54 |

Table 2: Automorphism group size for each srg(45, 12,3, 3).

5 Results

As stated in the introduction, both computer programs independently proved that there
are up to isomorphism exactly 78 different strongly regular graphs with parameters
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(v, k, A\, 1) = (45,12,3,3), providing a complete classification. A file containing all of
these graphs can be obtained from [12].

Of these 78 graphs, 24 graphs contain a clique of size 5. There are 54 graphs which
do not contain a clique of size 5 but do have a clique of size 4. No srg(45, 12, 3, 3) exists
which does not contain a clique of size 4.

In Table 2 we list these graphs and the sizes of their automorphism groups. The column
labeled “number of srgs” gives the number of isomorphism classes of srg(45,12,3,3)s
whose automorphism group has the size indicated in the column labeled “|Aut (srg)|”.

It may be of interest to the reader to know the extent of the computational power
and the computer languages that were used in the investigation. As far as the first two
authors are concerned, the language used was Java and the computation done on a batch
of 24 Linux-based AMD Athlon MP 1800 and 2600 PCs, while the third author had access
to more modest equipment. He used a twin processor, 2.2 GHz Linux-based workstation
with gec’s C compiler. An exact record of the time taken was not kept, but the whole
investigation took weeks, rather than days.

6 Elimination of errors

The computer programs need to perform a lot of floating point computations, which by
their nature only yield approximate results. It is important to be certain that these
numerical errors are sufficiently small as not to invalidate our main conclusions. We have
used two different methods to ensure this. For the first two authors this was needed when
checking that certain matrices were positive semidefinite, while for the third author this
was done when investigating the eigenvalues themselves.

In the first case a candidate matrix A is eliminated if for one of the associated matrices
E; there can be found a real vector x such that xE;x” < 0. Such a vector x is first
computed using techniques from numerical algebra. Afterwards, to catch accumulations
of rounding errors, the expression xE;x” is re-evaluated and compared to —e for a suitably
small € > 0. (Rounding errors on the value of xE;x” can be estimated very accurately.)
If x fails this test, then A is accepted. Of course this may mean that we sometimes falsely
assume that a matrix is positive semidefinite when it is not. This, however, is not a
problem.

In the second case an iterative procedure was used to determine eigenvalues to within
a chosen error and with an upper bound to the number of iterations allowed. A candidate
matrix A whose eigenvalues were not determined within the maximum number of itera-
tions was accepted even though its eigenvalues may well have been outside the required
range.
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