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Abstract

In the game of Penney Ante two players take turns publicly selecting two distinct
words of length n using letters from an alphabet Ω of size q. They roll a fair q sided
die having sides labelled with the elements of Ω until the last n tosses agree with
one player’s word, and that player is declared the winner. For n ≥ 3 the second
player has a strategy which guarantees strictly better than even odds. Guibas and
Odlyzko have shown that the last n − 1 letters of the second player’s optimal word
agree with the initial n − 1 letters of the first player’s word. We offer a new proof
of this result when q ≥ 3 using correlation polynomial identities, and we complete
the description of the second player’s best strategy by characterizing the optimal
leading letter. We also give a new proof of their conjecture that for q = 2 this
optimal strategy is unique, and we provide a generalization of this result to higher
q.

1 Introduction

We are interested in a generalization of the coin flipping game Penney Ante, invented in
1969 by Walter Penney. In its original version, two players take turns publicly selecting
distinct binary sequences of a fixed length n. They flip a fair coin with sides labelled 0
and 1 until the last n results match one player’s sequence, and that player is declared the
winner.

We study a version of this game in which the coin is abandoned in favor of a fair q
sided die. The faces of our die are labelled with the elements of a set Ω of size q. We call
Ω an alphabet, and its elements letters. We will refer to a finite string of letters as a word.

Penney Ante’s most striking feature is the nontransitivity of its beating relation among
words of fixed length n ≥ 3, where we say the word X beats the word Y if it is more likely
to appear first. This nontransitivity is intimately related to the correlation polynomial of
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two words, introduced by Leo Guibas and Andrew Odlyzko in a 1981 paper [3]. Strictly
speaking, the correlation polynomial of two words is a generating function. Its coefficients
indicate how these words can be combined into a single word in which all of the overlaps
are consistent. We will denote the correlation polynomial of the words X = x1 . . . xn and
Y = y1 . . . ym by [X, Y ], and it is defined as follows:

[X, Y ] =
n−1∑
i=0

f(n − i)zi,

where f(i) is the indicator function

f(i) =

{
1 if the word xi . . . xn is a prefix of the word y1 . . . ym

0 otherwise.

In words, if m = n, the zk coefficient of [X, Y ] is 1 if the final k + 1 letters of X agree
with the initial k + 1 letters of Y . All other coefficients are zero, including those for
which k + 1 > n. In general, [X, Y ] 6= [Y, X], as the former polynomial describes how
X and Y can be combined with X coming first, while the latter describes how they can
be combined with Y coming first. We will make frequent use of the evaluation of such
a polynomial at z = q, so we denote this evaluation by [X, Y ]q. Our notation is a slight
departure from [3], as we reserve juxtaposition for concatenation.

Throughout this paper we let Ω = {ω1 . . . ωq}, using ω to denote an arbitrary letter
in Ω. We let A = a1 . . . an be the fixed word selected by the first player, defining A′ to be
the word a1 . . . an−1 consisting of the first n − 1 letters of A. Additionally, we denote the
concatenations A′ωi by Ai, with the convention that A1 = A.

We define a period of a word X = x1 . . . xn to be any nonnegative integer ρ for which
x1 . . . xn−ρ = xρ+1 . . . xn. We call 0 the trivial period, and we define the basic period of X
to be its smallest positive period, with the convention that the basic period is n if X has
no nontrivial periods.

John Conway (see [2]) was the first to discover that the odds that a word Y beats a
word X are given by the elegant expression

[X, X]q − [X, Y ]q
[Y, Y ]q − [Y, X]q

,

though his proof was never published. This formula is the cornerstone on which nearly
all of the analysis of Penney Ante has been based. Li [4] gave a proof of this formula
using martingale techniques, and Guibas and Odlyzko gave a short proof involving a
nonsingular system of equations of generating functions. They also proved that if the
first player chooses the word a1 . . . an, then the second player’s best strategy is to select
a word of the form ba1 . . . an−1 for some appropriate b. They remarked that a complete
description of the optimal leading letter did not seem to be simple, and they went on to
conjecture that for q = 2 and A fixed this optimal letter is unique

In this article we give a complete description of the second player’s best strategy.
Our description is based on establishing that an optimal leading letter is any one which
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minimizes

Fq(ω) := q[A, ωA′]q +

q∑
i=2

[Ai, ωA′]q. (1)

This fact is our main result. We also prove a generalized version of Guibas and Odlyzko’s
uniqueness conjecture, first shown to be true in its original form by János Csirik in 1992
[1]. Our approach uses a set of correlation polynomial identities which we provide in the
next section.

2 Correlation polynomial identities

We begin by letting X = x1 . . . xn and Y = y1 . . . yn be two words of length n ≥ 1. We
use δ to denote the familiar characteristic function.

Theorem 2.1. The following set of equations always holds:

q∑
i=1

[Xωi, ωjY ] = z[ωjX, ωjY ] − zn+1δ(X =Y ) + 1 (2)

q∑
j=1

[Xωi, ωjY ] = z[Xωi, Y ωi] − zn+1δ(X =Y ) + 1 (3)

q∑
i=1

[Xωi, Y ωi] =

q∑
j=1

[ωjX, ωjY ] (4)

q∑
j=1

[ωjX, ωjX] = z[X, X] + (q − 1)zn + 1 for n ≥ 2. (5)

Proof. The proofs are straightforward. To show (2), let [X, ωjY ] =
∑

k ckz
k. Then

q∑
i=1

[Xωi, ωjY ] =

q∑
i=1

(
δ(ωi = ωj) +

n−1∑
k=0

ckδ(ωi = yk+1)z
k+1

)

= 1 +
n−1∑
k=0

ckz
k+1

= 1 + z([ωjX, ωjY ] − znδ(X =Y ))

and the result follows. Identity (3) follows from (2) and the observation that for any two
words u1 . . . un and v1 . . . vn we have [u1 . . . un, v1 . . . vn] = [vn . . . v1, un . . . u1]. One can
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prove (4) by summing (2) over j and (3) over i and equating the results. Lastly,

q∑
j=1

[ωjX, ωjX] =

q∑
j=1

(
zn + [X, ωjX]

)

=

q∑
j=1

(
zn + [x1 . . . xn, ωjx1 . . . xn−1]

)

= qzn + z[X, X] − zn + 1,

proving (5). In the last step we have used (3) with X = Y = x1 . . . xn−1 and ωi = xn. This
substitution requires the word x1 . . . xn−1 to be nonempty, justifying the caveat n ≥ 2.

Generalizations of these equations do exist; we confine ourselves to the above list since
we will need nothing stronger. For example, (4) and (5) can be applied inductively to
produce identities involving sums taken over all words of any fixed length.

3 A lower bound and the q = 2 case

In this section we return to the game of Penney Ante played with a fair q-sided die. We
shall only concern ourselves with words of length n ≥ 3, for otherwise the game displays
no intransitivity. Guibas and Odlyzko have shown that the second player’s optimal word
must be a concatenation of the form bA′ for some appropriate letter b. We denote the
words of this form by B1, . . . , Bq, with the convention that, among all these words, B1

performs the best against A
As we have seen, the odds that Bi will beat A is given by Conway’s formula:

[A, A]q − [A, Bi]q
[Bi, Bi]q − [Bi, A]q

.

The second player is not allowed to select the word A, so the above numerator and
denominator are both positive for all i. Hence, since the odds that Bi will beat A are
maximized for i = 1,

[A, A]q − [A, B1]q
[B1, B1]q − [B1, A]q

≥
∑q

i=1 ([A, A]q − [A, Bi]q)∑q
i=1 ([Bi, Bi]q − [Bi, A]q)

. (6)

This inequality holds because the right hand side is nothing more than a weighted average
of the odds in favor of the Bi’s, with Bi 6= A having weight

[Bi, Bi]q − [Bi, A]q∑q
j=1 ([Bj , Bj]q − [Bj , A]q)

.
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If A is not an n-fold repetition of a single letter, [Bi, A] = [A′, A′] for all i. We use this
fact, together with identities (3) and (5), to obtain from (6) that

[A, A]q − [A, B1]q
[B1, B1]q − [B1, A]q

≥ q[A, A] − z[A, A] + zn − 1

z[A′, A′] + (q − 1)zn−1 + 1 − q[A′, A′]

∣∣∣∣
z=q

=
qn − 1

qn − qn−1 + 1

=
q

q − 1
− 2q − 1

(q − 1)(qn − qn−1 + 1)
. (7)

This inequality also holds when A is an n-fold repetition of a single letter a, since then
the word B1 = ba . . . a, with b 6= a, wins with even better odds. The odds that B1 wins
are therefore at least q/(q−1)−O(q−n) as n → ∞, an improvement over the lower bound
q/(q − 1)−O(q−n/2) found by Guibas and Odlyzko. Our bound is not sharp, and in fact
Csirik gives the first player’s optimal strategy for q = 2 [1]. He finds that in a well-played
game the second player’s best odds are (2n−1 + 1)/(2n−2 + 1), a figure whose deviation
from 2 tends to 2/3 of that of (7), as n → ∞. So our lower bound is nearly tight in this
case. Note that for A = ba . . . a, b 6= a, the second player cannot achieve better odds than
q/(q − 1).

For q ≥ 2 and n ≥ 3 the above odds are strictly greater than 1, so this inequality
constitutes a proof of Penney Ante’s nontransitivity for these interesting cases. We would
also like to point out that our use of (5) demands |A′| ≥ 2, so these results hold only
when n ≥ 3.

When q ≥ 3, this bound leads to a simplified proof of Guibas and Odlyzko’s result
on the the form of the second player’s optimal word. Choosing an n-fold repetition of a
single letter a is a terrible strategy for the first player, as his opponent simply chooses the
word B = ba . . . a, with b 6= a. This choice optimizes the numerator and denominator in
Conway’s formula simultaneously, plainly yielding the best odds that the second player
can hope for. If the first player employs some other strategy, the basic period of A will
be at least 2. It follows that [A, A]q will be at most qn−1 + qn−3 + · · ·+ 1. Hence

[A, A]q − [A, B]q
[B, B]q − [B, A]q

≤ qn−1 + (qn−2 − 1)/(q − 1)

qn−1 − [B, A]q
.

Suppose the second player selects a word B not of the form bA′. Then [B, A]q ≤ qn−3 +
· · ·+ 1, so that

[A, A]q − [A, B]q
[B, B]q − [B, A]q

≤ qn−1 + (qn−2 − 1)/(q − 1)

qn−1 − (qn−2 − 1)/(q − 1)
.

Rearrangements show the expression on the right hand side is strictly less than (qn −
1)/(qn − qn−1 +1) for all q and n considered. Therefore, no word which is not of the form
ωA′ can deliver better odds for the second player than all those words having such a form.

We now consider the consequences of inequality (6) when q = 2, although we will
exercise some foresight and leave q as a variable in our work. For q = 2, the second player
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knows that her best choice is one of the two possibilities B1 and B2. Clearly, B1 offers
better odds if and only if

[A, A]q − [A, B1]q
[B1, B1]q − [B1, A]q

≥ t
[A, A]q − [A, B1]q

[B1, B1]q − [B1, A]q
+ (1 − t)

[A, A]q − [A, B2]q
[B2, B2]q − [B2, A]q

for any fixed t ∈ [0, 1). The right hand side of (6) is precisely of this form, so inequality
(6) is actually equivalent to the statement that B1 is an optimal choice for the second
player. Rearrangement of (7) then yields that B = bA′ is optimal if and only if

[A, B]q − [A, A]q +

(
q

q − 1
− α

)(
[B, B]q − [B, A]q

) ≤ 0,

where α is the positive term
2q − 1

(q − 1)(qn − qn−1 + 1)

of order q−n in (7). Since q = 2, b is optimal if and only if the left hand side of the above
inequality is minimized. Removing constants and those terms dependent only on A, such
as [B, A]q = [A′, A′]q, we find that b is optimal precisely when

[A, B]q +

(
q

q − 1
− α

)
[B, B]q

= [A, B]q +

(
q

q − 1
− α

)(
1

q

)(
qn − 1 +

q∑
i=1

[Ai, B]q

)

is minimized, with equality holding by (2). Recall that Ai is defined to be the concatena-
tion A′ωi. Dropping constant terms and dividing out by the positive constant preceding
the above sum presents us with the equivalent problem of minimizing

(
q +

(q − 1)2α

q − (q − 1)α

)
[A, B]q +

q∑
i=2

[Ai, B]q. (8)

The q = 2 case of our main result now begins to take shape.

Theorem 3.1. For q = 2, the odds in favor of B = bA′ are maximized precisely for those
letters which minimize

F2(ω) := 2[A, ωA′]2 + [A2, ωA′]2. (9)

Conway’s formula tells us that an optimal choice of b will necessarily make both
[A, B]2 and [B, B]2 small, though it is unclear exactly how we should proceed if these
cannot be simultaneously minimized. Theorem 3.1 shows that the solution simply involves
minimizing a linear combination of correlation polynomials evaluated at 2.

the electronic journal of combinatorics 13 (2006), #R35 6



Proof. We temporarily assume that A does not consist of two alternating (though not
necessarily distinct) letters, leaving this case to be treated separately. This mild restriction
ensures that [A, B] has degree at most n − 3. Hence [A, B]2 ≤ 2n−3 + · · ·+ 1 so that

(2 − 1)2α

2 − (2 − 1)α
[A, B]2 ≤ (2 − 1)α

2 − (2 − 1)α
(2n−2 − 1)

=
3(2n−2 − 1)

2n+1 − 2n − 2 + 1

which is strictly less than 1.
We now assume that b1 minimizes F2(ω) and consider b2 which minimizes (8), letting

B1 and B2 denote the concatenations b1A
′ and b2A

′, respectively. If b2 does not minimize
F2(ω), then, because this expression is always an integer,

2[A, B2]2 + [A2, B2]2 ≥ 1 + 2[A, B1]2 + [A2, B1]2

>

(
2 +

(2 − 1)2α

2 − (2 − 1)α

)
[A, B1]2 + [A2, B1]2

so that b2 cannot possibly minimize (8). Hence every letter which minimizes (8) must
also minimize F2(ω).

The reverse containment also holds, for consider two distinct letters b1 and b2 which
minimize F2(ω). Then

2[A, B1]2 + [A2, B1]2 = 2[A, B2]2 + [A2, B2]2.

Taking this equation modulo 2 gives b1 = b2, a contradiction. Thus F2(ω) is uniquely
minimized by the same letter which uniquely minimizes (8).

It only remains to check the case in which A is composed of alternating letters. The
best choice for the second player’s leading letter is obvious in this case; one option will
yield a string of alternating letters which, by symmetry, will beat A with probability 1/2.
Since we know that the second player always has a choice delivering strictly better odds,
it is clear that the optimal letter b is the one satisfying b = a1. A quick check shows that,
for the suboptimal choice, the right hand side of (9) evaluates to at least 2n−1, while the
correct choice evaluates to at most 3 depending on the parity of n. Hence our claim holds
for all n ≥ 3.

We have an immediate corollary, which follows upon taking (9) modulo 2 as in the
above proof.

Corollary 3.1. For q = 2, the second player’s optimal choice is unique.

Additionally, we can now give a simple description of the correct leading letter b of
the second player’s optimal choice B = bA′.

Corollary 3.2. Let r1 and r2 be the basic periods of A = A1 and A2, respectively, and let
r = min(r1, r2). Let Ω = {0, 1}, and define ω̄ := 1 − ω. Then the optimal b is given by

b =

{
ār+1 if r1 = r2 + 1 and r2 ≤ n − 2
ār otherwise.
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This description agrees in almost all cases with the approximation supplied by Guibas
and Odlyzko, who found that one winning strategy for picking b is given by

b =

{
ār if r ≤ n − 1
ān−1 if r = n.

With this winning strategy they were able to establish their lower bound for the odds in
favor of the optimal B, as well as prove that an optimal selection must be a concatenation
of the form ωA′.

Proof. We begin by letting π(Ai) be the set of nontrivial periods of the word Ai, always
including the period n corresponding to the overlap of length 0. By the definition of the
correlation polynomial, we may rewrite (9) in the form

F2(b) = 2


 ∑

ρ∈π(A)

δ(b = aρ)2
n−ρ


 +

∑
ρ∈π(A2)

δ(b = a(2,ρ))2
n−ρ, (10)

where a(i,ρ) denotes the ρth letter of the word Ai. We will suppress this notation when
i = 1 and when ρ < n, for then a(i,ρ) = aρ.

Let r, r1, and r2 be defined as above and first consider the case r1 = r2. Noticing that
π(A1) ∩ π(A2) = {n}, we must have r1 = r2 = n. Thus F2(b) = 2δ(b = an) + δ(b = ān),
so that b = ān is the correct choice, agreeing with our claim.

Suppose that r = r1 < r2. Then (10) gives us the bounds F2(ar) ≥ 2(2n−r) and
F2(ār) ≤ 2(2n−r−1 + · · · + 1) = 2n−r+1 − 2. Thus b = ār is the optimal choice since it
minimizes F2(ω).

The analysis is similar when r1 ≥ r2 +2. We again use (10) to find F2(ar) = F2(ar2) ≥
2n−r while F2(ār) ≤ 2(2n−r−2 + 2n−r−3 + · · · + 1) = 2n−r − 2. Hence b = ār is again the
optimal choice.

The only remaining case is r1 = r2 + 1. For the moment we assume that r2 ≤ n − 2.
As r1 and r2 are both periods, a1 . . . an−r = ar+1 . . . an−1ān and a1 . . . an−r−1 = ar+2 . . . an.
Together, these imply ar+1 = ar+2 = · · · = an = a1 = a2 = · · · = an−r−1 6= an−r. In
particular, this says that each of r2 + 1 = r1, r1 + 1, . . . n is a period of A. Thus, since A
and A2 can only share the nontrivial period n,

π(A) = {r + 1, r + 2, . . . , n} and

π(A2) = {r, n}.
Therefore, since the final n − r letters as well as the first n − r − 1 letters of A are all
identical, F2(ar+1) ≥ 2(2n−r−1 + · · · + 1) = 2n−r+1 − 2. Meanwhile, F2(ār+1) ≤ 2n−r + 1
since no period of A can contribute to this value. These bounds imply F2(ar+1) > F2(ār+1)
when n − r ≥ 2. Thus the optimal choice is b = ār+1, as long as r ≤ n − 2, as in the
statement of the corollary. The final case is r2 = n − 1 and r1 = n. Now F2(an−1) ≥ 2
since n−1 ∈ π(A2), but F2(ān−1) ≤ 2 because this choice prevents the first two letters
of B from being equal to the last two letters of either A or A2. We may never have
F2(ω) = F2(ω̄) (taking this equation modulo 2 produces a contradiction), so the correct
choice is b = ān−1 = ār, which is in accordance with our claim.
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4 The general case

In this section we establish that a version of (9) actually holds for all q, and we use this to
characterize the leading letter of the second player’s best strategy. Our treatment of the
general case will not require anything beyond the elementary techniques we have already
used, and in extending Corollary 3.2 to higher q we will be forced to sacrifice none of
the simplicity of the q = 2 result. We begin with a useful lemma which, after proving
our main result, can be seen as a generalization of Corollary 3.1. We continue to use the
notation introduced in the last section. Additionally, recall that Fq(ω) is defined by (1).

Lemma 4.1. If Fq(ω) is not uniquely minimized, then its minimum value is 1.

The converse is not true. Consider the alphabet Ω = {0, 1, 2}, and let A be the word
11011. Then F3(0) = 28, F3(1) = 12, and F3(2) = 1.

Proof. The claim is vacuously true for q = 2 by Corollary 3.1. For q ≥ 3 we actually show
something stronger; if b1, b2 ∈ Ω are distinct, then Fq(b1) = Fq(b2) implies both these
values are 1.

For any fixed ω, the polynomial

q∑
i=2

[Ai, ωA′] =

q∑
i=2

∑
ρ∈π(Ai)

δ(ω = a(i,ρ))z
n−ρ

has only 0 and 1 as coefficients; this is true for the nonconstant terms because π(Ai) ∩
π(Aj) = {n} for i 6= j. The constant term is at most 1 since ω equals at most one of the
distinct letters a(2,n), . . . , a(q,n). Since the polynomial [A, ωA′] has this same property, it
follows that for any fixed ω

Pω(z) := z[A, ωA′] +

q∑
i=2

[Ai, ωA′] (11)

is a polynomial whose nonzero coefficients can only be 1 or 2. Moreover, the coefficient
of the zn−ρ term can be 2 only if ω = a(i,ρ) and ρ ∈ π(Ai) for some i ≥ 2, while ω = aρ+1

and ρ + 1 ∈ π(A).
Observe that Pω(q) = Fq(ω). Since each of the coefficients of P is strictly less than

3 ≤ q, these coefficients are simply the digits of Fq(ω) expressed in base q. If Fq(b1) =
Fq(b2), then clearly their base q representations are equal so that Pb1(z) = Pb2(z).

Let B1 and B2 be words b1A
′ and b2A

′, respectively, where b1 6= b2. Consider the
leading nonzero term ckz

k of the identical polynomials Pb1(z) and Pb2(z) (note Pω(z)
is clearly never the zero polynomial). The coefficient ck cannot be 2, since this would
imply that the leading terms of the z[A, B1] and z[A, B2] summands are both zk, yielding
the contradiction b1 = b2 = an−k+1. Similarly, the leading terms of the

∑
i[Ai, B1] and∑

i[Ai, B2] summands cannot both be zk for some k ≥ 1, as this implies b1 = b2 = an−k.
Assuming that k ≥ 1, we therefore have, without loss of generality, that the leading

term of Pb1(z) is the leading term of z[A, B1], while that of Pb2(z) comes from
∑

i[Ai, B2].
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In terms of word overlaps this gives that b1a1 . . . ak−1 = an−k+1 . . . an and b2a1 . . . ak =
an−k . . . an−1a(i,n) for some i ≥ 2. In particular, as in the proof of Corollary 3.2, b1 = a1 =
· · · = ak−1 = an−k+1 = · · · = an 6= ak. Thus the first k letters of B1 are equal to the last k
letters of A so that Fq(b1) = Pb1(q) = qk + · · ·+ q ≡ 0 mod q. But b2 6= b1 = an, implying
Fq(b2) ≡ 1 mod q, another contradiction. It must then be the case that k = 0, and the
lemma follows immediately.

We are now ready to prove our main result.

Theorem 4.1. The odds in favor of B = bA′ are maximized precisely for those b which
minimize

Fq(ω) = q[A, ωA′]q +

q∑
i=2

[Ai, ωA′]q. (12)

Proof. The proof is divided into several parts according to how well the second player can
perform against a fixed A.

We first consider the case in which no word can deliver odds better than q/(q − 1) in
favor of the second player. Using the lower bound provided by (6), the best beater of A
wins with odds of q/(q − 1)− tα for some t contained in the closed interval [0, 1]. Thus b
is optimal if and only if

[A, A]q − [A, B]q
[B, B]q − [B, A]q

≥ q

q − 1
− tα.

Proceeding as in the derivation of (8), we find that maximizing the odds in favor of B is
equivalent to minimizing(

q +
(q − 1)2tα

q − (q − 1)tα

)
[A, B]q +

q∑
i=2

[Ai, B]q. (13)

But [A, B]q ≤ qn−2 + · · ·+ 1 = (qn−1 − 1)/(q − 1) because A 6= B, giving

(q − 1)2tα

q − (q − 1)tα
[A, B]q ≤ (q − 1)tα

q − (q − 1)tα
(qn−1 − 1) (14)

≤ 2qn − qn−1 − 2q + 1

qn+1 − qn − q + 1
.

The second inequality holds because the right hand side of (14) is an increasing function
of t on the interval [0, 1]. The resulting upper bound is strictly less than 1 when q ≥ 3
(it is false for q = 2, necessitating the slightly different argument in Theorem 3.1). Just
as in the proof of Theorem 3.1, this strict upper bound implies that every letter which
minimizes (13) also minimizes Fq(ω). We must now prove that the converse also holds.
This is obvious if Fq(ω) is uniquely minimized. Otherwise, if many letters minimize Fq(ω),
this minimum value must be 1 by Lemma 4.1. Hence [A, ωA′]q must be zero for each of
these letters. It follows that, when evaluated at some b0 which minimizes Fq(ω), expression
(13) is equal to Fq(b0) = 1. This is clearly its minimum, which proves our claim for this
case.
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We now consider the case in which the second player can achieve odds strictly better
than q/(q−1), making the simplifying assumption that A′ does not consist of one repeated
letter. This will put a manageable upper bound on the odds in favor of the second player,
and the cases we have left out will be easily dealt with later. With this assumption, the
basic period of A′ will be at least 2, and [a2 . . . an, A′]q ≤ qn−3 + · · · + 1. Hence,

[A, A]q − [A, Bi]q
[Bi, Bi]q − [Bi, A]q

=
qn−1 + [a2 . . . an, A′]q − [A, B]q

qn−1 + [A′, B]q − [A′, A′]q

≤ qn−1 + [a2 . . . an, A′]q
qn−1 − [A′, A′]q

≤ qn−1 + (qn−2 − 1)/(q − 1)

qn−1 − qn−2 − (qn−3 − 1)/(q − 1)
,

so that the second player never has odds better than

q

q − 1
+

qn−1 − 2q + 1

(q − 1)(qn − 2qn−1 + qn−2 − qn−3 + 1)
.

Letting β be the term of order q−2 on the right hand side, we may then write her best
odds as

q

q − 1
+ tβ

where t is a real parameter contained in the interval (0,1]. Using the argument giving (8)
with α 7→ −tβ, the second player achieves her maximal odds when b minimizes

Hq(ω) :=

(
q − (q − 1)2tβ

q + (q − 1)tβ

)
[A, ωA′]q +

q∑
i=2

[Ai, ωA′]q.

For notational convenience, let γ be given by

γ =
(q − 1)2tβ

q + (q − 1)tβ
.

Since γ is an increasing function of t for t ∈ (0, 1],

γ ≤ γ|t=1 <
q − 1

q + 1
.

The second inequality above can be verified by showing β ≤ (q − 1)−1, though we spare
the reader the details.

We continue by describing the letters which minimize Fq(ω) and Hq(ω), showing that
these sets are necessarily identical. This is immediate if Fq(ω) is not uniquely minimized.
For then, by Lemma 4.1, its minimum value is 1 and [A, b0A

′]q = 0 for any b0 satisfying
Fq(b0) = 1. This in turn forces Hq(b0) = 1, and this is clearly its minimum. Additionally,
Hq(b0) = 1 implies Fq(b0) = 1, so the sets of minimizing letters are identical. This line
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of reasoning actually shows slightly more; if the minimum value of Fq(ω) is 1, then our
claim is true. From now on, we may therefore assume that Fq(ω) is uniquely minimized
by b1, and that Fq(b1) ≥ 2.

We first consider the problem of minimizing Fq(ω). We know

Fq(ω) = q[A, ωA′]q +

q∑
i=2

∑
ρ∈π(Ai)

δ(ω = a(i,ρ))q
n−ρ

=
∑

ρ∈π(A)

δ(ω = aρ)q
n−ρ+1 +

q∑
i=2

∑
ρ∈π(Ai)

δ(ω = a(i,ρ))q
n−ρ.

Let π′ be the union ∪q
i=2π(Ai). Since π(Ai)∩π(Aj) = {n} for all i 6= j, and since distinct

Ai only differ in their final letters, we may rewrite the above as∑
ρ∈π(A)

δ(ω = aρ)q
n−ρ+1 +

∑
ρ∈π′\{n}

δ(ω = aρ)q
n−ρ + δ(ω 6= an).

Before proceeding, it will be convenient to let π = ∪q
i=1π(Ai), and to introduce the

polynomial

Qω(z) :=

q∑
i=1

[Ai, ωA′] = 1 +
∑

ρ∈π\{n}
δ(ω = aρ)z

n−ρ.

Let b̃ ∈ Ω be the letter which minimizes the degree of this polynomial. Call this minimum
degree d, so that b̃ = an−d, and let B̃ = b̃A′. Notice that the nonzero coefficients of Q are
always 1. Also, a direct comparison with (12) gives

Qω(q) ≤ Fq(ω) ≤ qQω(q).

Suppose that b1 6= b̃. This forces deg Qb1(z) > d; they cannot both be zero because this
would imply Fq(b1) = 1, and they cannot both be identical and positive because this
would imply b1 = b̃ = an−d. Moreover, deg Qb1(z) cannot exceed d + 1. If so,

Fq(b1) − Fq(b̃) ≥ Qb1(q) − qQb̃(q)

≥ qd+2 − q(qd + · · · + 1).

This lower bound is at least 1 for q ≥ 2, contradicting the minimality of Fq(b1).
Hence deg Qb1(z) = d + 1 if b1 6= b̃, but more can be said before we investigate what

consequences this has in terms of word overlaps. The leading term of Qb1(z) cannot come
from a period in π(A), as this would imply

Fq(b1) − Fq(b̃) ≥ q(qd+1) − qQb̃(q)

and the contradiction follows exactly as above. Similarly, the leading term of Qb̃(z) must
come from a period in π(A), for otherwise

Fq(b1) − Fq(b̃) ≥ qd+1 − (qd + q(qd−1 + · · ·+ 1))
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which is positive for q ≥ 3, again contradicting the minimality of Fq(b1). Therefore, the
leading term of Qb̃(z) must come from a period in π(A), while the leading term of Qb1(z)
cannot. Equivalently, n − d ∈ π(A) and n − d − 1 ∈ π(Al) for some l ≥ 2. In terms
of word overlaps, b̃a1 . . . ad = an−d . . . an and b1a1 . . . ad+1 = an−d−1 . . . an−1a(l,n). Thus,

b̃ = a1 = · · · = ad = an−d = · · · = an, yielding that all of n−d+1, . . . , n are periods of A.
This gives us the exact forms of the Q polynomials, since π(Ai) ∩ π(Aj) = {n} for i 6= j:

Qb̃(z) = [A, B̃] = zd + · · ·+ 1

Qb1(z) = [Al, B1] = zd+1 + 1.

It follows that Fq(b1) = qd+1 + 1 and Fq(b̃) = q(qd + · · ·+ 1). Hence Fq(b1) < Fq(b̃) for all
d ≥ 1, so that the above description of Fq(b1) is minimal for these d. Otherwise, b1 = b̃.

To summarize, we have shown that if b̃ is the letter minimizing d = deg Qω(z), and if
Fq(ω) has minimum value greater than 1, then Fq(ω) is minimized by the letter b1 given
by

b1 =




an−d−1 if n − d ∈ π(A), n − d − 1 ∈ π(Ai) for some i ≥ 2,
deg Qan−d−1

(z) = d + 1, and d 6= 0

an−d otherwise.

If Fq(ω) has a minimum value of 1, then b1 can be chosen arbitrarily from the set of letters
which give Fq(ω) = 1.

We must now repeat this argument to describe the letter b2 which minimizes Hq(ω). If
b2 6= b̃, then we again have deg Qb2(z) > d by the same reasoning as above. Additionally,
the above proof that deg Qb2(z) < d + 2 can be used again, since

qd+2 − (q − γ)(qd + · · · + 1) > qd+2 − q(qd + · · ·+ 1) > 0

for all positive γ. Hence deg Qb2(z) = d + 1.
It must also be true that n − d − 1 /∈ π(A), since then

Hq(b2) − Hq(b̃) ≥ (q − γ)(qd+1) − (q − γ)(qd + · · ·+ 1),

which is strictly positive for our q and γ, contradicting the minimality of Hq(b2). Similarly,
it must also be the case that n − d ∈ π(A), for otherwise

Hq(b2) − Hq(b̃) ≥ qd+1 − (qd + (q − γ)(qd + · · · + 1)),

and right hand side is positive for all q ≥ 3.
Given that n − d ∈ π(A) and n − d − 1 ∈ π(Al) for some l ≥ 2, our Q polynomials

have exactly the same form as in the previous argument. Hence Hq(b2) < Hq(b̃) (so that
b2 truly minimizes H) precisely when

qd+1 + 1 < (q − γ)
qd+1 − 1

q − 1
.
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Use of the upper bound γ < (q − 1)/(q + 1) shows that this holds for all d ≥ 1, agreeing
with the description of b1.

To finish the proof of our theorem we need only resolve the case in which A′ consists
of a single repeated letter. In fact, we have already solved it, for in this restrictive case A
itself can be composed of at most two distinct letters. Since q ≥ 3, this gives the second
player the option of beginning her word with a third previously unused letter b3. Clearly
[A, B]q and [A′, B]q will both be simultaneously minimized by b3 in this case, each taking
the value zero. It follows that Fq(b3) = 1. Our earlier treatment of this case did not rely
on any assumptions about the form of A′, and this observation completes the proof.

This description of the optimal leading letter does agree with the q = 2 description
given earlier. We chose to state the q = 2 result differently to highlight its similarity with
Guibas and Odlyzko’s approximation.

Our use of the polynomial Qω(z) does not detract from the simplicity of the result,
for the letter which minimizes its degree is precisely the letter which maximizes the basic
period of ωA′. We integrate this description with the proof of our main result to provide
an equivalent description of the second player’s optimal leading letter which avoids any
mention of Qω(z).

Corollary 4.1. Let A = a1 . . . an be the word selected by the first player, and suppose
π = {p1, . . . , pk}, where p1 ≤ · · · ≤ pk = n. Supposing that such a period exists, let pj be
the smallest element of π such that

j⋃
i=1

{api
} = Ω.

Then the letter b which maximizes the second player’s odds of winning is given by

b =




apj−1 if pj ∈ π(A), pj − 1 ∈ π(Al) for some l ≥ 2,
pj − 1 = min{ρ ∈ π(Al)}, and pj 6= n

apj
otherwise.

If no such pj exists, then b can be chosen arbitrarily from Ω\{ap1 , . . . , apk
}.

Since Fq(ω) = 1 if and only if both [A, ωA′] and [A′, ωA′] are zero, we have the following
generalization of Corollary 3.1.

Corollary 4.2. If two distinct words maximize the second player’s odds of winning, then
these odds are

[A, A]q
qn−1 − [A′, A′]q

.

When q = 2, the above odds cannot be achieved by any two distinct words, as in the
proof of Corollary 3.1. Note that these odds are at least q/(q − 1).

the electronic journal of combinatorics 13 (2006), #R35 14



5 Concluding remarks

We conclude by admitting that while our main result is appealing, the piecemeal proof we
provide is not entirely satisfying. It would be desirable to have a cleaner, more intuitive
proof of Theorem 4.1. Unfortunately, it is not the case that the second player’s optimal
choice, even if unique, is the only one delivering odds better than q/(q− 1), as this would
greatly simplify the proof. For example, let Ω = {0, 1, 2} and A = 001. Then the word
100 beats A with odds of 8/5 while 200 wins with odds of 9/5, both of which are greater
than 3/2.

It would also be of interest to find an analogs of Theorem 4.1 and Corollary 4.1 in the
case of a biased die. This may be difficult since not every probability distribution on Ω
will give rise to a nontransitive winning relation. Dudley Stark [6] has characterized all
probability distributions having this property for all sufficiently long words.
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