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Abstract

For a fixed graph H on k vertices, we investigate the graphs, G, such that
for any partition of the vertices of G into k color classes, there is a transversal
of that partition inducing H. For every integer k ≥ 1, we find a family F of
at most six graphs on k vertices such that the following holds. If H /∈ F , then
for any graph G on at least 4k − 1 vertices, there is a k-coloring of vertices of
G avoiding totally multicolored induced subgraphs isomorphic to H. Thus, we
provide a vertex-induced anti-Ramsey result, extending the induced-vertex-Ramsey
theorems by Deuber, Rödl et al.

1 Introduction

Let G = (V, E) be a graph. Let c : V (G) → [k] be a vertex-coloring of G. We say that G

is monochromatic under c if all vertices have the same color and we say that G is rainbow

or totally multicolored if all vertices of G have distinct colors. Investigating the existence

of monochromatic or rainbow subgraphs isomorphic to H in vertex-colored graphs, the

following questions naturally arise:

Question M: Can one find a small graph G such that in any vertex-coloring of G with

fixed number of colors, there is an induced monochromatic subgraph isomorphic to H?

Question M-R: Can one find a small graph G so that any vertex coloring of G contains

an induced subgraph isomorphic to H which is either monochromatic or rainbow?

Question R: Can one find a large graph G such that any vertex-coloring of G in a fixed

number of colors has a rainbow induced subgraph isomorphic to H?
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The first two questions are well-studied, e.g., [7], [8], [2]. Together with specific bounds

given by Brown and Rödl [3], the following is known:

Theorem 1 (Vertex-Induced Graph Ramsey Theorem). For any graph H, any

integer t, t ≥ 2, there exists a graph Rt(H) such that if the vertices of Rt(H) are col-

ored with t colors then there is an induced subgraph of Rt(H) isomorphic to H which is

monochromatic. Let the smallest order of such a graph be rt(H). There are constants C1,

C2 such that

C1k
2 ≤ max{rt(H)) : |V (H)| = k} ≤ C2k

2 log2 k.

The topic of the second question belongs to the area of “canonization”, see, for example, a

survey by Deuber [5]. The following result of Eaton and Rödl [6] provides specific bounds

for vertex-colorings of graphs.

Theorem 2 (Vertex-Induced-Canonical Graph Ramsey Theorem). For any graph

H, there is a graph Rcan(H) such that if Rcan(H) is vertex-colored then there is an induced

subgraph of Rcan(H) isomorphic to H which is either monochromatic or rainbow. Let the

smallest order of such a graph be rcan(H). There is a constant C such that

Ck3 ≤ max{rcan(H) : |V (H)| = k} ≤ k4 log k.

In this paper we initiate the study of Question R when the number of colors in the

coloring corresponds to the number of vertices in a graph H . We call a vertex-coloring

using exactly k colors a k-coloring. In this manuscript we consider only simple graphs

with no loops or multiple edges.

Definition 3. For a fixed graph H on k vertices, let f(H) be the maximum order of a

graph G such that any coloring of V (G) in k colors has an induced rainbow subgraph

isomorphic to H . Note that f(H) ≥ k.

Since a vertex-coloring of G gives a partition of vertices, finding a rainbow induced copy

of a graph H corresponds to finding a copy of H induced by a transversal of this partition.

Note that f(H) = ∞ if and only if for any n0 ∈ N there is n > n0 and a graph G on n

vertices such that any k-coloring of vertices of G produces a rainbow induced copy of H .

The results we obtain have a flavor quite different from of those answering Questions M

and M-R. In particular, there are few exceptional graphs for which function f is not finite.

Let Λ be a graph on 4 vertices with exactly two adjacent edges and one isolated vertex.

Let Kn, En, Sn be a complete graph, an empty graph and a star on n vertices, respectively.

We define a class of graphs

F = {Kn, En, Sn, Sn, Λ, Λ : n ∈ N}.

Note that any graph on at most three vertices is in F .
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Theorem 4. Let H be a graph on k vertices. If H ∈ F then f(H) = ∞, otherwise

f(H) ≤ 4k − 2.

Corollary 1. Let H be a graph on k vertices, H /∈ F . For every graph G on at least 4k−1

vertices there is a k-vertex coloring of G avoiding rainbow induced subgraphs isomorphic

to H.

2 Proof of Theorem 4

Let H be a graph on k vertices and let In(H) be the set of graphs on at most k − 1

vertices which are isomorphic to induced subgraphs of H .

One of our tools is the following theorem of Akiyama, Exoo and Harary, later strengthened

by Bosák.

Proposition 1 ( [1], [4]). Let G be a graph on n vertices such that all induced subgraphs

of G on t vertices have the same size. If 2 ≤ t ≤ n − 2 then G is either a complete graph

or an empty graph.

Proposition 2. Let H be a graph on k vertices. If G is a graph on at least k vertices

such that G has an induced subgraph on at most k − 1 vertices not isomorphic to any

graph from In(H), then there is a k-coloring of G with no rainbow induced copy of H.

Proof. Let a set, S, of at most k−1 vertices in G induce a graph not in In(H). Color the

vertices of S with colors 1, 2, . . . , |S| and assign all colors from {|S| + 1, . . . , k} to other

vertices arbitrarily. Any rainbow subgraph of G on k vertices must use all of the vertices

from S, but these vertices do not induce a subgraph of H . Therefore there is no rainbow

induced copy of H in this vertex-coloring of G.

We call a graph G, H-good if any induced subgraph of G on at most |V (H)| − 1

vertices is isomorphic to some graph from In(H).

Corollary 2. Let H /∈ F be a regular graph on k vertices. Then f(H) = k.

Proof. Note that each graph in In(H) on k − 1 vertices has the same size. Let G be a

graph on k + 1 vertices. By Proposition 2 we can assume that G is H-good. Thus all

(k − 1)-subgraphs of G have the same size. It follows from Proposition 1 that G is either

a complete or an empty graph. Therefore G does not contain H as an induced subgraph

and any k-coloring of G does not result in a rainbow induced copy of H .

We use the following notations for a graph H = (V, E). Let α(H) be the size of the

largest independent set of H , let ω(H) be the order of the largest complete subgraph of

H . Let δ(H), ∆(H) be the minimum and the maximum degrees of H respectively. For

two vertices x, y, such that {x, y} /∈ E, e = {x, y} is a non-edge, for a vertex v, d(v)

and cd(v) are the degree and the codegree of v, i.e., the number of edges and non-edges
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incident to v, respectively. A (k−1)-subgraph of H is an induced subgraph of H on k−1

vertices. For all other definitions and notations we refer the reader to [9].

Next several lemmas provide some preliminary results for the proof of Theorem 4. We

consider the graph H according to the following cases:

a) α(H) = k − 1 or w(H) = k − 1,

b) 2 ≤ δ(H) ≤ ∆(H) ≤ k − 3,

c) δ(H) ≤ 1 or ∆(H) ≥ k − 2.

The cases a) and b) give us easy upper bounds on f(H), the case c) requires some more

delicate analysis. The first lemma follows immediately from the definition of function f .

Lemma 1. f(H) = f(H).

Lemma 2. Let H be a graph on k vertices such that 2 ≤ δ(H) ≤ ∆(H) ≤ k − 3. Then

f(H) ≤ 2k − 6.

Proof. If a graph G has a vertex of degree at least k − 2 or of codegree at least k − 3,

then G contains a subgraph on k − 1 vertices not in In(H) and by Proposition 2, there

is a k-coloring of G avoiding rainbow induced copies of H . Therefore, if any k-coloring

of G contains a rainbow induced copy of H then for v ∈ V (G) we have |V (G)| ≤ d(v) +

cd(v) + 1 ≤ (k − 3) + (k − 4) + 1 = 2k − 6.

Lemma 3. Let H /∈ F be a graph on k vertices, such that α(H) = k − 1 or such that

w(H) = k − 1. Then f(H) = k, for k ≥ 5 and f(H) = k + 2 for k = 4.

Proof. Let H be a graph on k vertices with α(H) = k − 1, H /∈ F . Then H is a disjoint

union of a star with k′ edges and k − k′ − 1 isolated vertices, 1 ≤ k′ ≤ k − 2.

Assume first that k ≥ 5. Let G be a graph on n vertices, n ≥ k + 1. If G has two

nonadjacent edges e, e′, or a triangle, or no edges at all, by Proposition 2 there is a coloring

of G avoiding a rainbow induced copy of H . Therefore, G must be a disjoint union of a

star S with l edges and n − l − 1 isolated vertices, 1 ≤ l ≤ n − 1. Then either l > k′ or

n − l − 1 > k − k′ − 1. If l > k′, we can use colors from {1, . . . , k′ + 1} on the vertices of

S and colors from {k′ + 2, . . . , k} on isolated vertices of G. If n − l − 1 > k − k′ − 1 then

we can use colors from {1, . . . , k − k′} on isolated vertices of G and other colors on the

vertices of S. These colorings do not contain an induced rainbow subgraph isomorphic

to H .

Let k = 4. Since H /∈ F , we have that H is a disjoint union of an edge and two vertices.

If a graph G has two adjacent edges e, e′, we are done by Proposition 2. Otherwise, G is

a vertex disjoint union of isolated edges and vertices. Lets color G so that the adjacent

vertices get the same color. This coloring does not contain an induced rainbow copy of

H . Moreover, if |V (G)| ≥ 7 then there is such a coloring using 4 colors. Thus, f(H) < 7.

On the other hand, any 4-coloring of a graph G consisting of three disjoint edges gives a

rainbow induced H , thus f(H) ≥ 6. We have then that f(H) = 6.

If w(H) = k − 1, Lemma 1 implies the same result.
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Lemma 4. Let H be a graph on k vertices, H /∈ F , α(H) < k − 1, ω(H) < k − 1. If H

has at least two nontrivial components then f(H) ≤ 2k − 1.

Proof. Note that if H has at least two nontrivial components and δ(H) ≥ 2, then we are

done by Lemma 2. Let m be the largest order of a connected component in H . Let G be a

graph on n ≥ 2k vertices. We can assume by Proposition 2 that G is H-good. Then there

is no component in G of order larger than m. Moreover, since H is contained in G as an

induced subgraph, all components of H of order m appear in G as connected components.

Let F1, F2, . . . , Ft be components of G of order m, let xi, yi ∈ V (Fi), i = 1, . . . , t. Assign

color i to both vertices xi and yi, i = 1, . . . , t, and assign all colors from {t + 1, . . . , k}
to other vertices arbitrarily. Since k ≤ n/2, t ≤ n/2, we have that t + k ≤ n and such

coloring exists. Consider a copy of H in G. It contains at least one of the components of

order m, thus it has at least two vertices of the same color. Therefore there is no rainbow

induced subgraph of G isomorphic to H in this coloring.

Lemma 5. Let H /∈ F be a graph on k vertices such that δ(H) ≤ 1, α(H) < k − 1 and

w(H) < k − 1. Then f(H) ≤ 4k − 2.

Proof. Let H be a graph on k vertices, H /∈ F such that α(H) < k−1 and ω(H) < k−1.

Let G be a graph on n ≥ 4k − 1 vertices. We can assume by Proposition 2 that G is

H-good.

Claim 0. If all graphs from In(H) on k− 1 vertices with a spanning star are isomorphic

or do not exist, then ∆(G) ≤ k − 1. If all graphs from In(H) on k − 1 vertices with an

isolated vertex are isomorphic or do not exist, then ∆(G) ≤ k − 1.

To prove the Claim, assume that all graphs from In(H) on k − 1 vertices with a

spanning star are isomorphic. Consider S, a neighborhood of a vertex v of maximum

degree in G. Then, all subsets of S of size k − 2 induce isomorphic graphs. Therefore,

if |S| ≥ k we have, by Proposition 1, that S induces an empty or a complete graph on

at least k vertices, a contradiction. Thus, |S| = ∆(v) ≤ k − 1. If there is no graph from

In(H) on k−1 vertices with a spanning star and G has a vertex v of degree at least k−2,

then v and k−2 of its neighbors induce a subgraph with a spanning star on k−1 vertices,

a contradiction. The second statement can be proved in the same manner, concluding the

proof of Claim 0.

Case 1. δ(H) = 0.

We can assume by Lemma 4 that H has exactly one nontrivial component. Observe

that either there is no (k − 1)-vertex subgraph of H with a spanning star, or all such

subgraphs are isomorphic. Thus, by Claim 0, ∆(G) ≤ k − 1. Consider two adjacent

vertices of G, u and v. There is a set T of vertices, |T | ≥ n− 2− 2(k − 1) = n− 2k, such

that neither u nor v is adjacent to any vertex in T . Observe also, that since G has no

independent set of size k− 1, the largest size of an independent set induced by vertices of

T is at most k−2. Let T ′ ⊂ T induce the largest independent set in G[T ]. Then, for each
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x ∈ T \T ′, there is x′ ∈ T ′ such that xx′ ∈ E(G). Since |T \T ′| ≥ n−2k−k + 2 ≥ k, it is

clear that we can build a subgraph of G[T ] on k−3 vertices with no isolated vertices using

some vertices from T \ T ′ and some of their neighbors from T ′ (provided that k ≥ 5).

Together with uv it forms a subgraph on (k − 1) vertices with at least two nontrivial

components and no isolated vertices. But each disconnected subgraph of H on k − 1

vertices has an isolated vertex, a contradiction.

Let k = 4. Since δ(H) = 0 and α(H) < 3, H must be a disjoint union of an isolated

vertex and K3. But then H ∈ F , which is impossible.

Case 2. δ(H) = 1.

Lets call the vertices of degree 1, leaves. We can assume that H is connected by

Lemma 4.

Case 2.1. All leaves in H have a common neighbor, v.

Then all (k−1)-subgraphs of H which have an isolated vertex are isomorphic to H−v,

thus, by Claim 0, we have that ∆(G) ≤ k−1. Note that all (k−1)-subgraphs of H having

two adjacent vertices of degree k − 2 are either isomorphic or do not exist. Consider x, y,

two adjacent vertices of G. Since the codegree of each vertex is at most k − 1 we have

that there is a set S of vertices, |S| ≥ n − 2 − 2(k − 1) ≥ k − 1, such that each vertex of

S is adjacent to x and to y. Thus, all (k − 3)-subsets of S induce isomorphic graphs, and

S must induce a complete or an empty graph on at least k − 1 vertices by Proposition 1,

a contradiction.

Case 2.2. There are at least two leaves in H which do not have a common neighbor.

It is easy to see that either H does not have a vertex of degree k−2 or all subgraphs of

H on k−1 vertices with a spanning star are isomorphic. Then, by Claim 0, ∆(G) ≤ k−1.

Consider a set S of vertices of G inducing H and let S ′ ⊆ S correspond to the set of leaves

in H . Let l be the largest number of leaves in H having a common neighbor, let x(l) be

the number of distinct vertices in H each adjacent to l leaves.

If l ≤ 2 or (l = 3 and x(l) = 1) then all (k − 1)-subgraphs of H with at least three

isolated vertices either do not exist or isomorphic. Consider three pairwise nonadjacent

vertices w, w′, w′′ in G. Since ∆(G) ≤ k − 1, there are at least n − 3 − 3(k − 1) ≥ k − 1

vertices of G non-adjacent to either of w, w′, w′′. This is either impossible, or these vertices

must induce an independent set or a clique, a contradiction.

Thus, we can assume that there are at least two distinct vertices in H adjacent to at

least three leaves each. Let u, u′ ∈ S correspond to these vertices, and let s, s′ ∈ N(u)∩S,

s′′ ∈ N(u′) ∩ S. Since V \ S has size at least k − 1, it does not induce an independent

set; thus there is an edge vv′, v, v′ ∈ V \ S. If v, v′ are not adjacent to any vertex in

S, then G[S \ {s, s′, s′′} ∪ {v, v′}] is a (k − 1)-subgraph of G with an isolated edge, no

isolated vertices and with |S ′| − 1 leaves. This is impossible, since each (k − 1)-subgraph

of H with an isolated edge and no isolated vertices has at least |S ′| leaves. If v or v′ is

adjacent to some vertex q ∈ S (we can always assume that q /∈ {s, s′, s′′} by choosing

s, s′, s′′ accordingly), then G[S \ {s, s′, s′′} ∪ {v, v′}] is a connected (k − 1)-subgraph of G
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with at most |S ′| − 2 leaves. This is impossible since each connected subgraph of H has

at least |S ′| − 1 leaves.

Now, we can quickly complete the proof of the main theorem using the result about

the special graph Λ proven in the next section.

Proof of Theorem 4. If H = Sk, then any k-coloring of Sn, n ≥ k induces a rainbow H . If

H = Kk, then any k-coloring of Kn, n ≥ k induces a rainbow H . Using Proposition 3 for

a graph Λ and the fact that f(H) = f(H) we have now established that for any H ∈ F ,

f(H) = ∞.

Now, assume that H is a graph on k vertices, H /∈ F . If α(H) = k−1 or ω(H) = k−1,

then, by Lemma 3, f(H) ≤ k + 2. If α(H) < k − 1 and ω(H) < k − 1 then at least one

of the following holds:

1) 2 ≤ δ(H) ≤ ∆(H) ≤ k − 3, and by Lemma 2, f(H) ≤ 2k − 6,

2) δ(H) ≤ 1, and by Lemmas 4 and 5, f(H) ≤ 4k − 2,

3) ∆(H) ≥ k − 2, by 2) and Lemma 1, f(H) ≤ 4k − 2.

3 Treating Λ

Definition 5. Let G(m) = (V, E),

V = {v(i, j) : 1 ≤ i ≤ 7, 1 ≤ j ≤ m},

E = {v(i, j)v(i + 1, k) : 1 ≤ j, k ≤ m, j 6= k, 1 ≤ i ≤ 7} ∪
{v(i, j)v(i + 3, j) : 1 ≤ j ≤ m, 1 ≤ i ≤ 7},

addition is taken modulo 7.

We have V = V1 ∪ · · · ∪ V7 = L1 ∪ · · · ∪ Lm, where Vi = {v(i, j) : 1 ≤ j ≤ m},

1 ≤ i ≤ 7, Lj = {v(i, j) : 1 ≤ i ≤ 7}, 1 ≤ j ≤ m. We shall refer to Vis as vertex parts

and Lis as vertex layers. The edge-set of G(m) can be constructed by first taking all

the edges between consecutive (in cyclic order) Vis, i = 1, . . . , 7 then removing the edges

induced by each layer Lj, j = 1, . . . , m, and finally adding, for each j = 1, . . . , m, a new

7 cycle induced by Lj , see Figure 1. Note that G(1) is isomorphic to a 7-cycle, G(2) has

a spanning 14-cycle, and can be drawn as in the Figure 2.

Proposition 3. For any positive integer m and any coloring of V (G(m)) into 4 colors,

there is a rainbow induced subgraph of G isomorphic to Λ.

Proof. We prove the statement, for m = 1, 2, 3 and for m > 3 use induction. This is a

somewhat tedious but straightforward case analysis.
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Figure 1: G(1), G(2), G(3) and G(4)

Claim 1. Any coloring of G(1) in 4 colors contains an induced rainbow Λ.

Let G(1) have vertices x1, . . . , x7 and edges xixi+1, i = 1, . . . , 7, addition taken modulo

7. Assume that there is a 4-coloring c with no induced rainbow Λ. First observe that any

4-coloring of C7 must have three consecutive vertices with distinct colors, say c(xi) = i,

for i = 1, 2, 3. Then c(x5) 6= 4, c(x6) 6= 4, thus, without loss of generality c(x4) = 4.

Note that then c(x7) 6= 1, c(x7) 6= 3. If c(x7) = 4 then x6 must have color 3, and there

is no color available for x5. If c(x7) = 2 then c(x6) = 2 and there is no available color for x5.

Claim 2. Any coloring of G(2) in 4 colors contains an induced rainbow Λ.

Note that G(2) can be drawn as C14 with chords as in Figure 2. Let the vertices of

G(2) be x1, . . . , x14 in order on the cycle and let the edges be xi, xi+1, xi+4, i = 1, . . . , 14,

where addition is taken modulo 14. We shall use the fact that the following sets of vertices
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Figure 2: Different drawing of G(2)

induce C7 and thus cannot use all 4 colors:

{xi, xi+2, xi+3, xi+4, xi−2, xi−3, xi−4},
i = 1, . . . , 14 and addition is taken modulo 14. We shall also use an easy fact that it is

impossible to have a 4-colored C4 in G(2).

Case 1. There are three consecutive vertices, using distinct colors, say c(xi) = i, i = 1, 2, 3.

Then, considering all induced cycles of length 7 containing these three vertices, we see

that the only vertices which could have color 4 are x4, x6, x14 or x12.

Case 1.1. c(x4) = 4.

Consider vertex x8. If c(x8) = 1 then {x2, x3, x4, x6, x8, x9, x10} induces a C7 using

4 colors. If c(x8) = 2 then {x1, x3, x4, x8} induces a rainbow Λ. If c(x8) = 3 then

{x14, x1, x2, x4, x6, x7, x8} induces a C7 using 4 colors. Thus x8 cannot be assigned any

color and this case is impossible.

Case 1.2. c(x6) = 4.

Consider vertex x7. If c(x7) = 1 then {x2, x3, x6, x7} is a 4-colored C4. If c(x7) = 2

then {x1, x3, x7, x6} induces a rainbow Λ. If c(x7) = 3 then {x14, x1, x2, x4, x6, x7, x8}
induces a C7 using 4 colors. Therefore x7 cannot be assigned a color and this case is

impossible as well.

By symmetry c(x14) 6= 4 and c(x12) 6= 4, so there is no vertex colored 4, a contradiction.

Case 2. There are no three consecutive vertices using distinct colors.

Then, without loss of generality, there are consecutive vertices xi, xi+1, . . . , xj such

that c(xi) = a, c(xj) = b and c(xm) = c, for i < m < j, such that a, b, c are distinct.

Consider smallest such set of vertices and assume that i = 1, a = 2, b = 3, c = 1. Then

clearly, j ≥ 4, moreover j ≤ 5 since otherwise there is a smaller such set.

Case 2.1. j = 4.

By considering all induced C7 containing vertices of colors 1, 2, 3 from {x1, x2, x3, x4},

and using the fact that x14 and x5 cannot have color 4 without creating three consecutive
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vertices of distinct colors, we see that the only vertices which could have color 4 are x9

and x10. If c(x10) = 4 then consider vertex x14. If c(x14) = 3 or 4 then x14, x1, x2 are three

consecutive vertices using distinct colors. If c(x14) = 2 then {x14, x10, x4, x2} induces a

rainbow Λ. Thus c(x14) = 1. Consider x5: c(x5) 6= 4 and c(x5) 6= 2 since otherwise there

are three consecutive vertices of distinct colors. If c(x5) = 3 then {x2, x1, x5, x9} induces

a rainbow Λ. If c(x5) = 1 then {x4, x5, x1, x9} induces a rainbow Λ. Thus this case is

impossible. If c(x9) = 4 we arrive at a contradiction by symmetry.

Case 2.2. j = 5.

By considering all induced C7 containing vertices of colors 1, 2, 3 from {x1, . . . , x5}
we see that the only vertex which might, and thus must have color 4 is x10. But then

{x10, x1, x2, x5} induces a rainbow Λ, a contradiction.

Claim 3. Any coloring of G(3) in 4 colors contains an induced rainbow Λ.

Let c be a coloring of G(3) using colors 1, 2, 3, 4 and containing no induced rainbow

copy of Λ. If there is a subgraph of G(3) isomorphic to G(2) and using four colors, there is

a rainbow induced Λ by Claim 2. Therefore, we can assume that each vertex layer of G(3)

has a color used only on its vertices and on no vertex of any other layer. In particular,

assume that color i is used only in Li, i = 1, 2, 3. So, L1 uses colors from {1, 4}, L2 uses

colors from {2, 4}, and L3 uses colors from {3, 4}.

If there is a part, say V1, using colors 1, 2, 3, then it is easy to see that none of the

vertices of V2 could have color 4 and moreover V2 must use all three colors 1, 2, 3 again,

in respective layers. This shows that in this case all sets Vi, i = 1, . . . , 7 must use only

colors 1, 2, 3 and there is no vertex of color 4, a contradiction. Since there is no part Vi,

i = 1, . . . , 7 using all colors 1, 2, 3, each part must have color 4 on some vertex.

Assume that there is a part, say V1, having exactly one vertex of color 4. Without

loss of generality, we have c(v(1, 1)) = 4, c(v(1, 2)) = 2, c(v(1, 3)) = 3, then c(v(7, 1)) =

c(v(2, 1)) = 4. Moreover, c(v(i, 1)) 6= 1 for i = 3, 4, 5, 6, otherwise one of these vertices

together with either {v(2, 1), v(1, 2), v(1, 3)} or with {v(7, 1), v(1, 2), v(1, 3)} induces a

rainbow Λ. Therefore, there is no vertex of color 1 in the graph, a contradiction.

Thus, each part Vi has at least two vertices of color 4. Then, it is easy to see that

there is always a rainbow induced Λ in such a coloring of G(3), a contradiction.

Induction step. Assume that m ≥ 4. If there is a vertex layer Li such that G[V − Li]

uses all 4 colors, then, since G[V − Li] is isomorphic to G(m − 1), there is a rainbow

induced subgraph isomorphic to Λ. Thus we can assume that each layer L1, L2, . . . , Lm

uses a color not present in other layers. It is possible only if m = 4, in which case all

vertices of each layer have the same color. We can assume that all vertices of layer Li

have color i, i = 1, 2, 3, 4. But then it is easy to see that there is an induced rainbow Λ

in this coloring.

the electronic journal of combinatorics 13 (2006), #R36 10



It is interesting to see that if G is a bipartite graph then there is always a coloring of

V (G) in 4 colors avoiding induced rainbow Λ. Indeed, if G is a complete bipartite graph,

it does not have any induced copies of Λ, so any 4-coloring will work. Thus, we can

assume that there are two nonadjacent vertices from different partite sets A and B, x ∈ A

and y ∈ B. Let c(x) = 3, c(y) = 4, c(N(x)) = 1, c(N(y)) = 2, c(A \ (N(y) ∪ {x})) = 1

and c(B \ (N(x) ∪ {y})) = 2. It is easy to see that this coloring does not have a rainbow

induced Λ.

Concluding Remark: We have proven that for any graph H /∈ F on k vertices and any

graph G on 4k − 1 vertices there is a coloring of G in k colors avoiding rainbow induced

subgraph isomorphic to H . Together with definition of f , this implies that

k ≤ max{f(H) : |V (H)| = k, H /∈ F} ≤ 4k − 2.

There are many classes of graphs for which f(H) = k, which follows, for example, from

Proposition 2. We believe that the above upper bound could be improved to 2k − 1 with

a more careful analysis, and, perhaps to k + c, where c is a constant. As far as the lower

bound is concerned, we have only one example when f(H) = k + 2 for k = 4, provided

by Lemma 3. It will be very interesting to see constructions of graphs giving better lower

bounds on f .
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Stud., János Bolyai Math. Soc., Budapest, 1 (1993), 107–123,

[6] Eaton, N., Rödl, V., A canonical Ramsey theorem, Random Structures Algorithms, 3

(1992), no. 4, 427–444.

[7] Graham, R., Rothschild, B., Spencer, J., Ramsey theory, Second edition. Wiley-

Interscience Series in Discrete Mathematics and Optimization, New York, 1990.

[8]  Luczak, T., Rucinski, A., Urbanski, S., Vertex Ramsey properties of families of graphs,

J. Combin. Theory Ser. B, 84 (2002), no. 2, 240-248.

[9] West, D., Introduction to Graph Theory, Second Edition, Prentice Hall, 2001.

the electronic journal of combinatorics 13 (2006), #R36 11


