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Abstract

In this paper we study inversions within restricted fillings of Young tableaux.
These restricted fillings are of interest because they describe geometric properties of
certain subvarieties, called Hessenberg varieties, of flag varieties. We give answers
and partial answers to some conjectures posed by Tymoczko. In particular, we find
the number of components of these varieties, give an upper bound on the dimensions
of the varieties, and give an exact expression for the dimension in some special cases.
The proofs given are all combinatorial.

1 Introduction

Our motivation is a result of Tymoczko in [T] which gives the Betti numbers of certain
subvarieties of flag varieties in terms of the number of restricted fillings of a corresponding
collection of tableaux. These Betti numbers specialize to objects of independent combi-
natorial interest, including Euler numbers and the rank of irreducible representations of
the permutation group. The geometric properties which these restricted fillings describe
have also been studied by de Mari–Shayman [DS] and by Fulman [F], and they also
generalize classical combinatorial quantities, e.g., Euler numbers (see de Mari–Procesi–
Shayman [DPS]).

For the purposes of this paper, a Young tableau is a finite collection of n boxes,
arranged in rows of non-increasing length (from top to bottom), and a filling of a Young
tableau is a labelling of the boxes in the tableau by the numbers from 1 to n without
repetition, subject to rules which will be described later. Our main interest will be to
define and study a notion of combinatorial dimension for fillings of tableaux.

∗This work was supported by the University of Michigan REU program.
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We also consider multitableaux λ, which are finite collections of tableaux arranged ver-
tically. A Hessenberg function is a nondecreasing function h : {1, 2, . . . , n} → {1, 2, . . . n}
satisfying the condition h(α) ≥ α for all α.

Example 1.1. For n = 3, the rule h(1) = 2, h(2) = 2, and h(3) = 3 defines a Hessenberg
function. But if we set h(1) = 1, h(2) = 1, and h(3) = 2, then h is not a Hessenberg
function, because 2 > h(2) and 3 > h(3).

Given a Hessenberg function h, we will study fillings of multitableaux which are h-
allowed (or simply allowed if the Hessenberg function h is clear from the context). An
h-allowed filling of a multitableau is a filling by the numbers {1, . . . , n} without repetition

such that if
α β

appears in a tableau, then α ≤ h(β).

Definition 1.2. The h-dimension (which we just call dimension, if h is understood) of a
filling of an h-allowed multitableau λ is the sum of two quantities:

1. the number of pairs (α, β) in the filling of λ such that

• α and β are in the same tableau,

• the box filled with α is to the left of or directly below the box filled with β,

• β < α, and

• if γ fills the box immediately to the right of β then α ≤ h(γ).

2. the number of pairs (α, β) in the filling of λ such that

• α and β are in different tableaux,

• the tableau containing α is below the tableau containing β, and

• β < α ≤ h(β).

In [T], these fillings are shown to be in bijective correspondence with cells of a de-
composition of a Hessenberg variety, which is a subvariety of a flag variety, where the
h-dimension of a filling is the dimension of the corresponding cell. As a special case,
the Springer fibers, which arise naturally in geometric representation theory, occur when
h(α) = α, and λ consists of a single tableau.

Example 1.3. Suppose we have the following Hessenberg function

α 1 2 3 4 5 6
h(α) 2 4 4 5 5 6

and the following allowed filling
2 1 3
5

4
6

then using the above formula for the dimension, we see that the dimension is 5, from the
pairs (2, 1), (4, 2), (4, 3), (5, 3), and (6, 4).
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The following definition, which relates to the Hessenberg function, will be needed in
Sections 5 and 3.

Definition 1.4. Each Hessenberg function h : {1, . . . , n} → {1, . . . , n} partitions the set
{1, . . . , n} into blocks according to the rule that α + 1 is in the same block as α if and
only if h(α) > α. We say that the Hessenberg function has h-blocks of sizes n1, n2, . . . , nk

if the ith block contains ni numbers.

In Section 3 we study the zero-dimensional fillings of a multitableau, the number of
which is equal to the number of components of a corresponding Hessenberg variety. We
describe all possible zero-dimensional fillings in terms of permutations of multisets which
have a particular descent set.

Recall that the descent set of a permutation π = π1π2 · · ·πs of (not necessarily distinct)
positive integers π1, π2, . . . , πs is the set D(π) = {i : πi > πi+1}, where the permutation is
given using functional notation.

Theorem 1.5. If the Hessenberg function h has h-blocks of sizes n1, n2, . . . , nk, then the
number of zero-dimensional fillings of a multitableau λ with si boxes in the ith tableau
is equal to the number of permutations π of the multiset {1n1, 2n2, . . . , knk} such that
D(π) ⊆ {s1, s1 + s2, s1 + s2 + s3, . . . , s1 + s2 + · · · + s`−1}.

We also prove the following proposition, which demonstrates a kind of duality with an
unexplained geometric interpretation. The significance of this duality is an open question.

Proposition 1.6. The number of zero-dimensional fillings of a multitableau with si boxes
in the ith tableau when the Hessenberg function has h-blocks of sizes n1, n2, . . . , nk is the
same as the number of zero-dimensional fillings of a multitableau with ni boxes in the ith

tableau when the Hessenberg function has h-blocks of sizes s1, s2, . . . , s`.

In Section 2, we define certain properties of entries in a filling, and express the dimen-
sion in terms of entries with these properties. In Section 4, we use our expressions for
the dimension in terms of these properties to prove the following theorem, which gives a
sharp upper bound for the dimension of any filling. The upper bound we give consists of
two summands, which arise in other combinatorial contexts.

Theorem 1.7. If the jth row of the ith tableau has length di,j, then the dimension of a
filling is at most

n∑
α=1

(h(α) − α) +
∑̀
i=1

ki∑
j=2

(j − 1)di,j.

We then describe a special case when this upper bound is actually achieved in Section 5,
and we prove a sharper upper bound when the Hessenberg function is h(α) = α + 1 in
Section 6. If kmax is the largest number of rows in any tableau of a multitableau λ, then
we prove the following:

Theorem 1.8. When h(α) = α + 1, the dimension of any filling is at most

n − kmax +
∑̀
i=1

k∑̀
j=2

(j − 1)di,j
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and this upper bound is achieved.

In Section 7, we also study the dimension of another specific filling, which we call the
big filling. This filling, when allowed, corresponds to the intersection of the big cell in
the full flag variety with the Hessenberg variety. We find the dimension of the filling in
this case and conjecture that it is in fact the filling of largest possible dimension, when
allowed.

The author would like to thank Julianna Tymoczko for many helpful conversations
and comments on earlier versions of this paper. Trevor Arnold and the referee, Bruce
Sagan, also provided valuable feedback.

Notation and conventions

Throughout this paper, we will use the Greek letters α, β, γ, δ, ε, and ζ to denote entries
in a filling of a multitableau, and will use λ to denote a multitableau. When we say that
an entry α is to the left of an entry β in a filling, this means that α and β are in the
same tableau, and the column containing α is to the left of the column containing β, and
similarly for to the right of, above, and below. When we say that an entry α is directly
above an entry β, this means that α and β are in the same tableau, and α is somewhere
above and in the same column as β, and similarly for directly below, directly to the left
of, and directly to the right of. When we say an entry α is immediately to the right of an
entry β, this means that α and β are in the same tableau, α is in the same row as β, but
in the box which is just to the right of the one containing β, and similarly for immediately
to the left of, immediately below, and immediately above. Also, when we refer to the ith

tableau in a multitableau λ, we count the tableaux from the top downward.

2 An alternate expression for the dimension

The following definitions will allow us to characterize the dimension of a filling in terms
of entries which have certain properties which we call Pα and Dα.

Definition 2.1. If an entry β has the property that β < α ≤ h(β) for some other entry α,
where α can be anywhere else in the filling, then we say that β is Pα.

Definition 2.2. We say that an entry β is Dα if β < α for some other entry α which can
occur anywhere else in the filling, and either β fills the farthest right box of a row, or else
if γ is in the box immediately to the right of β, then α ≤ h(γ).

In the remainder of this section, we describe properties of entries which are Pα and
Dα. We also express the dimension of a filling in terms of those entries which are Pα and
Dα, which will be useful throughout this paper.

Lemma 2.3 (Slide Right Lemma). Fix α ∈ {1, . . . , n}. If β1, β2, . . . , βk appear con-
secutively in a row as in Figure 1 with βk < α ≤ h(β1), then at least one of β1, β2, . . . , βk

is Pα.
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. . . β1 β2 · · · βk−1 βk . . .

Figure 1: Entries appearing consecutively in a row.

Proof. We know that α ≤ h(β1) so if α > β1 then β1 is Pα. Otherwise α ≤ β1 ≤ h(β2)

since all tableaux we are considering have
β1 β2 only if β1 ≤ h(β2), so slide to the

right and decide if β2 is Pα. Continuing this “sliding right” procedure, either one of
β1, β2, . . . , βk−1 is Pα or else α ≤ βk−1 ≤ h(βk). In the latter case, the assumption that
α > βk implies that βk is Pα.

Corollary 2.4. Fix α. If β0, β1, β2, . . . , βk appear in a row, with α 6= β0 and α 6= βk,
where β0 and βk are Dα, then one of β1, β2, . . . , βk is Pα.

Proof. Since β0 and βk are Dα, we know that βk < α ≤ h(β1). Our claim then follows
from the Slide Right Lemma.

Lemma 2.5 (Slide Left Lemma). Fix α ∈ {1, . . . , n}. If β1, β2, . . . , βk−1 are arranged
consecutively in a row as in Figure 1, α > β1, and either

• βk−1 is at the end of the row or

• the box directly to the right of βk−1 is filled with a number βk such that α ≤ h(βk),

then at least one of β1, β2, . . . , βk−1 is Dα.

Proof. If α > βk−1, then as either βk−1 is at the end of a row or else α ≤ h(βk), we see
that βk−1 is Dα. Otherwise α ≤ βk−1 ≤ h(βk−1) so slide to the left and decide if βk−2

is Dα. Continuing this “sliding left” procedure, either one of β2, . . . , βk−1 is Dα or else
α ≤ β2 ≤ h(β2). In the latter case, the assumption that α > β1 implies that β1 is Dα.

Corollary 2.6. Fix α. If β1, β2, . . . , βk−1 appear consecutively in a row where β1 is Pα

and either βk−1 is at the end of the row or βk is directly to the right of βk−1 and βk is Pα,
then one of β1, β2, . . . , βk−1 is Dα.

Proof. Since β1 is Pα we have α > β1, so the claim follows from the Slide Left Lemma.

By Corollaries 2.4 and 2.6, the entries which are Dα and Pα alternate. For example,
if two entries are Pα in the same row, as in Figure 2, there will be an entry which is Dα

in the specified region. An analogous property for Dα entries also holds (see Figure 2).
Hence if there are two Pα entries with no other Pα entries between them, there is exactly
one Dα entry in the specified region, and vice versa.

Remark 2.7. Note the following:

• After the last Pα entry, there is exactly one Dα entry, which is at the Pα entry or
strictly to the right of it, by the Slide Left Lemma or Corollary 2.6.
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Pα · · · Pα︸ ︷︷ ︸
Dα

Dα · · · Dα︸ ︷︷ ︸
Pα

Figure 2: Pα and Dα entries

• Before the first Pα entry, there are either zero or one Dα entries by Corollary 2.4.

• Consider the row in which the entry α occurs. By the Slide Right Lemma, there are
no Dα entries to the right of α and before the first Pα entry which is to the right
of α. Indeed, if β1 is immediately to the right of α, we have α ≤ h(β1), so suppose
there is some entry βk which is Dα and before the first Pα entry to the right of α.
Then by applying the Slide Right Lemma, we find that there is some entry which
is Pα to the right of α which is before the first Pα entry, a contradiction.

Definition 2.8. We will say that an entry β which is Dα has no contributing Pα if the
following conditions hold:

• α is directly below or to the left of β, and

• if β0 is the entry which is in the same row as β and in the same column as α (see
Figure 3), then any entry which is between β0 and β, inclusive, is not Pα.

Note that if α is directly below β, then β = β0. Also, α could in fact be directly above
β0; Figure 3 only shows the case where α is below β, but α could in fact be above β.

β0 · · · β
...
α

Figure 3: For α below and to the left of β. β is Dα with no contributing Pα if β0 and β
are not Pα, and there is no Pα entry between β0 and β.

We now express the dimension of a filling in terms of entries which are Pα and Dα in
two different ways.

Corollary 2.9. The dimension of a filling is the sum of the two quantities:

1. the number of pairs (α, β) in the filling of λ such that
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• α and β are in the same tableau,

• α is to the left of or directly below the box filled with β, and

• β is Dα;

2. the number of pairs (α, β) in λ such that

• α and β are in different tableaux,

• the tableau containing α is below the tableau containing β, and

• β is Pα.

Corollary 2.10. The dimension of a filling is equal to the sum of the three quantities:

1. the number of pairs (α, β) in the filling of λ such that

• α and β are in the same tableau,

• the box filled with α is to the left of or directly below the box filled with β,

• β is Pα.

2. the number of pairs (α, β) in the filling of λ such that

• α and β are in the same tableau,

• the box filled with α is to the left of or directly below the box filled with β,

• β is Dα with no contributing Pα.

3. the number of pairs (α, β) in λ such that

• α and β are in different tableaux,

• the tableau containing α is below the tableau containing β, and

• β is Pα.

Proof. Using the formula for the dimension given in Definition 1.2, the last two conditions
of the first part are equivalent to β being Dα. Also by definition, the second quantity is
exactly the second quantity in Corollary 2.9. Thus we get the expression for the dimension
of a filling given in Corollary 2.9.

Since Pα and Dα entries alternate the first quantity in Corollary 2.9 is equivalent to
the number of pairs (α, β) in the filling of λ such that

• α and β are in the same tableau,

• the box filled with α is to the left of or directly below the box filled with β, and

• either β is Dα with no contributing Pα, or else β is Pα.

From this, we get the expression for the dimension given in Corollary 2.10.
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3 Zero-Dimensional Fillings

The number of zero-dimensional fillings is of interest because it is the number of connected
components of a corresponding Hessenberg variety. In this section, we prove that there
is a bijection between zero-dimensional fillings and permutations of a multiset with a
fixed descent set. In this section we also prove some facts about how the number of
zero-dimensional fillings relates to the sizes of h-blocks (Definition 1.4), and give closed
formulas for the number of zero-dimensional fillings in special cases.

If a multitableau λ has ` tableaux with si boxes in the ith tableau, then we define the
base filling to have the first s` numbers in the bottom tableau, the next s`−1 numbers in
the next tableau up, the next s`−2 numbers in the next tableau, and so on. Each tableau
is then filled according to the rule that the smallest number is in the bottom entry of the
left column, and if α fills a box not in the top row of a tableau, then α + 1 is directly
above it. If α is in the top row of a tableau, then α + 1 is in the bottom entry of the
column to the right of the one containing α. An example of this filling is seen in Figure 4.

6 8 9
5 7
4

2 3
1

Figure 4: An example of the base filling.

Definition 3.1. If every tableau of λ is filled according to the following rule, we call the
filling a pseudo-base filling. Suppose the ith tableau of λ has ki boxes. If {αi

1, . . . , α
i
k} are

the numbers appearing in the filling of the ith tableau and αi
1 < αi

2 < · · · < αi
k, then this

tableau is filled as follows: αi
1 is in the bottom of the left column, and if some αi

r is in an
entry not in the top row, αi

r+1 is directly above it. If αi
r is in the top row, then αi

r+1 is in
the bottom entry of the column to the right of the one containing αi

r.

In general, a pseudo-base filling on a multitableau λ depends on which entries are in
each tableau, so it is not unique. However, given a set of numbers for each tableau, there
is a unique pseudo-base filling.

Proposition 3.2. If a filling of λ is zero-dimensional, then it must be a pseudo-base
filling.

Proof. Suppose that some zero-dimensional filling is not a pseudo-base filling. Then for
some i, the ith tableau is not filled in this way. Then there will be some pair (α, β1) such
that α > β1, and α is to the left of or directly below β1. Let β2, β3, . . . , βk be the numbers
to the right of β1, as seen below, with βk and the end of the row.
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β1 β2 · · · βk

The box filled with α is to the left of or directly below all of these entries. By the
Slide Left Lemma, one of β1, β2, . . . , βk is Dα, and the box filled with α is to the left of or
directly below whichever entry is Dα, so this pair will contribute to the dimension. Hence
the dimension must be at least 1.

Corollary 3.3. When λ consists of only one tableau, there is only one zero-dimensional
filling, the base filling.

Given any pseudo-base filling of a multitableau λ, any pair (α, β) with α and β in the
same tableau where α is in a box to the left of or directly below the box filled with β has
β > α by definition. Thus, any pair (α, β) that contributes to the dimension must have
α and β in different tableaux. It follows that the dimension of a pseudo-base filling is the
number of pairs (α, β) such that α and β are in different tableaux, the box filled with α
is below the box filled with β, and β < α ≤ h(β).

We write a permutation of the multiset {1n1, 2n2, . . . , knk} as π = π1π2 · · ·πs (using
functional notation) where s = n1 + n2 + · · · + nk and each πi ∈ {1n1, 2n2, . . . , knk}. The
descent set of such a permutation π is D(π) = {i : πi > πi+1}.
Theorem 3.4. For a Hessenberg function h with h-blocks of sizes n1, n2, . . . , nk and a
multitableau λ with tableaux of sizes s1, s2, . . . , s`, the number of zero-dimensional fillings
of λ is equal to the number of permutations π of the multiset {1n1, 2n2, . . . , knk} whose
descent set D(π) is contained in {s1, s1 + s2, s1 + s2 + s3, . . . , s1 + s2 + · · ·+ s`−1}.
Proof. We will prove this by constructing a bijection which sends a permutation π of
the multiset {1n1, 2n2, . . . , knk} whose descent set D(π) is contained in {s1, s1 + s2, s1 +
s2 + s3, . . . , s1 + s2 + · · · + s`−1} to a zero-dimensional filling. Write π = π1π2 · · ·πs

where s = s1 + s2 + · · · + s`. Look at the first s1 numbers π1, π2, . . . , πs1. Let c1,1 be
the number of 1s, c1,2 be the number of 2s, . . ., c1,k be the number of ks. For each i,
place the largest c1,i numbers of the ith h-block in the top tableau, with the pseudo-base
filling for these numbers, which will fill the top tableau. Then for each i, place the largest
unused c2,i numbers of the ith h-block in the second tableau, with the pseudo-base filling
on these numbers as well. Repeat this process, which fills each tableau completely, since
cj,1 + cj,2 + · · · + cj,k = sj for each j. Continuing this process will fill the multitableau
with 1, . . . , n since there were nj js in the multiset. If α and β are in the same h-block
and α > β, the filling places α either in the same tableau as or in a tableau above β.
Moreover, each tableau is filled with a pseudo-base filling, so this filling of λ is guaranteed
to be an allowed zero-dimensional filling.

Suppose given two permutations of the multiset π and π′ whose descent sets are
contained in {s1, s1 + s2, . . . , s1 + s2 + · · · + s`−1}. If π 6= π′, then the first s1 numbers
of π, or the s2 after those, or the next s3, or so on, will have a different number of is
than the same group of sj numbers in π′, for some i. Thus, the filling that π is sent to
has a different number of entries from the ith h-block in the jth tableau than the filling
corresponding to π′. This means the map is injective.
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The map is also surjective: in order for an allowed filling with cj,i numbers from the
ith h-block in the jth tableau be zero-dimensional, it must be that whenever α and α + 1
are in the same h-block, α is either in the same tableau as α + 1 or in a tableau below it.
So if we let π be the permutation which has c1,1 1s, c1,2 2s, . . ., c1,k ks in the first group
of s1 numbers, c2,1 1’s, c2,2 2’s, . . . , c2,k k’s in the next group of s2 numbers, and so on,
then π will correspond to this filling.

Example 3.5. Consider the filling seen in Figure 5 and suppose the h-blocks are {1, 2, 3, 4},
{5}, and {6, 7}; since the top tableau contains two entries from the first h-block, one
entry from the second h-block, and one entry from the third h-block, the corresponding
permutation π must start with 1123. The next tableau down has two entries from the
first h-block and one entry from the third h-block, so the next three numbers of π are
113. Thus π = 1123113.

4 5 7
3

2 6
1

Figure 5: The filling associated to π = 1123113, with h-blocks {1, 2, 3, 4}, {5}, and {6, 7}.

Recall from [S, Section 1.3]that the total number of permutations of the multiset
{1n1, 2n2, . . . , knk} where n = n1 + n2 + · · · + nk is

(
n

n1,n2,...,nk

)
. The following Corollary

gives special cases of the previous theorem.

Corollary 3.6. We can easily describe the number of zero-dimensional fillings in the
following cases:

1. If s1 = n, there is only one tableau, so the base filling is the only zero-dimensional
filling.

2. If n1 = n, the Hessenberg function satisfies h(α) > α for all α, so there is only one
h-block, and the base filling is the only zero-dimensional filling.

3. If si = 1 for all i, the multitableau consists of n tableaux, each containing only one
box, so there are

(
n

n1,n2,...,nk

)
zero-dimensional fillings.

4. If ni = 1 for all i, h(α) = α for all α, so there are
(

n
s1,s2,...,s`

)
zero-dimensional fillings.

5. If ni = 1 for all i and sj = 1 for all j, the multitableau consists of n tableaux, each
a single box, and h(α) = α for all α, so there are n! zero-dimensional fillings.

The following Proposition establishes a duality between 0-dimensional fillings; a geo-
metric interpretation for this duality is unknown.
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Proposition 3.7. The number of zero-dimensional fillings corresponding to a Hessen-
berg function with h-blocks of sizes n1, . . . , nk and multitableau λ with tableaux of sizes
s1, . . . , s` is equal to the number of zero-dimensional fillings corresponding to a Hessen-
berg function with h-blocks of sizes s1, . . . , s` and multitableau λ′with tableaux of sizes
n1, . . . , nk.

Proof. We will prove this by constructing a bijection between the permutations π of the
multiset {1n1, 2n2, . . . , knk} such that D(π) ⊆ {s1, s1 + s2, . . . , s1 + s2 + · · · + s`−1}, and
permutations σ of the multiset {1s1, 2s2, . . . , ls`} such that D(σ) ⊆ {n1, n1 + n2, . . . , n1 +
n2 + · · · + nk−1}. Given π, group the numbers so that the first group contains the first
s1 numbers of π, the second contains the next s2 numbers, the third contains the next
s3, and so on. If the jth group contains ci,j copies of i (for j = 1, . . . , ` and i = 1, . . . , k)
then put ci,j copies of j in the ith group of σ, and then rearrange each group of σ so
that the numbers in the group are increasing. The first group of σ contains the first n1

numbers, the second contains the next n2 numbers, and so on. This regrouping ensures
that D(σ) ⊆ {n1, n1 +n2, . . . , n1 +n2 + · · ·+nk−1}, and since the jth group of π contained
sj numbers for each j, the permutation σ will have sj copies of j in it. This means it is in
fact a permutation of {1s1, 2s2, . . . , ls`}. This construction is well-defined and is symmetric
in σ and π so it is in fact bijective.

Example 3.8. As example of this bijection, suppose n1 = 5, n2 = 3, n3 = 2 and s1 = 3,
s2 = 3, s3 = 2, s4 = 2. If π = 1121331122, then there are two 1s in the first group, one 1
in the second group, and two 1s in the third group, so the first group of σ is 11233. We
end up with σ = 1123314422.

4 An Upper Bound for the Dimension

We use the description of the dimension in Corollary 2.10 to find a sharp upper bound
for the dimension of a filling of λ. This upper bound is achieved in a special case which
is described in Section 5. The expression for the upper bound comprises two terms. The
first,

∑n
α=1(h(α) − α), is a parameter associated to ad-nilpotent ideals and to regular

nilpotent Hessenberg varieties [ST]. The second,
∑`

i=1

∑ki

j=2(j − 1)di,j where ki is the

number of entries in the ith tableau, and di,j is the number of entries in the jth row of the
ith tableau, is the maximal dimension when h(α) = α, which follows from Proposition 5.2.

In this section and the following, we use the following lemma, which expresses the sum∑ki

j=2(j − 1)di,j in a slightly different way.

Lemma 4.1. If Ci is the set of all columns in the ith tableau, and `(c) is the length of
column c, then for all i,

ki∑
j=2

(j − 1)di,j =
∑
c∈Ci

(
`(c)

2

)
.

Proof. Let ki be the number of rows in the ith tableau, and di,j be the number of entries

in the jth row of the ith tableau. Then
∑ki

j=2(j − 1)di,j is the sum of the number of rows
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in the ith tableau which are above the box filled with γ for each entry γ in the ith tableau
of λ. This sum can also be expressed as

∑
c∈Ci

1 + 2 + · · ·+ (`(c)− 1) =
∑

c∈Ci

(
`(c)
2

)
.

Theorem 4.2. Let λ be a multitableau with ` tableaux, such that the ith tableau has ki

rows and the length of the jth row of the ith tableau is di,j. Then the dimension of any
filling of λ is at most

n∑
α=1

(h(α) − α) +
∑̀
i=1

ki∑
j=2

(j − 1)di,j.

Proof. Let (α, β) be a pair contributing to the dimension as in Corollary 2.10. We want
to compute an upper bound on the number of such pairs, which gives us an upper bound
for the dimension of any filling. First, note that if β is Pα, then β < α ≤ h(β), so
α ∈ {β + 1, β + 2, . . . , h(β)}, a total of h(β) − β possibilities. Thus there are at most∑n

β=1 h(β) − β pairs (α, β) such that β is Pα. Also note that for any pair (α, β) where
β is Pα, this pair can contribute to either part (1) or part (3) of the expression for the
dimension in Corollary 2.10, but not both. So parts (1) and (3) can contribute at most∑n

β=1 h(β) − β to the dimension.
We show that the number of pairs satisfying the condition in part (2) is at most∑`

i=1

∑ki

j=2(j − 1)di,j, so the sum of parts (1), (2), and (3) is at most
∑n

α=1(h(α) − α) +∑`
i=1

∑ki

j=2(j − 1)di,j.
Given a fixed α, there is at most one Dα entry with no contributing Pα. Given any

two entries α1 and β1 which are both in the same column, as in Figure 6, we now show
that at most one of the following can occur:

• there is an entry βk in the same row as β1 which is Dα1 , the pair α1, βk contributes
to the dimension, and βk has no contributing Pα1 or

• there is an entry α` in the same row as α1 which is Dβ1, the pair β1, α` contributes
to the dimension, and α` has no contributing Pβ1.

Indeed suppose there is both a βk and an α` satisfying the given conditions. In order for
α1, βk to contribute to the dimension, α1 is to the left of or directly below βk, so k ≥ 1.
For β1, α` to contribute to the dimension, β1 must be to the left of α` (since α1 is below
β1), so ` > 1.

β1 · · · βk
...

α1 · · · α`

Figure 6: Note that this shows the case where ` < k, but it could also be that ` ≥ k.

Suppose that β1 < α1. Then β1 < α1 ≤ h(α2), and β1 > α` since α` is Dβ1 . By the
Slide Right Lemma, one of α2, . . . , α` is Pβ1 and thus α` has a contributing Pα1 . Otherwise,
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if α1 < β1, we have α1 < β1 ≤ h(β1), and α1 > βk since βk is Dα1 . Again by the Slide
Right Lemma, one of β1, . . . , βk is Pα1 and thus βk has a contributing Pβ1 .

If two entries α and β are in the same column, then it cannot happen that both
there is an entry in the same row as α which is Dβ with no contributing Pβ and there
is an entry in the same row as β which is Dα with no contributing Pα. Since there
are

∑`
i=1

∑ki

j=2(j − 1)di,j pairs of such entries α and β, by Lemma 4.1, this is also the
maximum number of pairs satisfying the condition in part (2) of Corollary 2.10.

5 The dimension in a special case

In this section we demonstrate that the upper bound in Theorem 4.2 can be achieved.

Definition 5.1. Let si be the number of boxes in the ith tableau, ki the number of rows
in the ith tableau, di,j the number of entries in the jth row of the ith tableau, and let ` be
the number of tableaux in λ. We say that h is nicely partitioned with respect to λ if it is
the case that for 0 ≤ m ≤ ` and 1 ≤ t ≤ km that

h
(m−1∑

i=1

si +

t∑
j=1

dm,j

)
=

m−1∑
i=1

si +

t∑
j=1

dm,j.

The property of h being nicely partitioned with respect to λ means that the Hessenberg
function h has the property that if the first d1,1 numbers are put in the first row, and the
next d1,2 numbers are put in the second row, and so on, the h-blocks are not broken up
between rows. Note that the Hessenberg function is not determined by this condition.
One example that always satisfies this condition is h(α) = α.

For example if d1,1 = 4, d1,2 = 2, d2,1 = 2, and d2,2 = 1, then for h to be nicely
partitioned we must have h(4) = 4, h(6) = 6, h(8) = 8, and h(9) = 9. The multitableau
for this example can be seen in Figure 7.

Consider the following filling: first, take the numbers 1, . . . , n1 from the first h-block,
and put them at the beginning of the first row in decreasing order. Then put the next
h-block in decreasing order after the previous one, continuing until the first row is filled.
Each row that is filled in this way will end exactly after some h-block is used. After the
first row is full, go to the second row and put the next h-block in decreasing order, then
the next h-block in decreasing order after it, skipping to the top row of the next tableau
after each one is filled, and continue this process until every row of every tableau is filled.
We will call this the h-block filling. Note that with this filling h-blocks are not broken up
between rows.

An example of this filling can be seen in Figure refhblock) in the case when is when
d1,1 = 4, d1,2 = 2, d2,1 = 2, d2,2 = 1, and the Hessenberg function is given by:

h(1) = 2 h(2) = 2 h(3) = 4 h(4) = 4
h(5) = 5 h(6) = 6
h(7) = 8 h(8) = 8
h(9) = 9
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2 1 4 3
5 6

8 7
9

Figure 7: Example of the h-block filling.

Proposition 5.2. If h is nicely partitioned with respect to λ, the dimension of the h-block
filling is exactly

n∑
δ=1

(h(δ) − δ) +
∑̀
i=1

ki∑
j=2

(j − 1)di,j.

Proof. It suffices to show that there are at least
∑`

i=1

∑ki

j=2(j − 1)di,j +
∑n

δ=1(h(δ) − δ)
pairs (α, β) which contribute to the dimension.

For each tableau and each entry α in a row which is not the top row, we have α > β
whenever β is at the end of a row which is above α and in the same tableau. Thus, the
pair (α, β) contributes to the dimension. Given α, there is one of these β for each row
above the row containing α. So for each tableau T , there are

∑
α∈T r(α) such pairs, where

r(α) is the number of rows in T above the row containing alpha, which, by the proof of
Lemma 4.1, shows that there are

∑ki

j=2(j − 1)di,j such pairs in the ith tableau. Summing
over all tableaux, the number of pairs of this type contributing to the dimension is at
least

∑`
i=1

∑ki

j=2(j − 1)di,j.
For each entry α, count the number of entries β to the right of α in the same row

where β is Pα. If β is Pα then β < α ≤ h(β) and for each β, there are h(β) − β possible
entries α for which β is Pα. For all γ > β, we have h(γ) ≥ h(β). Since β is Pα, we know
h(γ) ≥ h(β) ≥ α. Therefore h(γ) > γ for all γ satisfying β < γ < α. So for any such γ,
both γ and γ + 1 are in the same h-block. Also since h(β) > β, we see that β and β + 1
are in the same h-block. It follows that β, β + 1, . . . , α are all in the same h-block. Since
all of these are to the left of β by the hypothesis, there are at least

∑n
δ=1(h(δ) − δ) pairs

of this type contributing to the dimension.
Adding these two parts, the dimension of the filling is at least

∑n
δ=1(h(δ) − δ) +∑`

i=1

∑ki

j=2(j−1)di,j. Since this is also the upper bound for the dimension, the dimension
must equal to this sum.

6 The Dimension when h(α) = α + 1

We will first prove a sharper upper bound for the dimension of a filling when h(α) = α+1
(and h(n) = n), and then show that this upper bound is achieved in a particular filling.
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Recall that di,j is the length of the jth row of the ith tableau (both counted from
the top downward), and ki is the number of rows in the ith tableau. Let kmax be the
maximum of all the ki, meaning kmax is the largest number of rows in any tableau of the
given multitableau.

Lemma 6.1. Let λ be a multitableau and λ′ be a multitableau obtained from λ by
reordering the tableaux. The maximal h-dimension of λ is the same as the maximal
h-dimension of λ′.

Proof. Reordering the multitableaux is equivalent to conjugating the corresponding lin-
ear operator X by the permutation w. By [T, Proposition 2.7], the Hessenberg variety
He(X, h) is homeomorphic to He(w−1Xw, h). In particular, they have the same dimen-
sion. From [T, Theorem 7.1], the dimension of a Hessenberg variety is the maximal
h-dimension of its corresponding multitableau. (The proof of [T, Theorem 7.1] does not
depend on the order of the generalized eigenspaces in X.)

Lemma 6.2. For each entry α and each row in the same tableau as α, excluding the one
containing α, there are at most 2 entries which are Dα in that row. Moreover, if there
are 2 Dα entries in a row, then α − 1 is also in this row and is immediately to the right
of the left Dα entry.

Proof. Suppose there are at least three entries β, γ, and δ which are all Dα in some row
not containing α. Without loss of generality, assume the entries are arranged as follows
(possibly with ε and γ or ζ and δ coinciding).

β ε · · · γ ζ · · · δ

Note that if β1 > βk, then the subtableau
β1 · · · βk is allowed if and only if βi =

β1− (i−1) for 1 ≤ i ≤ k. This can be proved by induction on k: suppose βi = β1− (i−1)
for all 1 ≤ i < k. If βk < βk−1, then by definition of allowed fillings, βk = β1 − (k − 1).
Otherwise, βk > β1 since all numbers in the interval [β1, βk−1] already appear in the
tableau. Thus, as α > γ, if ε > α, then α would appear in this row, contrary to our
assumption. Hence, α > ε. Also α ≤ ε + 1 since β is Dα, so α = ε + 1. By the same
argument, α = ζ + 1, a contradiction, as ε 6= ζ .

Also, if there are two Dα entries in a row, then by our argument above, if β and γ
were the two Dα entries, then ε = α − 1.

Theorem 6.3. For a multitableau λ with the jth row of the ith tableau having length
di,j, and the Hessenberg function h(α) = α + 1, if kmax is the largest number of rows in
any tableau, then the dimension of any filling is at most

n − kmax +
∑̀
i=1

ki∑
j=2

(j − 1)di,j.
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Proof. By Lemma 6.1 we may assume that the bottom tableau has the largest number of
rows, so k` = kmax, where there are ` tableaux in λ. We will use the expression for the
dimension from Corollary 2.9 to give the upper bound.

Recall from Remark 2.7 that whenever β is Dα and in the same row as and to the
right of α, then β has a contributing Pα entry.

Breaking up the first part of the sum in Corollary 2.9 into pairs where both α and β
are in the same row, and pairs where they are in different rows, and applying Lemma 6.2,
we can rephrase this first part as the sum of:

(a) the number of pairs (α, β) where α and β are in the same row, β is to the right of
α and β is Pα,

(b) the sum over all α of the number of rows (excluding the row containing α) which
have two entries β and γ which are both to the right of or directly above α, and
such that β and γ are both Dα, and

(c) the sum over all α of the number of rows (excluding the row containing α) which
have at least one entry β which is to the right of or directly above α, and such that
β is Dα.

First note that for this particular Hessenberg function β is Pα if and only if β = α−1.
So (a) is simply equal to the number of entries β for which β + 1 is to the left of β in the
same row. Also, (b) is, by Lemma 6.2, at most the number of entries ε for which ε + 1 is
to the left of ε and in the same tableau as ε, but in a different row from ε.

We now give an upper bound for (c). Given any two entries α1 and β1 which are in the
same column such that β1 is above α1, we show that there can be an entry βk in the same
row as β1 which is Dα1 contributing to the dimension, or an entry α` in the same row as α1

which is Dβ1 contributing to the dimension, but not both. Using the notation in Figure 6,
if β1 > α1, suppose that βk is Dα1 . We then have β1 > α1 > βk, but α1 is in a different row
than β1 and βk, so by the principle used in the proof of Lemma 6.2, this is not possible. If
α1 > β1, then suppose that α` is Dβ1. We then have α1 > β1 > α`, and again by the same

reason, this is not possible. Therefore, (c) is at most
∑

c∈Ci

(
`(c)
2

)
=

∑`
i=1

∑ki

j=2(j − 1)di,j.
So far, we have shown that the first part of the sum in Corollary 2.9 is at most the

sum of
∑`

i=1

∑ki

j=2(j − 1)di,j, the number of entries β for which β + 1 is to the left of β
and in the same row, and the number of entries β for which β + 1 is to the left of β and
in a different row of the same tableau. Note that the second part of the sum in Corollary
2.9 is exactly the sum over all entries β for which β + 1 is in a different tableau below
the one containing β. Thus, in order to get an upper bound for the dimension, we add∑`

i=1

∑ki

j=2(j − 1)di,j to the sum of

• the number of entries β where β + 1 is to the left of β and in the same row,

• the number of entries β where β+1 is in a different tableau below the one containing
β, and
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• the number of entries β where β + 1 is in the same tableau but in a different row
from β, and β + 1 is to the left of β.

For any entry β, at most one of the above three situations can occur. Also, for any
entry β which is not in the left column of the bottom tableau, any one of the three could
occur. If β is in the left column of the bottom tableau, there can be nothing to the left of
β and nothing in a tableau below the one containing β. Therefore we can have at most
one of these situations occurring for each entry β which is not in the left column of the
bottom tableau. There are n − k` such possible entries β, as desired.

For a multitableau satisfying the condition that k` ≥ ki for all i, and the Hessenberg
function h(α) = α+1, consider the following filling of λ: first put the first d1,1 numbers in
the top row of the top tableau, in decreasing order, then put the next d2,1 numbers in the
top row of the next tableau, again in decreasing order. Continue this process, putting the
numbers in decreasing order in the top row of each tableau, continuing downward to each
tableau. After this is done, go back to the top tableau and put the next d1,2 numbers in
the second row of the top tableau, in decreasing order. Continue this same process going
down the tableaux for the second row of each. Then continue for the third rows, fourth
rows, and so on, skipping a tableau if all of its rows have been filled. Since the bottom
tableau has the greatest number of rows, it will be filled last. We call this filling the large
α + 1 filling. An example of this filling is given in Figure 8.

2 1
8

4 3

7 6 5
10 9
11

Figure 8: An example of the large α + 1 filling.

Proposition 6.4. When the bottom tableau has the largest number of rows, (meaning
k` = kmax), the dimension of the large α + 1 filling is

n − k` +
∑̀
i=1

ki∑
j=2

(j − 1)di,j.

Proof. If β is Pα, this means that β < α ≤ h(β) = β + 1. So if β is Pα, this means
that α = β + 1. Using this fact to slightly modify the expression of the dimension from
Corollary 2.10, the dimension of a filling is the sum of
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1. the number of β < n in the filling of λ such that

• β + 1 is in the same tableau as β and

• the box filled with β +1 is to the left of or directly below the box filled with β.

2. the number of pairs (α, β) in the filling of λ such that

• α and β are in the same tableau,

• the box filled with α is to the left of or directly below the box filled with β,

• β is Dα with no contributing Pα, meaning α − 1 is not anywhere directly to
the left of β and above α.

3. the number of β < n in λ such that

• β + 1 and β are in different tableaux and

• the tableau containing β + 1 is below the tableau containing β.

Consider part (1) of this sum. By construction of the filling, if the entry β is not at
the beginning of a row, then β 6= n and β + 1 is to the left of and in the same tableau as
β. The number of such boxes is n− (k1 + k2 + · · ·+ k`). If β is at the beginning of a row,
then β + 1 will be in a tableau below the one containing β, and so does not add to part
(1) of the dimension. Thus part (1) contributes n− (k1 + k2 + · · ·+ k`) to the dimension.

Similarly, for part (3) of the sum, the number of entries β with β 6= n such that β+1 is
in a tableau below the one containing β is equal to the number of boxes at the beginning
of a row not in the bottom tableau, which is k1 + k2 + · · ·+ k`−1.

If α and β are in different rows with β not at the end of a row, then β−1 is immediately
to the right of β. If α > β, then we also have α > h(β − 1) = β. Thus β cannot be Dα.
So, the number of pairs (α, β) satisfying the conditions in part (2) of the sum is equal to
the number of pairs (α, β) where β is at the end of a row which does not contain α, the
entry α is to the left of or directly below β, and β is Dα, meaning α > β.

So for part (2) of the sum, we need to count the number of pairs (α, β) such that α
and β are in the same tableau, β is at the end of a row, α is to the left of or directly
below β, and α > β. For each entry δ, every entry γ below δ has δ < γ by the rules of our
filling. But any entry γ above δ in the same tableau has δ > γ, and if γ is at the end of a
row above δ, then δ is to the left of or directly below γ. Thus the number of this type of
pair is equal to

∑
α r(α) =

∑`
i=1

∑ki

j=2(j − 1)di,j, where r(α) is the number of rows above
α in the same tableau.

Adding up these three parts, we get the desired dimension for this filling.

Corollary 6.5. For a multitableau λ with the jth row of the ith tableau having length
di,j, and ki rows in the ith tableau, such that k` > ki for all i, if the Hessenberg function
is h(α) = α + 1, then the maximal dimension of allowed fillings is exactly

n − kmax +
∑̀
i=1

ki∑
j=2

(j − 1)di,j.
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Proof. For any multitableau λ, by Lemma 6.1, the maximal dimension of allowed fillings
is the same as the maximal dimension for the multitableau λ′, where λ′ is obtained from λ
by reordering the tableau so that the bottom one contains the largest number of rows.

7 The Dimension of the Big Filling

We now consider the big filling, which corresponds to the intersection of the big cell in the
flag variety with a Hessenberg variety. In this filling, we put n in the bottom left entry
of the bottom tableau, put n − 1 above it, and continue up the column with numbers
decreasing. When a column is full, we begin filling the column to the right of it from the
bottom to the top with decreasing numbers, moving up to the bottom left entry of the
next tableau if one is full. For example, see Figure 9.

4 2 1
5 3
6

8 7
9

Figure 9: An example of the big filling.

Let sj denote the number of entries in the jth tableau (counted from the top tableau
downward). Then

∑m
i=1 si is the largest entry in the mth tableau of the big filling.

Proposition 7.1. When the big filling is allowed, its dimension is

n∑
α=1

(h(α) − α) +
∑̀
m=1

∑
δ∈Lm

max
{( m∑

i=1

si

)
− h(δ), 0

}
, (1)

where Lm is the set of entries in the left column of the mth tableau and ` is the number
of tableaux in λ.

Proof. We use the expression for the dimension given in Corollary 2.10. For each α, any
β such that β < α ≤ h(β) is, by the definition of the big filling, either in a tableau above
the one containing α, or else α and β are in the same tableau with the box filled with β
directly above or to the right of the one filled with α.

Thus, the total number of Pα entries which are contributing to the dimension is∑n
β=1(h(β) − β), so the dimension is equal to the sum of the two quantities:

1.
∑n

β=i(h(β) − β) and

2. the number of pairs (α, β) where α is to the left of or directly below β and β is Dα

with no contributing Pα.
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Suppose α is not in the left column and βm is any entry in one of the three relative
positions β1, β2, or β3 seen in Figure 10 (meaning βm is either directly above α, immedi-
ately to the right of α, or below α and in the column immediately to the right of the one
containing α). Since α is to the left of or directly below βm, we have α > βm. Also, in the
middle case, α ≤ h(β2), since the filling is allowed, and when m = 1 or 3, then γm > α
by the rules for this filling. Also, γm ≤ h(βm), so it follows that βm < α ≤ h(βm) in any
of the three cases. Thus βm is Pα. By the same argument, if α is in the left column, β2

and β3 will be Pα.

γ1 β1
...
α β2
...
γ3 β3

Figure 10: The three relative positions for βm.

Recall that if an entry β is both Dα and Pα, we say that it has a contributing Pα.
Thus, the only possible way to have an entry β be Dα with no contributing Pα is if α is
in the left column and β is in a row above the one containing α. Hence the number of
pairs (α, β) where α is to the left of or directly below β and β is Dα with no contributing
Pα is equal, by the Slide Left Lemma, to the number of pairs (α, β) where α is in the left
column and β is the furthest right entry in a row above α. Given any entry β that is the
right entry in a row above α and in the same tableau, α > β in this filling, so β is Dα. We
only need to consider for all α in the left column of each tableau, the rows above α in the
same tableau for which the furthest left entry is not Pα, as if it does not happen there, it
will not happen further to the right. We can rephrase this quantity as the sum over all
entries γ in the left column of the number of entries α below γ in the same column and
same tableau for which γ is not Pα.

If sj is the total number of boxes in the jth tableau, the largest entry in the mth

tableau (counted from the top) is
∑m

j=1 sj. Any γ in the mth tableau is Pα for α =
γ + 1, γ + 2, . . . , h(γ). In order to count the number of entries α below a given γ in the
same column and same tableau for which γ is not Pα, we consider two cases:

1. If h(γ) ≥ ∑m
j=1 sj, then for every entry α in the same tableau as γ and below γ, we

see that γ is Pα. In this case, the number of entries α below γ in the same column
and same tableau for which γ is not Pα is zero, and we see that max{(∑m

j=1 sj) −
h(γ), 0} = 0.

2. If h(γ) <
∑m

j=1 sj, then we know that γ is not Pα for α = h(γ) + 1, h(γ) +
2, . . . ,

∑m
j=1 sj , of which there are

∑m
j=1 sj −h(γ) possibilities. Each of these occurs

below γ, so the number of entries α below γ in the same column and same tableau
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for which γ is not Pα is
∑m

j=1 sj−h(γ), and in this case, max{(∑m
j=1 sj)−h(γ), 0} =

(
∑m

j=1 sj) − h(γ).

Thus there are
∑

δ∈Lm
max

{(∑m
i=1 si

)
−h(δ), 0

}
pairs of this type in the mth tableau,

where Lm is the set of entries in the left column of the mth tableau. Summing this up
over all m and adding to

∑n
α=1(h(α) − α), gives the dimension of the filling.

Example 7.2. When we have the Hessenberg function

α 1 2 3 4 5 6 7 8 9
h(α) 3 5 5 5 5 7 8 9 9

the dimension of the filling seen in Figure 9, is

9∑
α=1

(h(α) − α) +
∑

γ∈{4,5,6}
max{6 − h(γ), 0} +

∑
γ∈{8,9}

max{9 − h(γ), 0} = 13.

Remark 7.3. Proposition 7.1 gives a lower bound on the maximum dimension of a filling
when the big filling is allowed. Thus the maximum dimension is bounded below by (1).
This also gives a lower bound for the dimension of the corresponding Hessenberg variety.

Conjecture 7.4. We conjecture that whenever the big filling is an allowed filling, it gives
the maximum dimension for any filling, and is thus the dimension of the corresponding
Hessenberg variety.
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