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Abstract

For a hypergraph H = (V, E), its d–fold symmetric product is defined to be
∆dH = (V d, {Ed|E ∈ E}). We give several upper and lower bounds for the c-color
discrepancy of such products. In particular, we show that the bound disc(∆dH, 2) ≤
disc(H, 2) proven for all d in [B. Doerr, A. Srivastav, and P. Wehr, Discrepancy
of Cartesian products of arithmetic progressions, Electron. J. Combin. 11(2004),
Research Paper 5, 16 pp.] cannot be extended to more than c = 2 colors. In fact, for
any c and d such that c does not divide d!, there are hypergraphs having arbitrary
large discrepancy and disc(∆dH, c) = Ωd(disc(H, c)d). Apart from constant factors
(depending on c and d), in these cases the symmetric product behaves no better
than the general direct product Hd, which satisfies disc(Hd, c) = Oc,d(disc(H, c)d).

1 Introduction

We investigate the discrepancy of certain products of hypergraphs. In [3], Srivastav, Wehr
and the first author noted the following. For a hypergraph H = (V, E) define the d–fold
direct product and the d–fold symmetric product by

Hd := (V d, {E1 × · · · × Ed |Ei ∈ E}),
∆dH := (V d, {Ed |E ∈ E}).
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Then for the (two-color) discrepancy

disc(H) := min
χ:V →{−1,1}

max
E∈E

∣∣∣∣∣
∑
v∈E

χ(v)

∣∣∣∣∣ ,
we have

disc(Hd) ≤ disc(H)d,

disc(∆dH) ≤ disc(H).

In this paper, we show that the situation is more complicated for discrepancies in more
than two colors. In particular, it depends highly on the dimension d and the number of
colors, whether the discrepancy of symmetric products is more like the discrepancy of the
original hypergraph or the d-th power thereof. Let us make this precise:

Let H = (V, E) be a hypergraph, that is, V is some finite set and E ⊆ 2V . Without loss of
generality, we will assume that V = [n] for some n ∈ N. Here and in the following we use
the shorthand [r] := {n ∈ N |n ≤ r} for any r ∈ R. The elements of V are called vertices,
those of E (hyper)edges. For c ∈ N≥2, a c–coloring of H is a mapping χ : V → [c]. The
discrepancy problem asks for balanced colorings of hypergraphs in the sense that each
hyperedge shall contain the same number of vertices in each color. The discrepancy of χ
and the c–color discrepancy of H are defined by

disc(H, χ) := max
E∈E

max
i∈[c]

∣∣|χ−1(i) ∩E| − 1
c
|E|∣∣ ,

disc(H, c) := min
χ:V →[c]

disc(H, χ).

These notions were introduced in [2] extending the discrepancy problem for hypergraphs
to arbitrary numbers of colors (see, e.g., the survey of Beck and Sós [1]). Note that
disc(H) = 2 disc(H, 2) holds for all H. In this more general setting, the product bound
proven in [3] is

disc(Hd, c) ≤ cd−1 disc(H, c)d. (1)

However, as we show in this paper the relation disc(∆dH, c) = O(disc(H, c)) does not hold
in general. In Section 2, we give a characterization of those values of c and d, for which
it is satisfied for every hypergraph H. In particular, we present for all c, d, k such that c
does not divide d! a hypergraph H having disc(H, c) ≥ k and disc(∆dH, c) = Ωd(k

d). In
the light of (1), this is largest possible apart from factors depending on c and d only.

On the other hand, there are further situations where this worst case does not occur. We
prove some in Section 3, but the complete picture seems to be complicated.
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2 Coloring Simplices

To get some intuition of what we do in the remainder, let us regard some small examples
first. For c = 2 colors and dimension d = 2, it is easy to see that disc(∆dH, c) ≤ disc(H, c)
holds for arbitrary hypergraphs H = (V, E). As mentioned above, we assume for simplicity
that V = [n]. Now coloring the vertices above the diagonal in one color, the ones below
in the other, and those on the diagonal according to an optimal coloring for the one-
dimensional case does the job. More formally, let χ : V → [2]. Let χ̃ : V 2 → [2] such
that χ̃((x, y)) = 1, if x < y, χ̃((x, y)) = 2, if x > y, and χ̃((x, y)) = χ(x), if x = y.
Then disc(∆2H, χ̃) = disc(H, χ). Hence disc(∆2H, 2) ≤ disc(H, 2). This argument can
be extended to arbitrary dimension to show disc(∆dH, 2) ≤ disc(H, 2) for all d ∈ N.

Things become more interesting if we do not restrict ourselves to 2 colors. For example, it
is not clear how to extend the simple above/below diagonal approach to 3 colors (in two
dimensions). In fact, as we will show in the following, such bounds do not exist for many
pairs (c, d), including (3, 2). However, in three dimensions disc(∆3H, 3) ≤ disc(H, 3)
follows similarly to the (2, 2) proof above. Indeed, for c = 2 and d = 2 we divided the
product set V 2 into the sets above and below the diagonal, which we want to call two-
dimensional simplices of V 2, and the diagonal, a one-dimensional simplex of V 2. For c = 3
and d = 3 we divide V 3 into the six three-dimensional simplices in V 3 that we obtain
from the set {x ∈ V 3 | x1 < x2 < x3} by permuting coordinates, the six two-dimensional
simplices in V 3 that we obtain from {x ∈ V 3 | x1 = x2 < x3} by permuting coordinates
and possibly changing < to >, and finally the one-dimensional simplex {x ∈ V 3 | x1 =
x2 = x3}. Now with each color we color exactly two three-dimensional and two two-
dimensional simplices of V 3. The vertices of the diagonal will again be colored according
to an optimal coloring for the one-dimensional case.

We shall now give a formal definition of l-dimensional simplices in arbitrary dimensions.
A set {x1, . . . , xk} of integers with x1 < . . . < xk is denoted by {x1, . . . , xk}<. For a set S
we put (

S

k

)
= {T ⊆ S | |T | = k} .

Furthermore, let Sk be the symmetric group on [k]. For l, d ∈ N with l ≤ d let Pl(d)
be the set of all partitions of [d] into l non-empty subsets. Let e1 = (1, 0, . . . , 0), . . .,
ed = (0, . . . , 0, 1) be the standard basis of R

d. For c ∈ N and λ ∈ N0 we write c | λ if there
exists an m ∈ N0 with mc = λ.

Definition 1. Let d ∈ N, l ∈ [d] and T ⊆ N finite. For J = {J1, . . . , Jl} ∈ Pl(d) with
min J1 < . . . < min Jl put fi = fi(J) =

∑
j∈Ji

ej, i = 1, . . . , l. Let σ ∈ Sl. We call

Sσ
J (T ) :=

{ l∑
i=1

ασ(i)fi(J) | {α1, . . . , αl}< ⊆ T
}
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an l-dimensional simplex in T d. If l = d, we simply write Sσ(T ) instead of Sσ
J (T ) (as

|Pd(d)| = 1).

Clearly, the simplices in a d-dimensional grid T d form a partition of T d. The next remark
shows that the numbers of l-dimensional simplices are well-understood.

Remark 2. If S(d, l), d, l ∈ N, denote the Stirling numbers of the second kind, then
|Pl(d)| = S(d, l) (see, e.g. [6]). We have

S(d, l) =
l∑

j=0

(−1)j(l − j)d

j! (l − j)!
. (2)

Let T ⊆ N finite. Furthermore, let I, J ∈ Pl(d) and σ, τ ∈ Sl. If |T | ≥ l, we have
Sσ

I (T ) 6= Sτ
J(T ) as long as I 6= J or σ 6= τ . Thus the number of l-dimensional simplices in

T d is l!S(d, l). If |T | < l, then there exists obviously no non-empty l-dimensional simplex
in T d.

We are now able to prove the main result of this paper.

Theorem 3. Let c, d ∈ N.

(i) If c | k!S(d, k) for all k ∈ {2, . . . , d}, then every hypergraph H satisfies

disc(∆dH, c) ≤ disc(H, c) . (3)

(ii) If c/| k!S(d, k) for some k ∈ {2, . . . , d}, then there exists a hypergraph K such that

disc(∆dK, c) ≥ 1

3 k!
disc(K, c)k , (4)

and K can be chosen to have arbitrary large discrepancy disc(K, c).

Before proving the theorem, we state some consequences. In particular, (3) holds never
for c = 4. For c = 3, it holds exactly if d is odd.

Corollary 4. (a) Let d ≥ 3 be an odd number. Then disc(∆dH, 3) ≤ disc(H, 3) holds for
any hypergraph H.

(b) Let d ≥ 2 be an even number and c = 3l, l ∈ N. There exists a hypergraph H with
arbitrary large discrepancy that satisfies disc(∆dH, c) ≥ 1

6
disc(H, c)2.

Proof. Obviously 3| k! for all k ≥ 3. Since S(d, 2) = 2d−1−1, we have 3|S(d, 2) if and only
if d is odd. Indeed, 23−1−1 = 3, 24−1−1 = 7 and if d = k+2, then 2d−1−1 = 4(2k−1−1)+3,
hence 3| (2d−1 − 1) if and only if 3| (2k−1 − 1). Hence Theorem 3 proves both claims.
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Corollary 5. Let l ∈ N and c = 4l. For all d ≥ 2 there exists a hypergraph H with
arbitrary large discrepancy such that disc(∆dH, c) ≥ 1

6
disc(H, c)2.

Proof. As S(d, 2) = 2d−1−1 is an odd number, we have 4/| 2!S(d, 2). Applying Theorem 3
concludes the proof.

Corollary 6. Let c ≥ 3 be an odd number and d ≥ 2. We have

disc(∆dH, c) ≤ disc(H, c) for all hypergraphs H (5)

if and only if we have

disc(∆dH, 2c) ≤ disc(H, 2c) for all hypergraphs H . (6)

Proof. According to Theorem 3, (5) is equivalent to the statement that c| k!S(d, k) for all
k ∈ {2, . . . , d}. But, since 2| k! for all k ≥ 2 and c is odd, this is equivalent to 2c| k!S(d, k)
for all k ∈ {2, . . . , d}, which is equivalent to (6).

We now prove the upper bound Theorem 3(i). The main idea is that each hyperedge of
the symmetric product intersects all l-dimensional simplices with same cardinality. Hence
we may color the simplices monochromatically if we can use each color equally often for
each l ≥ 2.

Proof of Theorem 3(i). Let c, d be such that c | k!S(d, k) for all k ∈ {2, . . . , d}. Let H =
(V, E) be a hypergraph and let ψ : V → [c] such that disc(H, ψ) = disc(H, c). For X ⊆ V ,
put D(X) = {(x, . . . , x) | x ∈ X}. We define the following c-coloring χ : V d → [c].
For (v, . . . , v) ∈ D(V ), set χ(v, . . . , v) = ψ(v). For the remaining vertices, let χ be
such that all simplices are monochromatic, and for each k there are exactly 1

c
k!S(d, k)

monochromatic k-dimensional simplices in each color.

Let E ∈ E and put R(E) := Ed\D(E). For any k ∈ {2, . . . , d} and any two k-dimensional
simplices S, S ′ we have |S ∩ R(E)| = |S ′ ∩ R(E)|. Therefore, our choice of χ implies
|χ−1(i) ∩ R(E)| = 1

c
|R(E)| for all i ∈ [c]. Hence

max
i∈[c]

∣∣∣|χ−1(i) ∩ Ed| − |Ed|
c

∣∣∣
= max

i∈[c]

∣∣∣|χ−1(i) ∩ R(E)| − |R(E)|
c

+ |χ−1(i) ∩D(E)| − |D(E)|
c

∣∣∣
= max

i∈[c]

∣∣∣|χ−1(i) ∩D(E)| − |D(E)|
c

∣∣∣ = max
i∈[c]

∣∣∣|ψ−1(i) ∩ E| − |E|
c

∣∣∣ .
This calculation establishes disc(∆dH, c) ≤ disc(H, c).
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To prove the lower bound in Theorem 3, we use the following Ramsey theoretic approach.

Lemma 7. Let c, d ∈ N. For all m ∈ N there exists an n ∈ N having the following
property: For each c-coloring χ : [n]d → [c] we find a subset T ⊆ [n] with |T | = m such
that for all l ∈ [d] each l-dimensional simplex in T d is monochromatic with respect to χ.

Proof of Lemma 7. The proof is based on an argument from Ramsey theory. First we
verify the statement of Lemma 7 for a fixed simplex. Then, by induction over the number
of all simplices, we prove the complete assertion of Lemma 7.

Claim: For all m ∈ N, all l ∈ [d], all σ ∈ Sl, and all J ∈ Pl(d), there is an n ∈ N such that
for all N ⊆ N with |N | = n and each c–coloring χ : Nd → [c] there is a subset T ⊆ N
with |T | = m and Sσ

J (T ) is monochromatic with respect to χ.

Proof of the claim: By Ramsey’s theorem (see, e.g. [4], Section 1.2), for every l ∈ [d] there
exists an n such that for each c-coloring ψ :

(
[n]
l

) → [c] there is a subset T of [n] with |T | =

m and
(

T
l

)
is monochromatic with respect to ψ. Let N ⊆ N with |N | = n. We can assume

N = [n] by renaming the elements ofN and preserving their order. Let χ : [n]d → [c] be an

arbitrary c–coloring. We define χl,σ,J :
(
[n]
l

) → [c] by χl,σ,J({x1, . . . , xl}<) = χ(
l∑

i=1

xσ(i)fi),

where the fi = fi(J) are the vectors corresponding to the partition J introduced in
Definition 1. By the Ramsey theory argument there is a T ⊆ N with |T | = m and χl,σ,J

is constant on
(

T
l

)
. Hence, Sσ

J (T ) is monochromatic with respect to χ. This proves the
claim.

Now we derive Lemma 7 from the claim. Each simplex is uniquely determined by a pair

(σ, J) ∈
d⋃

l=1

(Sl × Pl(d)) .

Let (σi, Ji)i∈[s] be an enumeration of all these pairs. Put n0 := m. We proceed by
induction. Let i ∈ [s] be such that ni−1 is already defined and has the property that for
any N ⊆ N, |N | = ni−1 and any coloring χ : Nd → [c] there is a T ⊆ N , |T | = m such
that for all j ∈ [i − 1], S

σj

Jj
(T ) is monochromatic. Using the claim, we choose ni large

enough such that for each N ⊆ N with |N | = ni and for each c–coloring ϕ : Nd → [c]
there exists a subset T of N with |T | = ni−1 and Sσi

Ji
(T ) is monochromatic with respect

to ϕ. Note that there is a T ′ ⊆ T , |T | = m such that S
σj

Jj
(T ′) is monochromatic for all

j ∈ [i]. Choosing n := ns proves the lemma.

Related to Lemma 7 is a result of Gravier, Maffray, Renault and Trotignon [5]. They
have shown that for any m ∈ N there is an n ∈ N such that any collection of n different
sets contains an induced subsystem on m points such that one of the following holds: (a)
each vertex forms a singleton, (b) for each vertex there is a set containing all m points
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except this one, or (c) by sufficiently ordering the points p1, . . . , pm we have that all sets
{p1, . . . , p`}, ` ∈ [m], are contained in the system.1

In our language, this means that any 0, 1 matrix having n distinct rows contains a m ×
m submatrix that can be transformed through row and column permutations into a matrix
that is (a) a diagonal matrix, (b) the inverse of a diagonal matrix, or (c) a triangular
matrix.

Hence this result is very close to the assertion of Lemma 7 for dimension d = 2 and c = 2
colors. It is stronger in the sense that not only monochromatic simplices are guaranteed,
but also a restriction to 3 of the 8 possible color combinations for the 3 simplices is given.
Of course, this stems from the facts that (a) column and row permutations are allowed,
(b) not a submatrix with index set T 2 is provided but only one of type S×T , and (c) the
assumption of having different sets ensures sufficiently many entries in both colors.

We are now in the position to prove the second part of Theorem 3.

Proof of Theorem 3(ii). Let c and d be such that c/| k!S(d, k) for some k ∈ {2, . . . , d}.
Let m be large enough to satisfy

1

2

(
m

κ

)
−

κ−1∑
l=0

l!S(d, l)

(
m

l

)
≥ 1

3 k!
mk

for all κ ∈ {k, . . . , d}. (This can obviously be done, since the left hand side of the last
inequality is of the form mκ/2κ! + O(mκ−1) for m → ∞.) Using Lemma 7, we choose
n ∈ N such that for any c-coloring χ : [n]d → [c] there is an m-point set T ⊆ [n] with all
simplices in T d being monochromatic with respect to χ.

We show that K =
(
[n],

(
[n]
m

))
satisfies our claim. Let χ be any c–coloring of K, choose

T as in Lemma 7. Let κ ∈ {k, . . . , d} be such that for each l ∈ {κ+ 1, . . . , d} there is the
same number of l-dimensional simplices in T in each color but not so for the κ-dimensional
simplices. With

S :=

d⋃
l=κ

⋃
J∈Pl(d)

⋃
σ∈Sl

Sσ
J (T )

1To be precise, the authors also have the empty set contained in cases (a) and (c) and the whole set
in case (b). It is obvious that by altering m by one, one can transform one result into the other.
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we obtain

disc(∆dK, χ) ≥ max
i∈[c]

∣∣∣|χ−1(i) ∩ T d| − |T d|
c

∣∣∣
≥ max

i∈[c]

{∣∣∣|χ−1(i) ∩ S| − |S|
c

∣∣∣ − ∣∣∣|χ−1(i) ∩ (T d \ S)| − |T d \ S|
c

∣∣∣}

≥ max
i∈[c]

∣∣∣ ∑
J∈Pκ(d),σ∈Sκ

|χ−1(i) ∩ Sσ
J (T )| − κ!S(d, κ)

c

(
m

κ

)∣∣∣
−c− 1

c

(
md −

d∑
l=κ

l!S(d, l)

(
m

l

))

≥ 1

2

(
m

κ

)
−

κ−1∑
l=0

l!S(d, l)

(
m

l

)
≥ 1

3 k!
mk .

This establishes disc(∆dK, c) ≥ 1
3 k!
mk. Note that our choice of n implies disc(K, c) =(

1 − 1
c

)
m.

3 Further Upper Bounds

Besides the first part of Theorem 3, there are more ways to obtain upper bounds.

Theorem 8. Let H = (V, E) be a hypergraph. Let p be a prime number, q ∈ N and c = pq.
Furthermore, let d ≥ c and s = d− (p− 1)pq−1. Then disc(∆dH, c) ≤ disc(∆sH, c).
Corollary 9. Let H = (V, E) be a hypergraph.

(a) If c is a prime number, q ∈ N and d = cq, then disc(∆dH, c) ≤ disc(H, c).
(b) For arbitrary d ∈ N there holds disc(∆dH, 2) ≤ disc(H, 2).

Statement (a) of the corollary follows from the identity cq = 1 + (c − 1)
∑q−1

j=0 c
j and

the (repeated) use of Theorem 8. Conclusion (b) follows also from Theorem 8. Note
that Theorem 3 implies that in both parts of Corollary 9 we have c | k!S(d, k) for all
k ∈ {2, . . . , d}. Hence Corollary 9 could also have been proven by analysing the Stirling
numbers.

Proof of Theorem 8. As always, we assume without loss of generality that V = [n]. Let
us define the shift operator S : [n]d → [n]d by

S(x1, . . . , xc, xc+1, . . . , xd) = (x2, . . . , xc, x1, xc+1, . . . , xd) .
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It induces an equivalence relation ∼ on [n]d by x ∼ y if and only if there exists a k ∈ [c]
with Skx = y. Now let x ∈ [n]d and denote its equivalence class by 〈x〉. Put k = |〈x〉|.
Obviously k is the minimal integer in [c] with Skx = x. A standard argument from
elementary group theory (“group acting on a set”) shows that k | c. Thus either k = c or
Spq−1

x = x. Define D = {y ∈ [n]d | |〈y〉| < c}. Then

ψ : D → [n]s , y 7→ (y1, . . . , ypq−1, yc+1, . . . , yd)

is a bijection. For a given c-coloring χ of [n]s, we define a c-coloring χ̃ of [n]d in the
following way: We choose a system of representatives R for ∼. If x ∈ R with |〈x〉| = c,
we put χ̃(Six) = i for all i ∈ [c]. If |〈x〉| < c, then χ̃(y) = (χ ◦ ψ)(y) for all y ∈ 〈x〉.
Let E ∈ E . Notice, that x ∈ Ed implies 〈x〉 ⊆ Ed, and x ∈ D implies 〈x〉 ⊆ D.
Furthermore, the restriction of ψ to Ed ∩D is a bijection onto Es. Thus

max
i∈[c]

∣∣∣|χ̃−1(i) ∩ Ed| − |Ed|
c

∣∣∣ ≤max
i∈[c]

∣∣∣|χ̃−1(i) ∩ (Ed ∩D)| − |Ed ∩D|
c

∣∣∣
+ max

i∈[c]

∣∣∣|χ̃−1(i) ∩ (Ed \D)| − |Ed \D|
c

∣∣∣
≤max

i∈[c]

∣∣∣|χ−1(i) ∩ Es| − |Es|
c

∣∣∣ + 0 .

Hence disc(∆dH, c) ≤ disc(∆sH, c).

The following is an extension of the first statement of Theorem 3.

Theorem 10. Let c, d ∈ N, and let d′ ∈ {2. . . . , d}. If c | k!S(d′, k) for all k ∈ {2, . . . , d′},
then

disc(∆dH, c) ≤ disc(∆d−d′+1H, c) (7)

holds for every hypergraph H.

Proof of Theorem 10. Let H = (V, E) be a hypergraph with V = [n]. Let χ : [n]d−d′+1 →
[c] be an arbitrary c–coloring. We define a c–coloring χ̃ : [n]d → [c]. Let z ∈ [n]d, x =
(z1, . . . , zd′), and y = (zd′+1, . . . , zd). If z1 = . . . = zd′ =: ζ , put χ̃(z) = χ(ζ, zd′+1, . . . , zd).
Otherwise we find k ∈ {2, . . . , d′}, J ∈ Pk(d

′) and σ ∈ Sk with x ∈ Sσ
J ([n]). Since

c | k!S(d′, k), we can color the set D := {(zτ(1), . . . , zτ(d′), y) | τ ∈ Sd′} of cardinality
k!S(d′, k) evenly by our coloring χ̃ : [n]d → [c]. A similar calculation as the one at
the end of the proof of Theorem 8 establishes disc(∆dH, χ̃) ≤ disc(∆d−d′+1H, χ).

Remark 11. The condition in Theorem 10 is only sufficient but not necessary for the
validity of (7), as the following example shows:

Let c = 4, d ≥ c and d′ = 3. According to Theorem 8, we get for each hypergraph H
that disc(∆dH, c) ≤ disc(∆d−2H, c) = disc(∆d−d′+1H, c). But we have 2!S(d′, 2) = 6 =
3!S(d′, 3) and 4/| 6.
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This example shows also, that the methods used in the proofs of Theorem 8 and Theorem 10
are different.
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