
A New Statistic on Linear and Circular r-Mino
Arrangements

Mark A. Shattuck
Mathematics Department
University of Tennessee

Knoxville, TN 37996-1300
shattuck@math.utk.edu

Carl G. Wagner
Mathematics Department
University of Tennessee

Knoxville, TN 37996-1300
wagner@math.utk.edu

Submitted: Feb 14, 2006; Accepted: Apr 19, 2006; Published: Apr 28, 2006
MR Subject Classifications: 11B39, 05A15

Abstract

We introduce a new statistic on linear and circular r-mino arrangements which
leads to interesting polynomial generalizations of the r-Fibonacci and r-Lucas se-
quences. By studying special values of these polynomials, we derive periodicity and
parity theorems for this statistic.

1 Introduction

In what follows, Z, N, and P denote, respectively, the integers, the nonnegative integers,
and the positive integers. Empty sums take the value 0 and empty products the value 1,
with 00 := 1. If q is an indeterminate, then 0q := 0, nq := 1 + q + · · · + qn−1 for n ∈ P,

0!
q := 1, n!

q := 1q2q · · ·nq for n ∈ P, and

(
n

k

)
q

:=




n!q
k!q(n−k)!q

, if 0 6 k 6 n;

0, if k < 0 or 0 6 n < k.

(1.1)

A useful variation of (1.1) is the well known formula [8, p. 29](
n

k

)
q

=
∑

d0+d1+···+dk=n−k
di∈N

q0d0+1d1+···+kdk =
∑
t>0

p(k, n − k, t)qt, (1.2)

where p(k, n − k, t) denotes the number of partitions of the integer t with at most n − k
parts, each no larger than k.
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If r > 2, the r-Fibonacci numbers F
(r)
n are defined by F

(r)
0 = F

(r)
1 = · · · = F

(r)
r−1 = 1,

with F
(r)
n = F

(r)
n−1 + F

(r)
n−r if n > r. The r-Lucas numbers L

(r)
n are defined by L

(r)
1 = L

(r)
2 =

· · · = L
(r)
r−1 = 1 and L

(r)
r = r + 1, with L

(r)
n = L

(r)
n−1 + L

(r)
n−r if n > r + 1. If r = 2, the F

(r)
n

and L
(r)
n reduce, respectively, to the classical Fibonacci and Lucas numbers (parametrized

as in [10], by F0 = F1 = 1, etc., and L1 = 1, L2 = 3, etc.).
Polynomial generalizations of Fn and/or Ln have arisen as generating functions for

statistics on binary words [1], lattice paths [4], and linear and circular domino arrange-

ments [6]. Generalizations of F
(r)
n and/or L

(r)
n have arisen similarly in connection with

statistics on Morse code sequences [2], [3].
In the present paper, we study the polynomial generalizations

F (r)
n (q, t) :=

∑
06k6bn/rc

q(
n−rk+1

2 )
(

n − (r − 1)k

k

)
qr

tk (1.3)

of F
(r)
n and

L(r)
n (q, t) :=

∑
06k6bn/rc

q(
n−rk+1

2 )
[kqr

∑r
i=1 qi(n−rk) + (n − rk)qr

(n − (r − 1)k)qr

](n − (r − 1)k

k

)
qr

tk (1.4)

of L
(r)
n . We present both algebraic and combinatorial evaluations of F

(r)
n (−1, t) and

L
(r)
n (−1, t), as well as determine when the sequences F

(r)
n (1,−1), F

(r)
n (−1, 1), L

(r)
n (1,−1),

and L
(r)
n (−1, 1) are periodic. Our algebraic proofs make frequent use of the identity [9, pp.

201–202] ∑
n>0

(
n

k

)
q

xn =
xk

(1 − x)(1 − qx) · · · (1 − qkx)
, k ∈ N. (1.5)

Our combinatorial proofs are based on the fact that F
(r)
n (q, t) and L

(r)
n (q, t) are, respec-

tively, bivariate generating functions for a pair of statistics on linear and circular r-mino
arrangements.

2 Linear r-Mino Arrangements

Consider the problem of finding the number of ways to place k indistinguishable non-
overlapping r-minos on the numbers 1, 2, . . . , n, arranged in a row, where an r-mino,
r > 2, is a rectangular piece capable of covering r numbers. It is useful to place squares
(pieces covering a single number) on each number not covered by an r-mino. The original

problem then becomes one of enumerating R(r)
n,k, the set of coverings of the row of numbers

1, 2, . . . , n by k r-minos and n−rk squares. Since each such covering corresponds uniquely
to a word in the alphabet {r, s} comprising k r’s and n − rk s’s, it follows that

|R(r)
n,k| =

(
n − (r − 1)k

k

)
, 0 6 k 6 bn/rc, (2.1)
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for all n ∈ P. (In what follows, we will identify coverings with such words.) If we set

R(r)
0,0 = {∅}, the “empty covering,” then (2.1) holds for n = 0 as well. With

R(r)
n :=

⋃
06k6bn/rc

R(r)
n,k, n ∈ N, (2.2)

it follows that

|R(r)
n | =

∑
06k6bn/rc

(
n − (r − 1)k

k

)
= F (r)

n , (2.3)

where F
(r)
0 = F

(r)
1 = · · · = F

(r)
r−1 = 1, with F

(r)
n = F

(r)
n−1 + F

(r)
n−r if n > r. Note that

∑
n>0

F (r)
n xn =

1

1 − x − xr
. (2.4)

Given c ∈ R(r)
n , let v(c) := the number of r-minos in the covering c, let s(c) := the

sum of the numbers covered by the squares in c, and let

F (r)
n (q, t) :=

∑
c∈R(r)

n

qs(c)tv(c), n ∈ N. (2.5)

The statistic v is well known and has occurred in several contexts (see, e.g., [2], [4], [6]).
On the other hand, the statistic s does not seem to have appeared in the literature.

Categorizing covers of 1, 2, . . . , n according as n is covered by a square or r-mino yields
the recurrence relation

F (r)
n (q, t) = qnF

(r)
n−1(q, t) + tF

(r)
n−r(q, t), n > r, (2.6)

with F
(r)
i (q, t) = q(

i+1
2 ) for 0 6 i 6 r − 1. The following theorem gives an explicit formula

for F
(r)
n (q, t).

Theorem 2.1. For all n ∈ N,

F (r)
n (q, t) =

∑
06k6bn/rc

q(
n−rk+1

2 )
(

n − (r − 1)k

k

)
qr

tk. (2.7)

Proof. It clearly suffices to show that

∑
c∈R(r)

n,k

qs(c) = q(
n−rk+1

2 )
(

n − (r − 1)k

k

)
qr

.

Each c ∈ R(r)
n,k corresponds uniquely to a sequence (d0, . . . , dn−rk), where d0 is the number

of r-minos following the (n − rk)th square in the covering c, dn−rk is the number of r-
minos preceding the first square, and, for 0 < i < n−rk, dn−rk−i is the number of r-minos
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between squares i and i + 1. Then s(c) = (rdn−rk + 1) + (rdn−rk + rdn−rk−1 + 2) + · · · +
(rdn−rk+rdn−rk−1+ · · ·+rd1+n−rk) =

(
n−rk+1

2

)
+r(0d0+1d1+2d2+ · · ·+(n−rk)dn−rk),

so that ∑
c∈R(r)

n,k

qs(c) = q(
n−rk+1

2 )
∑

d0+d1+···+dn−rk=k
di∈N

qr(0d0+1d1+···+(n−rk)dn−rk)

= q(
n−rk+1

2 )
(

n − (r − 1)k

k

)
qr

,

by (1.2).

Remark 1. The occurrence of a qr-binomial coefficient in (2.7), and in (3.6) below, sup-
ports Knuth’s contention [5] that Gaussian coefficients should be denoted by

(
n
k

)
q
, rather

than by the traditional notation
[
n
k

]
.

Remark 2. Cigler [3] has studied the generalized Carlitz-Fibonacci polynomials given by

Fn(j, x, t, q) =
∑

06kj6n−j+1

qj(k
2)
(

n − (j − 1)(k + 1)

k

)
q

tkxn−(k+1)j+1,

to which the F
(r)
n (q, t) are related by

F (r)
n (q, t) = q(

n+1
2 )Fn+r−1(r, 1, t/q

(r+1
2 ), 1/qr).

Theorem 2.2. The ordinary generating function of the sequence (F
(r)
n (q, t))n>0 is given

by ∑
n>0

F (r)
n (q, t)xn =

∑
k>0

q(
k+1
2 )xk

(1 − xrt)(1 − qrxrt) · · · (1 − qrkxrt)
. (2.8)

Proof. By (2.7),∑
n>0

F (r)
n (q, t)xn =

∑
n>0

xn
∑

06k6bn/rc
q(

n−rk+1
2 )

(
n − (r − 1)k

k

)
qr

tk

=
r−1∑
j=0

∑
m>0

xmr+j
∑

06k6m

q(
(m−k)r+j+1

2 )
(

(m − k)(r − 1) + m + j

k

)
qr

tk

=

r−1∑
j=0

∑
m>0

xmr+j
∑

06k6m

q(
kr+j+1

2 )
(

k(r − 1) + m + j

m − k

)
qr

tm−k

=

r−1∑
j=0

∑
k>0

q(
kr+j+1

2 )x−(r−1)(kr+j)t−(kr+j)
∑
m>k

(
k(r − 1) + m + j

kr + j

)
qr

(xrt)k(r−1)+m+j

=

r−1∑
j=0

∑
k>0

q(
kr+j+1

2 ) xkr+j

(1 − xrt)(1 − qrxrt) · · · (1 − q(kr+j)rxrt)
,
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by (1.5), which yields (2.8), upon replacing kr + j by k > 0.

Note that F
(r)
n (1, 1) = F

(r)
n , whence (2.8) generalizes (2.4). Setting q = 1 and q = −1

in (2.8) yields

Corollary 2.2.1. The ordinary generating function of the sequence (F
(r)
n (1, t))n>0 is

given by ∑
n>0

F (r)
n (1, t)xn =

1

1 − x − txr
. (2.9)

and

Corollary 2.2.2. The ordinary generating function of the sequence (F
(r)
n (−1, t))n>0 is

given by

∑
n>0

F (r)
n (−1, t)xn =




1 − x − txr

1 + x2 − 2txr + t2x2r
, if r is even;

1 − x + txr

1 + x2 − t2x2r
, if r is odd .

(2.10)

When r = 2 and t = −1 in (2.9), we get

∑
n>0

F (2)
n (1,−1)xn =

1

1 − x + x2
=

(1 + x)(1 − x3)

1 − x6
, (2.11)

so that (F
(2)
n (1,−1))n>0 is periodic with period 6 (we’ll call a sequence (an)n>0 periodic

with period d if an+d = an for all n > m for some m ∈ N). However, this behavior is
restricted to the case r = 2:

Theorem 2.3. The sequence (F
(r)
n (1,−1))n>0 is never periodic for r > 3.

Proof. By (2.9) at t = −1, it suffices to show that 1 − x + xr divides xm − 1 for some
m ∈ P, only if r = 2.

We first describe the roots of unity that are zeros of 1 − x + xr. If z is such a root of
unity, let y = zr−1. Since z(1−zr−1) = 1 and z is a root of unity, it follows that both y and
1− y are roots of unity. In particular, |y| = |1− y| = 1. Therefore, 1− 2Re(y) + |y|2 = 1,
so Re(y) = 1/2. This forces y, and hence 1 − y, to be primitive 6th roots of unity. But
1 − y = 1/z, so z is also a primitive 6th root of unity.

This implies that the only possible roots of unity which are zeros of 1 − x + xr are
the primitive 6th roots of unity. Since the derivative of 1 − x + xr has no roots of unity
as zeros, these 6th roots of unity can only be simple zeros of 1 − x + xr. In particular, if
every root of 1 − x + xr is a root of unity, then r = 2.
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If r is even, then by (2.7),

F (r)
n (−1, t) =

∑
06k6bn/rc

(−1)(
n−rk+1

2 )
(

n − (r − 1)k

k

)
tk

= (−1)(
n+1

2 )
∑

06k6bn/rc
(−1)rk/2

(
n − (r − 1)k

k

)
tk

= (−1)(
n+1

2 )F (r)
n

(
1, (−1)r/2t

)
. (2.12)

Setting t = 1 in (2.12) gives for n ∈ N,

F (4j)
n (−1, 1) = (−1)(

n+1
2 )F (4j)

n and F (4j+2)
n (−1, 1) = (−1)(

n+1
2 )F (4j+2)

n (1,−1). (2.13)

Substituting q = −1 in (2.7) (and in (3.6) below) when r is odd gives a −1, instead
of a 1, for the subscript of the q-binomial coefficients occurring in that formula. This
may account in part for the difference in behavior seen in the following theorem for
F

(r)
n (−1, t) when r is odd (and in Theorem 3.4 below for L

(r)
n (−1, t)). Iterating (2.6)

yields F
(r)
−i (q, t) = 0 if 1 6 i 6 r − 1, which we’ll take as a convention.

Theorem 2.4. For r odd and all m ∈ N,

F
(r)
2m(−1, t) = (−1)mF (r)

m (1,−t2) (2.14)

and

F
(r)
2m+1(−1, t) = (−1)m+1

(
F (r)

m (1,−t2) + (−1)
r+1
2 tF

(r)

m−( r−1
2

)
(1,−t2)

)
. (2.15)

Proof. Taking the even and odd parts of both sides of (2.10) when r is odd followed by
replacing x with ix1/2, where i =

√−1, yields

∑
m>0

(−1)mF
(r)
2m(−1, t)xm =

1

1 − x + t2xr

and ∑
m>0

(−1)mF
(r)
2m+1(−1, t)xm =

−1 + (−1)
r−1
2 tx

r−1
2

1 − x + t2xr
,

from which (2.14) and (2.15) now follow from (2.9).
For a combinatorial proof of (2.14) and (2.15), we first assign to each r-mino ar-

rangement c ∈ R(r)
n the weight wc := (−1)s(c)tv(c), where t is an indeterminate. Let R(r)′

n

consist of those c = x1x2 · · ·xp in R(r)
n satisfying the conditions x2i−1 = x2i, 1 6 i 6 bp/2c.

Suppose c = x1x2 · · ·xp ∈ R(r)
n − R(r)′

n , with i0 being the smallest value of i for which
x2i−1 6= x2i. Exchanging the positions of x2i0−1 and x2i0 within c produces an s-parity

changing involution of R(r)
n −R(r)′

n which preserves v(c).
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If n = 2m, then

F
(r)
2m(−1, t) =

∑
c∈R(r)

2m

wc =
∑

c∈R(r)′
2m

wc =
∑

c∈R(r)′
2m

(−1)(2m−rv(c))/2tv(c)

= (−1)m
∑

c∈R(r)′
2m

(−1)v(c)/2tv(c) = (−1)m
∑

z∈R(r)
m

(−1)v(z)t2v(z)

= (−1)mF (r)
m (1,−t2),

since each pair of consecutive squares in c ∈ R(r)′
2m contributes an odd amount towards

s(c). If n = 2m + 1, then

F
(r)
2m+1(−1, t) =

∑
c∈R(r)

2m+1

wc =
∑

c∈R(r)′
2m+1

wc =
∑

c∈R(r)′
2m+1

v(c) even

wc +
∑

c∈R(r)′
2m+1

v(c) odd

wc

= −
∑

c∈R(r)′
2m

(−1)(2m−rv(c))/2tv(c) + t
∑

c∈R(r)′
2m−(r−1)

(−1)(2m−(r−1)−rv(c))/2tv(c)

= (−1)m+1
∑

z∈R(r)
m

(−1)v(z)t2v(z) + (−1)m−( r−1
2 )t

∑
z∈R(r)

m−( r−1
2 )

(−1)v(z)t2v(z)

= (−1)m+1F (r)
m (1,−t2) + (−1)m−( r−1

2 )tF
(r)

m−( r−1
2 )

(1,−t2),

since members of R(r)′
2m+1 end in either a single square or in a single r-mino.

Setting t = 1 in Theorem 2.4 gives

F
(r)
2m(−1, 1) = (−1)mF (r)

m (1,−1) (2.16)

and
F

(r)
2m+1(−1, 1) = (−1)m+1

(
F (r)

m (1,−1) + (−1)
r+1
2 F

(r)

m−( r−1
2

)
(1,−1)

)
(2.17)

for r odd and m ∈ N. Formulas (2.12)–(2.17) above (and (3.15)–(3.23) below) are some-
what reminiscent of the combinatorial reciprocity theorems of Stanley [7].

When r = 2 in (2.13), we get

F (2)
n (−1, 1) = (−1)(

n+1
2 )F (2)

n (1,−1) (2.18)

so that (F
(2)
n (−1, 1))n>0 is periodic with period 12, by (2.11). Indeed, from (2.10) when

r = 2 and t = 1,∑
n>0

F (2)
n (−1, 1)xn =

1 − x − x2

1 − x2 + x4
=

(1 − x − x3 − x4)(1 − x6)

1 − x12
. (2.19)

Periodicity is again restricted to the case r = 2:

Corollary 2.4.1. The sequence (F
(r)
n (−1, 1))n>0 is never periodic for r > 3.

Proof. This follows immediately from (2.13), (2.16), and Theorem 2.3.
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3 Circular r-Mino Arrangements

If n ∈ P and 0 6 k 6 bn/rc, let C(r)
n,k denote the set of coverings by k r-minos and n − rk

squares of the numbers 1, 2, . . . , n arranged clockwise around a circle:

.................

..................

..................

..................

.................

................

................
.................

..................
.............................................................................................................................................

..............
..

............
....

............
.....

...........
.......

...........
.......

...........
.......

..........

.......

..........

.......

...........
.......

...........
.......

...........
.......

............
.....

............
....

..............
..

................. .................. .................. .................. ................. ................. .................. ..................
..................
.................
................

................

.................

..................

..................

..................

................. ·

2
1

n

·

·
·

·

By the initial segment of an r-mino occurring in such a cover, we mean the segment first
encountered as the circle is traversed clockwise. Classifying members of C(r)

n,k according as
(i) 1 is covered by one of r segments of an r-mino or (ii) 1 is covered by a square, and
applying (2.1), yields

∣∣∣C(r)
n,k

∣∣∣ = r

(
n − (r − 1)k − 1

k − 1

)
+

(
n − (r − 1)k − 1

k

)

=
n

n − (r − 1)k

(
n − (r − 1)k

k

)
, 0 6 k 6 bn/rc. (3.1)

Below we illustrate two members of C(4)
4,1 :

(i)

.
...............
..

...............
...

..............
....

..............
....

.............

....

.............

....

..............
....

...............
...
...............
..

................
.

................ ................. ................. .................. .................. ................. ................. .................. .................. ..................
.................
.................
................
.................
..................
..................

..................

.................

.................

..................

..................
..................

.................
.................

................
.................

..................
........................................................................................

........................................................ ........... .......... ........... ........... ........... ........... ........... ........... ...........
..........
...........
...........
...........
...........
...........
...........
...........
.................................................................D

D
D

@
@

1

2

3

4 and (ii)

.
.................
..................

..................

..................

.................

.................

..................

..................
.................

.................
................

.................
.................

..............................................................................................................................................................................
................
.

...............
...

...............
...

..............
....

.............

....

.............

....

..............
....

..............
....
...............
...
...............
..

................. ................ ................. .................. .................. .................. ................. ................. ..................

............
...........
...........
...........
...........
...........
..................................................................................................................................................................... ........... ........... ........... ........... ........... ........... ........... l

lE
E
E

1

2

3

4

In covering (i), the initial segment of the 4-mino covers 1, and in covering (ii), the initial
segment covers 3.

With
C(r)

n :=
⋃

06k6bn/rc
C(r)

n,k, n ∈ P, (3.2)

it follows that

∣∣C(r)
n

∣∣ =
∑

06k6bn/rc

n

n − (r − 1)k

(
n − (r − 1)k

k

)
= L(r)

n , (3.3)
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where L
(r)
1 = · · · = L

(r)
r−1 = 1, L

(r)
r = r +1, and L

(r)
n = L

(r)
n−1 +L

(r)
n−r if n > r +1. Note that

∑
n>1

L(r)
n xn =

x + rxr

1 − x − xr
. (3.4)

Given c ∈ C(r)
n , let v(c) := the number of r-minos in the covering c, let s(c) := the

sum of the numbers covered by the squares in c, and let

L(r)
n (q, t) :=

∑
c∈C(r)

n

qs(c)tv(c), n ∈ P. (3.5)

This leads to a new polynomial generalization of L
(r)
n :

Theorem 3.1. For all n ∈ P,

L(r)
n (q, t) =

∑
06k6bn/rc

q(
n−rk+1

2 )
[kqr

∑r
i=1 qi(n−rk) + (n − rk)qr

(n − (r − 1)k)qr

](n − (r − 1)k

k

)
qr

tk. (3.6)

Proof. It suffices to show that

∑
c∈C(r)

n,k

qs(c) = q(
n−rk+1

2 )
[
skqr + (n − rk)qr

(n − (r − 1)k)qr

](
n − (r − 1)k

k

)
qr

,

where s :=
∑r

i=1 qi(n−rk). Partitioning C(r)
n,k into the categories employed above in deriving

(3.1), and applying (2.7), yields

∑
c∈C(r)

n,k

qs(c) = q(
n−rk+1

2 )
(

n − (r − 1)k − 1

k − 1

)
qr

[qr(n−rk) + q(r−1)(n−rk) + · · ·+ qn−rk]

+ q(
n−rk

2 )
(

n − (r − 1)k − 1

k

)
qr

qn−rk

= q(
n−rk+1

2 )
(

n − (r − 1)k − 1

k − 1

)
qr

s + q(
n−rk+1

2 )
(

n − (r − 1)k − 1

k

)
qr

(3.7)

= q(
n−rk+1

2 )

[
skqr

(n − (r − 1)k)qr

(
n − (r − 1)k

k

)
qr

+
(n − rk)qr

(n − (r − 1)k)qr

(
n − (r − 1)k

k

)
qr

]
,

which completes the proof.
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Theorem 3.2. The ordinary generating function of the sequence (L
(r)
n (q, t))n>1 is given

by ∑
n>1

L(r)
n (q, t)xn =

rxrt

1 − xrt
+
∑
k>1

q(
k+1
2 ) [1 + xrt

∑r−1
i=1 qki

]
xk

(1 − xrt)(1 − qrxrt) · · · (1 − qrkxrt)
. (3.8)

Proof. By convention, we take
(

m
0

)
q

= 1 and
(

m
−1

)
q

= 0 for m ∈ Z. From (3.7),

∑
n>1

L(r)
n (q, t)xn =

∑
n>1

xn
∑

06k6bn/rc
q(

n−rk+1
2 )tk

[(
n − (r − 1)k − 1

k − 1

)
qr

·
r∑

i=1

qi(n−rk)

+

(
n − (r − 1)k − 1

k

)
qr

]

=

r−1∑
j=0

∑
m>0

j+m>1

xmr+j
∑

06k6m

q(
kr+j+1

2 )tm−k

[(
k(r − 1) + m + j − 1

m − k − 1

)
qr

·
r∑

i=1

qi(kr+j)

+

(
k(r − 1) + m + j − 1

m − k

)
qr

]

=
r−1∑
j=0

∑
k>0

j+m>1

q(
kr+j+1

2 )
∑
m>k

xmr+jtm−k

[
s

(
k(r − 1) + m + j − 1

kr + j

)
qr

+

(
k(r − 1) + m + j − 1

kr + j − 1

)
qr

]
,

by symmetry, where s :=
r∑

i=1

qi(kr+j). Separating the terms for which k = j = 0 gives

∑
n>1

L(r)
n (q, t)xn =

rxrt

1 − xrt
+

r−1∑
j=0

j+m>1
j+k>1

(∑
k>0

sq(
kr+j+1

2 )
∑
m>k

(
k(r − 1) + m + j − 1

kr + j

)
qr

xmr+jtm−k

+
∑
k>0

q(
kr+j+1

2 )
∑
m>k

(
k(r − 1) + m + j − 1

kr + j − 1

)
qr

xmr+jtm−k

)

=
rxrt

1 − xrt
+

r−1∑
j=0

j+k>1

(∑
k>0

sq(
kr+j+1

2 ) xkr+j+rt

(1 − xrt)(1 − qrxrt) · · · (1 − q(kr+j)rxrt)
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+
∑
k>0

q(
kr+j+1

2 ) xkr+j

(1 − xrt)(1 − qrxrt) · · · (1 − q(kr+j−1)rxrt)

)

=
rxrt

1 − xrt
+

r−1∑
j=0

∑
k>0

j+k>1

q(
kr+j+1

2 )

(
1 + xrt

r−1∑
i=1

qi(kr+j)

)
xkr+j

(1 − xrt)(1 − qrxrt) · · · (1 − q(kr+j)rxrt)
,

by (1.5), which yields (3.8), upon replacing kr + j by k > 1.

Note that L
(r)
n (1, 1) = L

(r)
n , whence (3.8) generalizes (3.4). The L

(r)
n (q, t) are related

to the F
(r)
n (q, t) by the formula

L(r)
n (1, t) = F

(r)
n−1(1, t) + rtF

(r)
n−r(1, t), n > 1, (3.9)

which reduces to
L(r)

n = F
(r)
n−1 + rF

(r)
n−r, n > 1, (3.10)

when t = 1, though there do not appear to be such formulas for L
(r)
n (q, t) or L

(r)
n (q, 1).

Furthermore, the L
(r)
n (q, t) do not seem to satisfy a simple recursion like (2.6). Setting

q = 1 and q = −1 in (3.8) yields

Corollary 3.2.1. The ordinary generating function of the sequence (L
(r)
n (1, t))n>1 is given

by ∑
n>1

L(r)
n (1, t)xn =

x + rtxr

1 − x − txr
, (3.11)

and

Corollary 3.2.2. The ordinary generating function of the sequence (L
(r)
n (−1, t))n>1 is

given by

∑
n>1

L(r)
n (−1, t)xn =




−x − x2 + rtxr + txr+1 − rt2x2r

1 + x2 − 2txr + t2x2r
, if r is even;

−x − x2 + rtxr + rt2x2r

1 + x2 − t2x2r
, if r is odd.

(3.12)

When r = 2 and t = −1 in (3.11), we get

∑
n>1

L(2)
n (1,−1)xn =

x − 2x2

1 − x + x2
=

(x − x2 − 2x3)(1 − x3)

1 − x6
, (3.13)

so that (L
(2)
n (1,−1))n>1 is periodic with period 6. Again, no such periodicity occurs for

r > 3:
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Theorem 3.3. The sequence (L
(r)
n (1,−1))n>1 is never periodic for r > 3.

Proof. By (3.11) at t = −1, we must show that 1 − x + xr does not divide the product
(1−xm)(x−rxr) for any m ∈ P whenever r > 3. Note that the polynomials 1−x+xr and
x− rxr cannot share a zero; for if t0 is a common zero, then tr0 = t0

r
and 0 = 1− t0 + tr0 =

1− t0 + t0
r
, i.e., t0 = r

r−1
, which isn’t a zero of either polynomial. From (2.9) and Theorem

2.3, the polynomial 1 − x + xr doesn’t divide 1 − xm when r > 3, which completes the
proof.

When r is even, the L
(r)
n (−1, t) can be expressed as a linear combination of the

F
(r)
n (−1, t) by the relation

L(r)
n (−1, t) = −r

2
F

(r)
n+1(−1, t) + F (r)

n (−1, t) − r
2
F

(r)
n−1(−1, t) + rt

2
F

(r)
n−r+1(−1, t)

+ ( r
2
− 1)tF

(r)
n−r(−1, t), n > 1, (3.14)

which follows from (3.12) and (2.10). We were unable to find a relation comparable to
(3.14) when r is odd.

If r is even, then by (3.6), (2.7), and (3.9),

L
(r)
2m(−1, t) =

∑
06k6b2m/rc

(−1)(
2m−rk+1

2 ) 2m

2m − (r − 1)k

(
2m − (r − 1)k

k

)
tk

= (−1)m
∑

06k6b2m/rc
(−1)rk/2 2m

2m − (r − 1)k

(
2m − (r − 1)k

k

)
tk

= (−1)mL
(r)
2m

(
1, (−1)r/2t

)
(3.15)

and

L
(r)
2m−1(−1, t) =

∑
06k6b(2m−1)/rc

(−1)(
2m−rk

2 ) 2m − 1 − rk

2m − 1 − (r − 1)k

(
2m − 1 − (r − 1)k

k

)
tk

= (−1)m


 ∑

06k6b(2m−1)/rc
(−1)rk/2 2m − 1

2m − 1 − (r − 1)k

(
2m − 1 − (r − 1)k

k

)
tk

− (−1)r/2rt
∑

06k6b(2m−r−1)/rc
(−1)rk/2

(
2m − r − 1 − (r − 1)k

k

)
tk




= (−1)m
(
L

(r)
2m−1

(
1, (−1)r/2t

)− (−1)r/2 rtF
(r)
2m−r−1

(
1, (−1)r/2t

))
= (−1)mF

(r)
2m−2

(
1, (−1)r/2t

)
. (3.16)

Setting t = 1 in (3.15) and (3.16) gives for m ∈ P,

L
(4j)
2m (−1, 1) = (−1)mL

(4j)
2m and L

(4j)
2m−1(−1, 1) = (−1)mF

(4j)
2m−2 (3.17)
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and

L
(4j+2)
2m (−1, 1) = (−1)mL

(4j+2)
2m (1,−1) and L

(4j+2)
2m−1 (−1, 1) = (−1)mF

(4j+2)
2m−2 (1,−1). (3.18)

The following theorem gives analogues of (3.15) and (3.16) when r is odd. Recall that

F
(r)
−i (q, t) = 0 for 1 6 i 6 r − 1, by convention.

Theorem 3.4. For r odd and all m ∈ P,

L
(r)
2m(−1, t) = (−1)mL(r)

m (1,−t2) (3.19)

and

L
(r)
2m−1(−1, t) = (−1)m

(
F

(r)
m−1(1,−t2) + (−1)

r+1
2 rtF

(r)

m−( r+1
2

)
(1,−t2)

)
. (3.20)

Proof. Taking the even and odd parts of both sides of (3.12) when r is odd followed by
replacing x with ix1/2, where i =

√−1, yields∑
m>1

(−1)mL
(r)
2m(−1, t)xm =

x − rt2xr

1 − x + t2xr

and ∑
m>1

(−1)mL
(r)
2m−1(−1, t)xm =

x + (−1)
r+1
2 rtx

r+1
2

1 − x + t2xr
,

from which (3.19) and (3.20) now follow from (3.11) and (2.9).
For a combinatorial proof of (3.19) and (3.20), we first assign to each r-mino ar-

rangement c ∈ C(r)
n the weight wc := (−1)s(c)tv(c). Associate to each c ∈ C(r)

n a word
vc := v1v2 · · · in the alphabet {r, s}, where

vi :=

{
r, if the ith piece of c is an r-mino;

s, if the ith piece of c is a square,

and one determines the ith piece of c by starting with the piece covering 1 and proceeding
clockwise from that piece. Note that for each word starting with r, there are exactly r
associated members of C(r)

n , while for each word starting with s, there is only one associated
member.

Let C(r)′
n consist of those c in C(r)

n for which vc = v1v2 · · · satisfies v2i = v2i+1 for all

i. Let c ∈ C(r)
n − C(r)′

n with vc = v1v2 · · · , and let i0 be the smallest index i for which
v2i 6= v2i+1. Interchanging the (2i0)

th and (2i0 + 1)st pieces of c furnishes an s-parity

changing, v-preserving involution of C(r)
n − C(r)′

n .
If n = 2m − 1, then

L
(r)
2m−1(−1, t) =

∑
c∈C(r)

2m−1

wc =
∑

c∈C(r)′
2m−1

wc =
∑

c∈C(r)′
2m−1

v(c) even

wc +
∑

c∈C(r)′
2m−1

v(c) odd

wc

= −
∑

c∈R(r)′
2m−2

(−1)(2m−2−rv(c))/2tv(c) + rt
∑

c∈R(r)′
2m−r−1

(−1)(2m−r−1−rv(c))/2tv(c)
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= (−1)m
∑

z∈R(r)
m−1

(−1)v(z)t2v(z) + (−1)m−( r+1
2 )rt

∑
z∈R(r)

m−( r+1
2 )

(−1)v(z)t2v(z)

= (−1)mF
(r)
m−1(1,−t2) + (−1)m−( r+1

2 )rtF
(r)

m−( r+1
2 )

(1,−t2),

which gives (3.20), where R(r)′
n is as in the proof of Theorem 2.4, since members c of C(r)′

2m−1

have a square as the first piece iff v(c) is even.

Now suppose that n = 2m. Let C(r)∗
2m consist of those c ∈ C(r)′

2m for which the first and last

letters of vc are the same. Consider the r members of C(r)′
2m −C(r)∗

2m associated with the same
word vc starting with r (and thus ending in s) along with the arrangement resulting when
vc is read backwards, denoting the set consisting of these r+1 arrangements by Svc . Note

that C(r)′
2m − C(r)∗

2m is partitioned by the Svc as vc ranges over all possible associated words.
The r+1

2
members of Svc whose first piece is an r-mino with initial segment covering an odd

number have s-parity opposite the remaining r+1
2

members of Svc , with each arrangement
in Svc possessing the same number of r-minos. Hence, the contribution of each Svc towards

L
(r)
2m(−1, t) is zero, which implies the net weight of C(r)′

2m − C(r)∗
2m is zero.

Therefore,

L
(r)
2m(−1, t) =

∑
c∈C(r)

2m

wc =
∑

c∈C(r)∗
2m

wc =
∑

c∈C(r)∗
2m

(−1)(2m−rv(c))/2tv(c)

= (−1)m
∑

c∈C(r)∗
2m

(−1)v(c)/2tv(c) = (−1)m
∑

z∈C(r)
m

(−1)v(z)t2v(z)

= (−1)mL(r)
m (1,−t2),

which gives (3.19), since the first and last pieces of c ∈ C(r)∗
2m are the same. Note that

each pair of consecutive squares in c ∈ C(r)∗
2m corresponding to either v2i = v2i+1 = s for

some i or to (possibly) vp = v1 = s in vc = v1v2 · · · vp contributes an odd amount towards
s(c).

Setting t = 1 in Theorem 3.4 gives

L
(r)
2m(−1, 1) = (−1)mL(r)

m (1,−1) (3.21)

and

L
(r)
2m−1(−1, 1) = (−1)m

(
F

(r)
m−1(1,−1) + (−1)

r+1
2 rF

(r)

m−( r+1
2

)
(1,−1)

)
(3.22)

for r odd and m ∈ P.
When r = 2 in (3.18), we get

L
(2)
2m(−1, 1) = (−1)mL

(2)
2m(1,−1) and L

(2)
2m−1(−1, 1) = (−1)mF

(2)
2m−2(1,−1) (3.23)
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so that (L
(2)
n (−1, 1))n>1 is periodic with period 12, by (3.13) and (2.11). Indeed, from

(3.12) when r = 2 and t = 1,

∑
n>1

L(2)
n (−1, 1)xn =

−x + x2 + x3 − 2x4

1 − x2 + x4

=
(−x + x2 − x4 + x5 − 2x6)(1 − x6)

1 − x12
. (3.24)

When r > 3, we have

Corollary 3.4.1. The sequence (L
(r)
n (−1, 1))n>1 is never periodic for r > 3.

Proof. This follows immediately from (3.17), (3.18), (3.21), and Theorem 3.3.
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