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Abstract

The set system of all arithmetic progressions on [n] is known to have a discrep-
ancy of order n1/4. We investigate the discrepancy for the set system S3

n formed
by all sums of three arithmetic progressions on [n] and show that the discrepancy
of S3

n is bounded below by Ω(n1/2). Thus S3
n is one of the few explicit examples of

systems with polynomially many sets and a discrepancy this high.

1 Introduction

Let (X,F) be a set system on a finite set. The discrepancy problem is to color each point
of X either red or blue, in such a way that any of the sets of F has roughly the same
number of red points and blue points. The maximum deviation from an even splitting,
over all sets of F , is the discrepancy of F , denoted by disc(F). Formally

disc(F) = min
χ:X→{−1,1}

max
S∈F

∣∣∣∑
x∈S

χ(x)
∣∣∣.

For further information see Beck and Sós [BS95], Chazelle [Cha00], and Matoušek [Mat99].

Let n be a positive integer and let [n] denote the set {0, 1, . . . , n−1}. For any a ∈ Z and
d1, n1 ∈ N we define the arithmetic progression AP (a, d1, n1) as the set {a+id1 : i ∈ [n1]}.
The set system formed by all arithmetic progressions on [n] we denote by ([n],Sn) where
Sn = {AP (a, d1, n1) ∩ [n] : a, d1, n1 ∈ N}.

The lower bound Ω(n1/4) on the discrepancy of arithmetic progressions Sn proved by
Roth [Rot64] was one of the early results in combinatorial discrepancy. In 1974, Sárkőzy
(see [ES74]) established an O(n1/3+ε) upper bound. This was improved by Beck [Bec81],
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who obtained the near-tight upper bound of O(n1/4 log5/2 n), inventing the powerful partial
coloring method for that purpose. The asymptotically tight upper bound O(n1/4) was
finally proved by Matoušek and Spencer [MS96].

Discrepancies of related set systems were also studied. One possible extension of
the original problem is to consider set systems formed by sums of arithmetic progressions,
where a sum of k arithmetic progressions APk(a, d1, . . . , dk, n1, . . . , nk) is defined for a ∈ Z
and d1, . . . , dk, n1, . . . , nk ∈ N as the set {a + i1d1 + . . . + ikdk : il ∈ [nl], l = 1, . . . , k}.
The corresponding set system of all sums of k arithmetic progressions on [n] is then
([n],Sk

n), where Sk
n = {APk(a, d1, . . . , dk, n1, . . . , nk) ∩ [n] : a ∈ Z; d1, . . . , dk, n1, . . . , nk ∈

N}. Hebbinghaus [Heb04] proved that disc(Sk
n) = Ω(n

k
2k+2 ). Here we show that for

k ≥ 3, disc(Sk
n) = Ω(n1/2). Thus S3

n is one of the few explicit examples of systems with
polynomially many sets and a discrepancy this high.

For a fixed k ≥ 3, the lower bound on Sk
n is nearly tight since the random coloring

lemma [AS92] provides the upper bound O(n1/2 log1/2 n). In the case k = 2, there is
still a considerable gap, Ω(n1/3) versus O(n1/2 log1/2 n), and estimating the correct bound
remains still open.

We start in Section 2 with recalling the eigenvalue bound method and then we show
how it can be used for wrapped set systems. In Section 3 we discuss how to construct
suitable wrapped set systems and illustrate this approach on the system of arithmetic
progressions on [n] (this version of proof is attributed to Lovász). Then we construct a
wrapped set system for our main result.

2 Preliminaries

In this section we recall some basic facts. We start with some definitions from discrepancy
theory; for more definitions see [Mat99].

Let (X,F) be a set system on a finite set. Let us enumerate the elements of X as
x1, x2, . . . , xn and the sets of F as S1, S2, . . . , Sm in some arbitrary order. The incidence
matrix of (X,F) is the m× n matrix A, with columns corresponding to points of X and
rows corresponding to sets of F , whose element aij is given by

aij =

{
1 if j ∈ Si

0 otherwise.

As we will see, it is useful to reformulate the definition of the discrepancy of F in
terms of the incidence matrix. Now let us regard a coloring χ : X → {−1, +1} as
the column vector (χ(x1), χ(x2), . . . , χ(xn))T ∈ Rn. Then the product Aχ is the row
vector (χ(S1), χ(S2), . . . , χ(Sn)) ∈ Rm, where we extend the coloring χ for sets as χ(S) =∑

x∈S χ(x). Therefore, the definition of the discrepancy of F can be written as

disc(F) = min
x∈{−1,1}n

‖Ax‖∞ .
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For many lower bound techniques, it is easier to consider the L2-discrepancy instead
of the worst-case discrepancy. In our case, this means replacing the max-norm ‖.‖∞ by
the usual Euclidean norm ‖.‖. Namely, we have

disc(F) ≥ disc2(F) = min
χ

(
1

m

m∑
i=1

χ(Si)
2

)1/2

=
1√
m

· min
x∈{−1,1}n

‖Ax‖.

To obtain a lower bound on the L2-discrepancy for a set system, we can use the
following eigenvalue lower bound:

Theorem 2.1 (Eigenvalue bound, see [BS95]) Let (X,F) be a system of m sets on
an n-point set, and let A denote its incidence matrix. Then we have

disc(F) ≥ disc2(F) ≥
√

n

m
· λmin,

where λmin denotes the smallest eigenvalue of the n × n matrix AT A.

The computation of eigenvalues becomes much easier when the matrix AT A is a circu-
lant matrix. A circulant matrix is an n×n matrix whose rows are composed of cyclically
shifted copies of the first row. Namely, for an n-dimensional vector (a0, a1, . . . , an−1) we
define the n × n circulant matrix C(a0, a1, . . . , an−1) by putting cij = a(j−i)mod n, i.e.

C(a0, a1, . . . , an−1) =




a0 a1 a2 . . . an−1

a1 a2 a3 . . . a0

a2 a3 a4 . . . a1

· · · · ·
an−1 a0 a1 . . . an−2


 .

Let ζ0, ζ1, . . . , ζn−1 denote the n-th roots of the unity, which are defined as roots of the
cyclotomic equation xn = 1. All the roots lie on the unit circle and we can order them
according to the sequence of visiting them if we go around the unit circle counterclockwise
starting at 0, namely we put ζk = e

2πi
n

k. This simplifies the following operations:

• ζjζk = ζ(j+k)mod n

• ζk
j = ζ(jk)mod n

For convenience, we will consider all operations +, . on indices reduced modulo n and thus
we will later omit the mod n suffix.

We define the complex argument as usual by arg(x + iy) = arctan( y
x
) and restrict its

range to the interval (−π, +π]. The complex argument of the n-th root of unity is then
as follows

arg(ζk) =

{
2πk
n

if 0 ≤ k ≤ n
2

2π(k−n)
n

if n
2

< k < n.
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Let B be a circulant matrix C(a0, a1, . . . , an−1). It can be easily verified that zi =
(1, ζ1

i , ζ
2
i , . . . , ζ

n−1
i )T is an eigenvector of B and thus the eigenvalues λ0, λ1, . . . , λn−1 of B

are
λi = a0 + a1ζi + a2ζ

2
i + . . . + an−1ζ

n−1
i .

Let A be an incidence matrix for the set system (X,F) and let B denote AT A. Then
the element bij counts the number of sets Si ∈ F containing both elements xi and xj .
Moreover, if the matrix B is a circulant matrix C(a0, a1, . . . , an−1), we can derive a more
useful expression for the eigenvalues of B:

nλk = n

n−1∑
i=0

aiζ
i
k =

n−1∑
i=0

n−1∑
j=0

a(i−j) mod nζ
(i−j)mod n
k =

n−1∑
i=0

n−1∑
j=0

bijζ
(i−j)
k =

=
∑
S∈F

∑
xi∈S

∑
xj∈S

ζ
(i−j)
k =

∑
S∈F

∣∣∣∑
xi∈S

ζ i
k

∣∣∣2.
And thus

λk =
1

n

∑
S∈F

∣∣∣∑
xi∈S

ζ i
k

∣∣∣2.
Let (X,F) be a set system, where X = [n] and F contains exactly mn sets enumerated

as F = {S0, S1, . . . , Smn−1}. We say that a set system (X,F) is wrapped if for every i ∈ [m]
and j ∈ [n] the set Sin+j is the set Sin cyclically translated by j, i.e.

Sin+j = {(k + j) modn : k ∈ Si}.

The incidence matrix A of a wrapped set system (X,F) is composed of m square n×n
circulant matrices A0, A1, . . . , Am−1 stacked up vertically, one on top of the other:

A =




A0

A1
...

Am−1


 .

By the definition of a wrapped set system every Ai is a circulant and thus every AT
i Ai

is a circulant too. Note that although A is not a circulant itself, the matrix B = AT A is
equal to

∑m−1
i=0 AT

i Ai and therefore B is a circulant.

Alternatively, we can observe that the (i, j) entry of AT A is the number of sets from
F that contain both elements i and j. Since the sets forming F are invariant under cyclic
shifts, the entries (i, j) and (i + k, j + k) of AT A are the same for an arbitrary shift by k
and thus AT A is a circulant.
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Lemma 2.2 Let (X,F) be a wrapped set system, where |X| = n and |F| = mn, and
let A be its incidence matrix. Then the n × n matrix B = AT A is a circulant and its
eigenvalues are

λk =
m−1∑
i=0

∣∣∣ ∑
j∈Sin

ζj
k

∣∣∣2.
Proof. Since for each set Sin, we have its n − 1 translates in F that give the same
contribution, we may just count n-times the contribution of the set Sin and thus

λj =
1

n

∑
S∈F

∣∣∣∑
k∈S

ζk
j

∣∣∣2 =
m−1∑
i=0

∣∣∣ ∑
k∈Sin

ζk
j

∣∣∣2.
�

3 Lower bounds

In this section we will prove the lower bound for the sums of three arithmetic progressions.
For this purpose we will use following lemma:

Lemma 3.1 Let ([n],F) be a wrapped set system, where |F| = mn, and let ζ0, ζ1, . . . , ζn−1

be the n-th roots of unity. If there are real constants c, α > 0 such that for each j ∈ [n]
there is Sin ∈ F such that ∣∣∣ ∑

k∈Sin

ζk
j

∣∣∣ ≥ cnα

holds, then disc(F) ≥ cnα√
m

.

Proof. To invoke the eigenvalue bound for an L2-discrepancy we need to lowerbound
the value of smallest eigenvalue λmin. Since our set system is wrapped, we know that all
eigenvalues are given by the expression

λj =

m−1∑
i=0

∣∣∣ ∑
k∈Sin

ζk
j

∣∣∣2.
We know that for each j there is a set Sin that makes the eigenvalue ‘large’ and hence

for every eigenvalue we know that

λj =

m−1∑
i=0

∣∣∣ ∑
k∈Sin

ζk
j

∣∣∣2 ≥ ∣∣∣ ∑
k∈Sin

ζk
j

∣∣∣2 ≥ c2n2α.

Thus

disc(F) ≥ disc2(F) ≥
√

n

mn
c2n2α =

cnα

√
m

.

�
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If we want to obtain a good lower bound from Lemma 3.1, the number of sets forming
F has to be small and F has to contain for each j ∈ [n] a set Bj , such that

∣∣∑
k∈Bj

ζk
j

∣∣
is large. Our goal is to ensure that for each j ∈ [n] there is a Bj ∈ F such that all ζk

j for
k ∈ Bj are concentrated in one part of the unit circle. Namely, if all k ∈ Bj satisfy

−π

3
≤ arg ζk

j ≤ π

3
,

then Re ζk
j ≥ 1

2
for all k ∈ Bj , and the value of

∣∣∣∑k∈Bj
ζk
j

∣∣∣ will be at least |Bj |/2.

0

0 n − 1

n − 1

Bj

B
′
j = {jk mod n : k ∈ Bj}

k 7→ jk mod n
2
3π

0

bn
6 c d 5

6ne

k 7→ ζk
j

k 7→ ζk

Figure 1: The relation of the set B
′
j and the sum

∑
k∈Bj

ζk
j

For convenience, we define for every Bj ⊆ [n] a set B
′
j as the set {jk mod n : k ∈ Bj}.

The set B
′
j is actually the set of indices i of ζi = ζk

j that participate in the sum
∑

k∈Bj
ζk
j

(see figure 1). The condition | arg ζk| ≤ π
3

for all k ∈ Bj is thus equivalent to the condition

B
′
j ⊆

{
0, . . . ,

⌊1

6
n
⌋}

∪
{⌈5

6
n
⌉
, . . . , n − 1

}
.

Moreover, if n is a prime and 0 < j < n, the mapping k 7→ jk modn is a bijection and
the cardinalities of Bj and B

′
j are the same.

Now let us apply this method to prove the Ω(n1/4) lower bound for the set system of
arithmetic progressions on [n]. For this purpose we construct a small auxiliary wrapped
set system F that is suitable for Lemma 3.1 and disc(Sn) is asymptotically bounded below
by disc(F).

We will show, that for each j ∈ [n] we can find a positive integer dj = O(
√

n), such

that | arg ζ
dj

j | = O(n−1/2). Let us take as Bj an arithmetic progression with difference

dj having Ω(
√

n) elements, such that | arg ζk
j | ≤ π

3
for all k ∈ Bj . For such a Bj , we get∣∣∣∑k∈Bj

ζk
j

∣∣∣ = Ω(
√

n). Since there are only O(
√

n) possible choices of dj , it suffices us

to put only O(
√

n) different sets Bj into F . With each inserted Bj , we also have to put
into F its n− 1 wrapped translates, and thus F has size O(n3/2). The following theorem
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summarizes our discussion. This version of the proof of the lower bound for Sn was first
suggested by Lovász and can be found in [BS95].

Theorem 3.2 For any n ∈ N we put k = b√n/6c and m = 6k. Let us consider the
following set system ([n],F), where F = {S0, S1, . . . , Smn−1} and the sets Sdn+j for d ∈ [m]
and j ∈ [n] are given as

Sdn+j = {(di + j) modn : i ∈ [k]}.
Then

disc(F) ≥ cn1/4.

Proof. For a fixed j ∈ [n], there is by the Pigeonhole Principle a positive integer c0,
1 ≤ c0 ≤ m such that

−2π

m
≤ arg(ζc0

j ) ≤ 2π

m
.

Then Re ζ ic0
j ≥ 1/2 for 0 ≤ i ≤ k − 1, and hence∣∣∣ ∑

i∈Sc0n

ζ i
j

∣∣∣ ≥ (Re
∑

i∈Sc0n

ζ i
j

)
≥ k/2.

From this and Lemma 3.1 it immediately follows that

disc(F) >
1

10
n1/4.

�
Since every S ∈ F from theorem 3.2 is a disjoint union of two arithmetic progressions,

we get the following corollary.

Corollary 3.3 For n ∈ N, let ([n],Sn) be a set system formed by all arithmetic progres-
sions on [n]. Then disc(Sn) = Ω(n1/4).

For the set system ([n],Sn) is the Ω(n1/4) lower bound tight. We would like to show
that the set systems ([n],Sk

n) for k ≥ 2 have their discrepancy bounded below by Ω(n1/2).
Unfortunately, we are able to prove this only for k ≥ 3, while for k = 2 the currently
known best lower bound is Ω(n1/3); see [Heb04].

As we have seen in the proof of Theorem 3.2, for each j ∈ {1, . . . , n−1} we can find two
positive integers 0 < c1 ≤ √

n and 0 < d1 ≤ √
n, such that | arg ζc1

j | = 2πd1

n
. Without loss

of generality, let us assume that arg ζc1
j is positive and thus d1 = c1j mod n, the other case

can be handled in the same way. Let Aj be the set {ic1 : i ∈ [n1]}. If n1 ≤ min{ n
c1

, n
6d1

},
then Aj is an arithmetic progression on [n] and A

′
j is an arithmetic progression on [bn/6c]

(see figure 2). Although is n1 is at least Ω(
√

n), we cannot generally expect a greater
value.
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0

0

k 7→ jk mod n

n − 1

n − 1

Aj

A
′
j

Figure 2: Aj with difference c1 goes to A
′
j with difference d1

Our goal is to find a Bj such that B
′
j covers a constant fraction of {0, . . . , b1

6
nc} ∪

{d5
6
ne, . . . , n − 1}. In next two steps we will schematically (and possibly misleadingly)

show how to achieve this. In the first step we extend the arithmetic progression A
′
j to

a longer arithmetic progression B
′
j with the same difference. This is done in such a way

that B
′
j consists of several copies of A

′
j and thus Bj is taken as a sum of two arithmetic

progressions (see figure 3). In this way we can have Ω(n/d1) elements in Bj.

0 n − 1

Aj

A
′
j

0 n − 1

A
′
j + d2 A

′
j + 2d2

Aj + c2

Aj + 2c2

k 7→ jk mod n

Figure 3: Bj (resp. B
′
j) composed from copies of Aj (resp. A

′
j)

In the last step we take a suitable sum of three arithmetic progressions for Cj such
that C

′
j is composed of Ω(d1) interlaced copies of B

′
j that are mutually disjoint (see figure

4), and thus C
′
j has Ω(n) elements.

Bj

B
′
j

B
′
j + d3

Bj + c3

0 n − 1

0 n − 1

k 7→ jk mod n

Figure 4: C
′
j is composed from interlaced copies of B

′
j
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The following lemma provides, for each j ∈ {1, . . . , n− 1}, a precise and more careful
construction of the set Cj. This construction requires n to be a prime.

Lemma 3.4 Let n be a prime. For each j ∈ {1 . . . n − 1} there exists a set Cj such that

• Cj is a sum of three arithmetic progressions on [n]

• Re ζk
j ≥ 1/2 for every k ∈ Cj

• |Cj| ≥ 1
5000

n.

Proof. For a fixed j we find integer constants c1, c2, c3, d1, d2, d3, n1, n2 and n3 as follows:

1. Let c1 be the k ∈ {1 . . . b√nc} for which the value Re ζk
j is maximum. We put

d1 = min{jc1 mod n,−jc1 mod n} and n1 = d n
12max{c1,d1}e.

2. If c1 ≤ 12d1, then we put c2 = 1, d2 = 1 and n2 = 1, otherwise we put c2 = n mod c1,
d2 = d1d n

c1
e and n2 = b c1

30d1
c.

3. If d1 < 6, then we put c3 = 1, d3 = 1 and n3 = 1, otherwise we put c3 to
be the k ∈ {1 . . . b2n

d1
c} for which the value Re ζk

j is maximum. We put d3 =

min{jc3 mod n,−jc3 modn} and n3 = bd1

12
c.

4. We put Cj = {i1c1 + i2c2 + i3c3 : ik ∈ [nk], k = 1, 2, 3}.

We have chosen c1 as the k ∈ {1 . . . b√nc} for which the value of Re ζk
j is maximum,

i.e. as the k ∈ {1 . . . b√nc} for which the value of | arg ζk
j | is minimum. By the Pigeonhole

Principle

− 2π

d√ne ≤ arg ζc1
j ≤ 2π

d√ne ,

and since | arg ζc1
j | = arg ζd1 = 2πd1

n
, we conclude that d1 ≤ √

n. Similarly we arrive at

c3 ≤ 2n
d1

and d3 ≤ d1

2
.

Claim A: Cj is a sum of three arithmetic progressions on [n].

By construction the set Cj is a sum of three arithmetic progressions. The largest
element of Cj is bounded by

max Cj = c1(n1 − 1) + c2(n2 − 1) + c3(n3 − 1) ≤
≤ n

12
+

n

30
+

n

6
≤ n

2
,

and thus Cj ⊆ [n].
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Claim B: Re ζk
j ≥ 1/2 for every k ∈ Cj .

We show that for every k ∈ Cj the value of | arg ζk
j | is less than π/3 and this already

implies the claim.

max
k∈Cj

| arg ζk
j | = max

(i1,i2,i3)∈[n1]×[n2]×[n3]
| arg ζc1i1

j + arg ζc2i2
j + arg ζc3i3

j | ≤
≤ max

i1∈[n1]
| arg ζc1i1

j | + max
i2∈[n2]

| arg ζc2i2
j | + max

i3∈[n3]
| arg ζc3i3

j | =

=
2π

n
(d1(n1 − 1) + d2(n2 − 1) + d3(n3 − 1)).

In the case that c1 ≤ 12d1

max
k∈Cj

| arg ζk
j | =

2π

n
(d1(n1 − 1) + d2(n2 − 1) + d3(n3 − 1)) ≤

≤ 2π

n

(
d1

n

12d1
+ d2 · 0 +

d1

2

d1

12

)
≤ π

3
,

otherwise

max
k∈Cj

| arg ζk
j | =

2π

n
(d1(n1 − 1) + d2(n2 − 1) + d3(n3 − 1)) ≤

≤ 2π

n

(
d1

n

144d1
+ d1

⌈ n

c1

⌉ c1

30d1
+

d1

2

d1

12

)
≤ π

3
.

Claim C: |Cj| ≥ 1
5000

n.

We put D = {i1d1 + i2d2 : i1 ∈ [n1], i2 ∈ [n2]}. From the fact that d2 = d1d n
c1
e and

d2 > n1d1 we deduce that D is a subset of an arithmetic progression with difference d1

and |D| = n1n2.

The set E = {i1d1 + i2d2 + i3d3 : i1 ∈ [n1], i2 ∈ [n2], i3 ∈ [n3]} is a union of n3 shifted
copies of D. Our goal is to show that those n3 shifted copies of D are mutually disjoint. If
there were two intersecting copies of D, then there has to exist a k ∈ {1, . . . , n3}, such that
d1|kd3. Let it be so and let k, l be the integers demonstrating this case, i.e. ld1 = kd3.
Since d1 > d3, we have l < k. Thus l < n3 ≤ n1 and the preimage of ld1 under the
mapping fj(k) = jk modn is f−1

j (ld1) = lc1 and similarly f−1
j (kd3) = kc3. The mapping

fj is a bijection and therefore ld1 = kd3 implies lc1 = f−1
j (ld1) = f−1

j (kd3) = kc3. But
since we also have c1 < c3, we arrive at the contradiction l > k. Thus all n3 shifted copies
of D are mutually disjoint and |Cj| = |E| = n1n2n3 ≥ n/5000.

�

Theorem 3.5 For each prime n there exists a wrapped set system ([n],Fn), where Fn =
{S0, S1, . . . , Sn2−1} such that each Si ∈ Fn is a union of two sums of three arithmetic
progressions and

disc(Fn) >
1

10000
n1/2.
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Proof. For a fixed n we construct Fn = {S0, S1, . . . , Sn2−1} as follows: For S0 just take
the set {0, 1, . . . bn/5000c} and for 0 < j < n we put Sjn = Cj as constructed in Lemma
3.4. Since for all 0 ≤ j < n we know that∣∣∣ ∑

k∈Sjn

ζk
j

∣∣∣ ≥ ∑
k∈Sjn

Re ζk
j ≥ 1

10000
n,

from lemma 3.1 it immediately follows that

disc(S) >
1

10000
n1/2.

�

Corollary 3.6 For n ∈ N, let ([n],Sn) be a set system formed by all sums of three
arithmetic progressions on [n]. Then disc(Sn) = Ω(n1/2).
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