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Abstract

For given graphs G1,Ga,...,Gg, where k > 2, the multicolor Ramsey number
R(G1,Ga, ...,Gy) is the smallest integer n such that if we arbitrarily color the edges
of the complete graph on n vertices with k colors, there is always a monochromatic
copy of G; colored with i, for some 1 < i < k. Let Py (resp. Cj) be the path
(resp. cycle) on k vertices. In the paper we show that R(Ps, Cy,Ck) = R(Ck,Cy) =
2k — 1 for odd k. In addition, we provide the exact values for Ramsey numbers
R(P4, Py, Ck) =k+2and R(Pg, P, Ck) =k+ 1

1 Introduction

In this paper all graphs considered are undirected, finite and contain neither loops nor
multiple edges. Let G be such a graph. The vertex set of G is denoted by V(G), the
edge set of G by E(G), and the number of edges in G by e(G).
of length m and P,, — the path on m vertices. For given graphs Gi, G, ...,Gi, k > 2,
the multicolor Ramsey number R(G1, G, ..., Gy) is the smallest integer n such that if we
arbitrarily color the edges of the complete graph of order n with k colors, then it always
contains a monochromatic copy of G; colored with ¢, for some 1 < i < k. We only
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C,, denotes the cycle



consider 3-color Ramsey numbers R(G4, G2, Gi3) (in other words we color the edges of K,
with colors red, blue and green). The Turdn number T(n,G) is the maximum number
of edges in any n-vertex graph which does not contain a subgraph isomorphic to G. By
T'(n,G) we denote the maximum number of edges in any n-vertex non-bipartite graph
which does not contain a subgraph isomorphic to G. A non-bipartite graph on n vertices
is said to be extremal with respect to G if it does not contain a subgraph isomorphic
to G and has exactly 7"(n,G) edges. By T%(n,G) we denote the maximum number of
edges in any n-vertex bipartite graph which does not contain a subgraph isomorphic to
G. For any v € V(G), by r(v), b(v) and g(v) we denote the number of red, blue and
green edges incident to v, respectively. The degree of vertex v will be denoted by d(v)
and the minimum degree of a vertex of G by 0(G). The open neighbourhood of vertex v
is N(v) = {u € V(G){u,v} € E(G)}. G; UG, denotes the graph which consists of two
disconnected subgraphs G| and Gy. kG stands for the graph consisting of k£ disconnected
subgraphs GG. We will use GG; + G5 to denote the join of GGy and G, defined as Gy U G,
together with all edges between G; and Gb.

The remainder of this paper is organized as follows. Section 2 contains some facts on
the numbers T"(n, G), where G is a cycle. We first establish the exact value of 7"(n, Cy),
where k£ < n < 2k — 2. Next, we continue in this fashion to obtain an upper bound for
T'(2k—1, C%). Section 3 contains our main result that R(Ps, Ck, Cx) = R(C, Cy) = 2k—1,
where C} is the odd cycle on k vertices. The last Section 4 presents two new formulas for
the following Ramsey numbers: R(Py, Py, Cy) =k + 2 and R(Ps, P5,Cy) =k + 1.

2 Values of T'(n, C})

First, we present some facts which are often used in the paper.
Definition 1 The circumference ¢(G) of a graph G is the length of its longest cycle.
Definition 2 The girth of a graph G is the length of its shortest cycle.

Definition 3 A graph is called weakly pancyclic if it contains cycles of every length
between the girth and the circumference.

Theorem 4 (Brandt, [3]) A non-bipartite graph G of order n and more than @ +1

edges contains all cycles of length between 3 and the length of the longest cycle (thus such
a graph is weakly pancyclic of girth 3).

Theorem 5 (Brandt, [4]) Every non-bipartite graph G of order n with minimum degree
6(G) > (n+2)/3 is weakly pancyclic of girth 3 or 4.

The following notation and terminology comes from [6].

For positive integers a and b define r(a,b) as

r(a,b) :a—bL%J = a mod b.
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For integers n > k > 3, define w(n, k) as
1 1
w(n, k) = a(n -1k — ar(k —r—1),

where r =r(n— 1,k —1).
Woodall’s theorem [12] can then be written as follows.

Theorem 6 ([6]) Let G be a graph on n vertices and m edges with m > n and ¢(G) = k.
Then
m < w(n, k)

and this result is the best possible.
First, we state the following lemma.
Lemma 7 Ifn > 2k —3 and k > 1, then T*(kKsy,n) = (k — 1)n — (k — 1)%.

Proof. The proof is by induction on k. It is clear that T*(K,,n) = 0 for any integer n.
It is easy to see that K, for r > 1 and K3 are the only connected graphs which do not
contain Ky U K5. Thus we obtain T%(2K5,,n) = n — 1 for all n, since K3 is not bipartite.

Let G be any nonempty bipartite graph of order n, which does not contain kKs.
Choose any edge vw. Define H to be the subgraph induced by V(G) — {v,w}. Obviously
H cannot contain (k—1)Kj>, so by the induction hypothesis e(H) < (k—2)(n—2)—(k—2)%.
Since G is bipartite, so the number of edges with at least one vertex in {v, w} is not greater
than n— 1. Thus we obtain ¢(G) < (k—2)(n—2)— (k—2)?+(n—1) = (k—1)n—(k—1)?,
which implies T*(kK,n) < (k — 1)n — (k — 1)?. The graph Kj_ 1, x4+ implies that
T*(kKyn) > (k—1)n—(k—1)*=(k—1)(n —k+1). O

Lemma 8 Let G be a bipartite graph of order 2k — 2 with k* — 3k + 4 edges, where k is
odd and k > 9. Then any two vertices, which belong to different sides of the bipartition,
are joined by a path of length k — 2.

Proof. Let {X,Y} be the bipartition of G and choose any two vertices x € X, y € Y.
Graph GG can be seen as a complete bipartite graph without at most k — 3 edges. Define
X' =(X\{z})nN(y) and Y' = (Y \ {y}) " N(x). The number of edges in G guarantees
that | X’| > 1, |Y'| > 1 and |X'| +|Y’| > 2k —4 — (kK — 3) = k — 1. Thus the complete
bipartite graph with bipartition {X’, Y’} contains at least k — 2 edges, so at least one of
them, say vw, where v € X" and w € Y’ must belong to G as well. In this way we obtain
path xwwvy, which is a path of length 3 joining x and y. Now we will show that any path
of length at least 3 but shorter than k£ — 2 which joins x and y can be extended by two
additional vertices to a longer path joining x and y, which by induction completes the
proof.

Assume that x and y are joined by a path P of length & — p, where 4 < p < k — 3.
Define G' = G[V(G) \ V(P)]. We have e(G’) = e(G) — e(P) — |[{vw € E(G) :v € P,w €
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GY >k -3k+4—(k—p+1)2/4—(k—p+1)(k+p—3)/2. From Lemma 7 we
have T*((p/2 + 1)Ky, k + p — 3) = (p* + 2kp — 6p)/4. One can easily verify that this
implies e(G') > T*((p/2 + 1)Ks,k + p — 3) and thus G’ contains p/2 + 1 independent
edges. Assume that there is no path of order £ — p 4+ 2 joining x and y in graph G. In
this case any edge from G’ can be connected to at most (k — p + 1)/2 vertices from P or
in other words cannot be connected to at least (kK —p+ 1)/2 vertices from P. So we have
e(GQ) <e(Ky_15-1)—|{fvw € E(G):ve Pwe G} < (k—1)*—(p/2+1)(k—p+1)/2 =
k> — (104 p)k/4+ (p*+p+2)/4 < k* —3k+4 = ¢(G), a contradiction. Hence there must
be a path of order £ — p + 2 joining x and y in graph G. U

Theorem 9 For odd integers k > 5
T'(n,Cy) = w(n, k — 1),
where kK <n <2k — 2.

Proof. The last part of the thesis of Theorem 6 implies that 7"(n, Cy) > w(n,k — 1).
Let us suppose that there exists a non-bipartite Cy-free graph G’ on n vertices which
has more than w(n,k — 1) edges. Observe that w(n, k) is not a decreasing function of
k and of n, ie. w(n,k1) > w(n, ko) if ky > ko and w(ny, k) > w(ng, k) if ny > ns.
Then, graph G’ must contain a cycle of length greater than k. Now, we prove that
w(n,k—1)+1 > @ + 1. The maximal possible value of n is 2k — 2. Then, the
left-hand side is equal to k? — 3k + 4 and the right-hand side is equal to k? — 3k + 17?,
so by Brandt’s theorem graph G’ contains Cj. For the case n = 2k — 3 we obtain that
r(n—1,k—2) =0 and w(n,k —1) +1 > @ + 1, and G’ also contains a cycle of
length k. For the case n < 2k — 4 we have that r(n — 1,k —2) = n — (k — 1). Then,
w(n,k—1)+1= n*+k*—kn—3k+ 3n+3 and the inequality w(n,k—1)+1 > @jtl
implies the following inequality: %2 +n(2 —Fk)+ k> + % > 3k. The minimal value of the
left-hand side holds for n = 2k — 4 and it is equal to 4k — 2.25, so for k > 3 graph G’
contains a cycle of length k. 0

Theorem 10 For odd integers k > 9

2%k — 2)?2

T’(Qk—l,Ck)g( 1 —1=(k-1)72-1

Proof. Let G be a non-bipartite graph of order 2k — 1. By Theorem 4 and by property
w2k — 1,k —1) =k = 3k + 5 < 227 1 9 we obtain that if G has at least 272 4 2
edges, then it contains C}.

Assume that G has M +1 = k? — 2k + 2 edges. Suppose that there is a vertex

v € V(G) such that d(v) < k — 2. If G — v is a non-bipartite subgraph, we immediately
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obtain a contradiction with 7"(2k — 2, Cy) = k* — 3k + 3, so G — v must be bipartite. It is
clear that vertex v must be joined to at least one vertex in each side of the bipartition of
G —v. Applying Lemma 8 we find a cycle Cj, in graph G, so we have that §(G) = k—1. In
this case, the number of edges of graph G is at least (ngﬁ =k?—3k+3 > k*—2k+2,
a contradiction. These observations lead us to the conclusion that a non-bipartite graph
G on 2k — 1 vertices and @ + 1 edges must contain a cycle Cj.

Consider the last case when G has (k — 1)? edges. Since w(2k — 1,k — 1) < (k — 1)?
for k > 4 and w(k,n) is a non-decreasing function of k£ and n, graph G must contain a
cycle of length at least k. It follows that 6(G) > k — 2. We obtain this property using the
same arguments as those in the previous case. Since k — 2 > (2k + 1)/3 for k > 7, then
by Theorem 5 graph G is weakly pancyclic of girth 3 or 4, so it contains a cycle of length
k. O

Finally, for the sake of completeness we recall a few Turan numbers for short paths.
In 1975 Faudree and Schelp proved

Theorem 11 ([9]) If G is a graph with |V(G)| = kt + 7, 0 < r < k, containing no
path on k + 1 vertices, then |E(G)| < t(];) + ) with equality if and only if G is either
(tKy) UK, or ((t —1—1)Kg) U (Kpg-1)/2 + K (k1) /24ik+r) for some l, 0 <1 <t, when k
is odd, t >0, and r = (k+£1)/2.

G
¢

It is easy to check that we obtain the following

Corollary 12 For all integers n > 3

T(n, Py) = PJ
2
fn=0 d3
T(n, Py) = n if n . mo
n—1 otherwise.
37" ifn=0 mod4
T(n,Ps) =92 -2 ifn=2 mod4
37” — % otherwise

3 Ramsey numbers for odd cycles

In 1973 Bondy and Erdds proved that
Theorem 13 ([2]) For odd integers k > 5

R(Cy,, Cy) = 2k — 1
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In 1983 Burr and Erdos gave the following Ramsey number.

Theorem 14 ([5])
R(P3,C3,C3) =11

In 2005 the first author determined two further numbers of this type.

Theorem 15 ([8])
R(Pg, 05, 05) =9

R(P3;,Cr7,C7) =13
Now, we prove our the main result of the paper.
Theorem 16 For odd integers k > 9
R(Ps,Cy, Cy) = R(Cy,Cy) =2k — 1

Proof. Let the complete graph G on 2k — 2 vertices be colored with two colors, say blue
and green, as follows: the vertex set V(G) of G is the disjoint union of subsets G and
(G5, each of order k£ — 1 and completely colored blue. All edges between G and G4 are
colored green. This coloring contains neither monochromatic (blue or green) cycle Cy nor
a monochromatic (red) path of length 2. We conclude that R(Ps, Cy, Cy) > 2k — 1.
Assume that the complete graph Ky 1 is 3-colored with colors red, blue and green. By
Corollary 12, in order to avoid a red Pj, there must be at most £ — 1 red edges. Suppose
that Ko,_; contains at most k£ — 1 red edges and contains neither a blue nor a green Cy.
Since the number of blue and green edges is greater or equal to (*, ") —(k—1) = 2(k—1)2,
at least one of the blue or green color classes (say blue) contains at least (k — 1)? edges.
If the blue color class is bipartite, then one of the partition sets has at least k vertices.
Since R(Ps,Cy) = k for k > 5 [11], the graph induced by this partition has to contain a
red Pj or a green C}, so blue edges enforce a non-bipartite subgraph of order 2k — 1 with
at least (k —1)? edges which by Theorem 10 contains a blue Cy,. O

4 The Ramsey numbers R(P,, P,,, C})

This section makes some observations on 3-color Ramsey numbers for two short paths
and one cycle of arbitrary length.

In [1] we find two values of Ramsey numbers: R(FPy, Py, C3) =9 and R(Py, Py, Cy) = T.
By using simple combinatorial properties (without the aid of computer calculations) we
proved: R(Py, Py, C5) =9 and R(Py, Py, Cs) = 8 (see [7] for details).

Theorem 17
R(Py, Py, C7) = 9.
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Proof. The proof of R(Py, Py, C7) > 9 is very simple, so it is left to the reader. Let the
vertices of Kg be labeled 1,2;...,9. Since R(Py, P;,Cg) = 8, we can assume 1,2,3,4,5,6
to be the vertices of green Cy. If the subgraph induced by green edges of Ky is bipartite,
then since R(Py, Py) = 5, we immediately obtain a red or a blue Py. Since T'(9, Py) = 9,
the number of green edges is at least 18 > (9_41)2 + 1, so the non-bipartite subgraph
induced by green edges of Ky is weakly pancyclic. Since R(Py, Py, C3) = 9, this subgraph
contains green cycles of every length between 3 and the green circumference. Avoiding a
green cycle C7; we know that the number of green edges from vertices 7, 8,9 to the green

cycle is at most 3. We have to consider the two following cases.

1. There is a vertex v € {7,8,9} which has three green edges to the vertices of green
cycle Cs. We can assume that the edges {1, 7}, {3, 7}, {5, 7} are green. In this case
the edges {2,4}, {4,6}, {2,6} are red or blue. Without loss of generality we can
assume that {2,4} and {4,6} are red. This enforces {2,7}, {6,7} to be blue and
{2,8}, {6,8} to be green, and we obtain a green cycle of length 8 and then a green
07.

2. There is a vertex v € {7,8,9} which has two green edges to the vertices of green
cycle Cg. We have to consider two subcases.

(i) The edges {1,7}, {3,7} are green and {2,7}, {4,7}, {5,7}, {6,7} are red or
blue. This enforces {2,6} and {2, 4} to be red or blue. We obtain two situations.
In the first, if edge {2,6} is red and {2,4} blue, then we can assume that edge
{2,7} is blue, then {5,7} is red and we obtain a red or a blue P, with edge
{6,7}. In the second, if edges {2,6} and {2,4} are red, then {4, 7}, {6,7} are
blue and {4,8}, {6,8}, {4,9}, {6,9} are green. Edge {2,6} cannot be green.
If edge {5,8} is red, then we obtain a blue Py: 2 —5—7 — 6 and if {5,8} is
blue, then we have ared Py: 6 —2 —5—T7.

(ii) The edges {1,7}, {4,7} are green and {2,7}, {3,7}, {5,7}, {6,7} are red or
blue. Then vertex 8 and vertex 9 have green edges to at most one vertex from
{2,3,5,6}, otherwise we have either the situation considered in (i) or a green
cycle of length 8. By simple considering red and blue edges from {7,8 9} to
{2,3,5,6}, we obtain a red or a blue P;.

We obtain that there are at least 15 non-green edges from {7,8,9} to the vertices of
the green Cg. We can assume that there are at least 8 blue edges among them and we
immediately have a blue P;. 0

Theorem 18 For all integers k > 6

R(Py, Py, Cy) = k + 2.

THE ELECTRONIC JOURNAL OF COMBINATORICS 13 (2006), #R55 7



Proof. The critical coloring which gives us the lower bound k + 2 is easy to obtain,
so we only give a proof for the upper bound. This proof can be easily deduced from
Turan numbers and the theorems given above. By Theorem 9 and Corollary 12 we obtain
that T"(k + 2,Cy) = 1k* — 3k + 7 for k > 5 and T'(k + 2, P,) < k+ 2. It is easy
to check that T"(k 4 2, Cy) is greater than the maximal number of edges in a bipartite
graph on k + 2 vertices, thus T'(k + 2,C%) = T'(k + 2,Cy). Suppose that we have a
3-coloring of the complete graph Kj,o. This graph has %kQ + %k + 1 edges. Note that
T(k+2,C)+2T(k+2, Py) < $k*+1k+11 < 3k* 4+ 3k+1for all k > 10. If k € {8,9,10},
we obtain that T'(k + 2,Cy) + 2T'(k + 2, P4) < (*1?) with equality for k = 8 and k = 10,
so R(Py, Py, Cy) = 11. By Theorem 11 we know the properties of the extremal graphs
with respect to P, and by Theorem 9 and [6] we can describe the extremal graphs with
respect to (Y, so it is easy to check that the theorem holds for the remaining cases when

k € {8,10}. O
The following lemma will be useful in further considerations.

Lemma 19 Suppose that graph G has k+1 vertices and it contains a cycle C, and suppose
that we have a vertex v ¢ V(Cy), which is joined by r edges to Cy, where 2 < r < k.
Then one of the following two possibilities holds:

(i) G contains a cycle Cy;.

(17) G' = G[V(Cy)] contains at most @ - @ edges.

Proof. Let C' = zyx9x5...21 be a cycle Cy and v ¢ V(C') be a vertex, which is joined by
d(v) = r edges to C, where 2 < r < k. First, if r > [4], then we immediately have a
cycle Cj41 and (i) follows. Assume that 2 < r < [£—17. Let the vertices of C, which are
joined by an edge to vertex v, be labeled p;,, p;,, ..., p;.. If any two of them are adjacent,
then we obtain the cycle Cy1; and (i) follows. Otherwise, consider the following vertices:
Diy+1s Pig+1s -+ Din+1- In order to avoid a cycle Cjiq, these vertices must be mutually
nonadjacent and G contains at most ZE=D — =D eqoeg. O

2 2

Theorem 20 For all integers k > 8

R(Ps, P5,Cy) = k + 1.

Proof. A critical coloring which gives us the lower bound k + 1 is very simple, so all we
need is the upper bound. It is easy to see that simply using Turan numbers does not give
us the proof. Indeed, the sum T'(k+1, P3) +T(k+1, P5) +T(k+1,C,) is far greater than
the maximal number of edges in the complete graph on k + 1 vertices. Suppose that we
have a 3-coloring of K, with colors red, blue and green which neither contains a red Ps,
nor a blue Ps, nor a green C}. K}y has to contain a green cycle Cy_;. Indeed, suppose
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that this is not the case. Since T'(k + 1, Py) + T(k + 1, Ps) + T(k + 1,Cy—1) < (1) for
k > 11, we obtain either a red P3 or a blue Ps. For the case of k € {8,9,10,11} we use
the properties of the extremal graphs with respect to P3 and Ps and we also obtain either
a red P; or a blue P5. Let the vertices of K., be labeled vy, vy, ...,vx. We can assume
the first £ — 1 vertices to be the vertices of green Cj_;. It is easy to see that b(vi_1) and
b(vy) are greater or equal to k — [(k —1)/2] — 1. Note that in order to avoid a blue Ps we
obtain that the vertices vy_; and v, have no common vertex which belongs to V(Cy_1)
and which is joined by a blue edge to them. If the vertex vp_; or vy is joined by at least
4 green edges to the vertices of Cy_1, then by Lemma 19 and R(P3, Ps) = 5 we have a
blue Ps. If vx_; and vy are joined by at most 3 green edges to the vertices of Cj_;, then
by Lemma 19 and R(Ps, Py) = 4 we obtain a blue P,. If £ > 9 then we also have a blue
Ps. In the case k = 8 by simple considering possible colorings of the edges of v;_; and vy
we obtain either a red P;, or a blue Ps, or else a green Cj,. U
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