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Abstract

We expose a relationship between jamming and a generalization of Tutte’s barycentric
embedding. This provides a basis for the systematic treatment of jamming and maximal
packing problems on two-dimensional surfaces.

1 Introduction

In a seminal paper [1], W. T. Tutte addressed the problem of how to embed a three-connected
planar graph in the plane. He proposed to fix the positions of the vertices of one face (outer
vertices) as the vertices of a convexgon and to let the other (inner) vertices of the graph to

be positioned into the barycenters of their neighbors (see Fig. 1).

Figure 1: Barycentric embedding of a graph with= 13 vertices (three outer vertices).

The barycentric embedding is unique. If we denoterpy. ., ry the positions of vertices
of a graph with/V vertices then the barycentric embedding minimizes the energy

E= ) |ri—r

edges(i,j)
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(proportional to the mean squared edge length) over the positions of the inner vertices (see [1]).

The purpose of this paper is to stugynming a problem of importance for the physics of
granular materials and of glasses [2, 3, 4], which also has many applications in mathematics and
computer science [5]. We expose a relationship between jamming and a generalization of the
barycentric embedding, and provide a basis for the systematic treatment of jamming on two-
dimensional surfaces. We first informally describe our results and leave the formal definitions
to the following sections.

A set of non-overlapping disks of equal radius may contain a sub-set of disks which do not
allow any small moves, regardless of the positions of the other disks: In Fig. 2 (showing disks
in a square), disks7,k,l,m, andn are jammed, while is free to move.

Figure 2: Left: Configuration of seven disks in a square. Disksk,l,,m, andn are jammed.
Right: Contact graph of the jammed sub-set. Edges among outer vertices are omitted.

The positionr; of the center of disk must be at least a disk diameter away from other disk
centers, and at least a disk radius from the boundary. Ifidskammedy; locally maximizes
the minimum distances to all other disks, and twice the distances to the boundaries. Hence for
a diski not in contact with the boundary, we have

min |r; — r;| = loc maxmin |r —r;],

J#i ro j#
whereloc means that; is in a local maximum. In the past, many authors [6] have found
excellent jammed configurations of disks on a sphere by searching for local minima of the
repulsive energy

B(r)=) |r—x|™ (1)
j#i

in the limit ¢ — oo where, evidently, the small distances— r;| contribute most, so that the
local minima of the energy become equivalent to hard-disk configurations. As the minimum is
local, one cannot prove that with this method the best jammed configuration is generated.

The relationship between jamming and the geometric representation of graphs was first
pointed out, a long time ago, by Sdte and van der Waerden [7]. Each center of a jammed
disk corresponds to an inner vertex of a graph, and each touching point with the boundary to an
outer vertex. The edges of the graph refer to contact of disks among themselves and with the
boundary, as shown in Fig. 2. Such an embedded graph uniquely determines the configuration
of disks. The key problem is to find a crucial necessary property of the graphs corresponding to
the jammed configurations, which allows a successful mathematical treatment.
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In this paper, we propose and investigate the property that, in the example of Fig. 2, each
positionr; is not only the local maximum of the minimum distance to all other disks, but also
the globalminimum of the maximum length of the edges involving vertex

max |r; —r,| =min max |r—r,| (2)

a=j,k,l,m r a=jklm
For an arrangement of disks, as in Fig. 2, it is trivial that the positjoralizes this minimum.
In this paper, we study special representations of graphs that w&takpresentations (as in
Fig. 2), with inner vertices (the ones drawn in light gray, in Fig. 2) and possibly outer vertices
(in dark gray). These graphs are defined without reference to disk packings, but only through
the property that each vertex minimizes the maximum (rescaled) distance to its neighbors (as
in eg. (2)). This makes the notion of thlef—representation non-trivial. 1t generalizes Tutte’s
barycentric embedding where each edge realizes the minimum of the mean squared distance, as
discussed before. Outer vertices are either fixed or restricted to line segments (see section 2 for
precise definition).

Figure 3: StableM—representation of the graph of Fig. 1, with identical positions of the outer
vertices. Three faces of this representation are flat.

We definestablerepresentations as{—representations which are local minima with respect
to an ordering relation. This relation replaces the notion of an energy which cannot be defined
in this setting.

We establish that the stable representation in the plane, torus, or on the hemisphere is es-
sentially unique for any graph. We show thiet—representations of three-connected planar and
toroidal graphs are convex pseudo-embeddings, and that the set of regular three-connected sta-
ble representations contains all jammed configurations. This puts jamming in direct analogy
with the barycentric embeddings. On the sphere, stable representations are not unique, but we
conjecture that their structure is restricted.

One application of jamming is the generation of packingd/afon-overlapping disks with
maximum radius. Such a maximal packing contains a non-trivial jammed sub-set, since oth-
erwise we could increase the radius of each disk. The remaining disks of a maximal packing
are not jammed (as diskin Fig. 2), and confined to holes in the jammed sub-set. In these
holes, we can again search for jammed configurations with suitably rescaled radii. This gives
a recursive procedure to compute maximal disk packings, which relies on the enumeration of
(three—connected) planar or toroidal graphs and a computation of their jammed representations
which form a sub-set of the stable representations. Practically, we generate the stable represen-
tation with a variant of the minover algorithm [8] which appears to always converge to a stable
solution, on the plane, torus, and on the sphere.
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The most notorious instance of maximal packing is Ahe= 13 spheres problem for disks
on the sphere. It has been known since the work ouerénd van der Waerden [7] that 13
unit spheres cannot be packed onto the surface of the unit central sphere (a popular description
has appeared recently in the French edition of Scientific American [9]). However, the minimum
radius of the central sphere admitting such a packing is still unknown, as it is for all lsrger
with the exception ofV = 24 [10]. The problem of packing spheres on a central sphere is
clearly equivalent to the problem of packing disks on a sphere.

Our strategy for solving the maximal packing problem will be complete once the following
conjectures are validated:

Conjecture 1. There exists a finite algorithm to find a stable representation of a given graph.

Conjecture 2. Each graph on the sphere with a fixed set of edges crossing a given equator
has at most one non-trivial stable representation up to symmetry transformations on the sphere.
Furthermore, jammed configurations are stable.

At present, we are able to prove Conjecture 2 for a feegiesentatiorof edges across an
equator, rather than their set. The conjecture is backed by extensive computational experiments.
For planar region and torus, only Conjecture 1 is needed.

2 M-representations

In this section we discuss representations of graphs in a planar region, on the torus, and the
sphere. Bytoruswe mean a rectangular planar region where the parallel sides are formally
identified. In a representation, each vertex is a point, and each edge the shortest connection
between vertices. It is possible for several, or all the points to coincide. Some or all of the edges
then have zero length.

A shortest connection between two points will be also called line segment.

Definition 1 (Inner and outer vertices). We assume that a possibly empty suldseft vertices

(we will call themoutel) is specified in each graph. Each representation of an outer vertex is
fixed or constrained to lie on a specified line segment. Moreover we require that these restric-
tions of the positions of the outer vertices are such that any allowed choice of the outer vertices
positions forms a subdivision of a convexgon.

An edge between an inner and an outer vertex is represented by the shortest connection
from the inner vertex to the feasible region of the outer vertex. A position of a veitea
representation will be denoted by

The intuition behind the outer vertices is that the inner vertices belong to the convex hull of
the outer vertices. This is indeed the case in all the situations considered in the paper (each time
it follows from the particular circumstances).

On the torus, the rectangle can always be chosen so that vertices do not lie on its sides. We
require that in a representation the shortest connection between vertices connected by an edge
is uniquely determined. A representation issanbeddingf it corresponds to a proper drawing,
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i.e. the representations of the vertices are all different and the interiors of the representations of
the edges are disjoint and do not contain a representation of a vertex. We recall that a graph is
k-connected if it has more thdnvertices and remains connected after deletion of any subset of
k—1 vertices. Furthermore, we use two basic facts of graph-theory: the faces of a two-connected
planar embedding are bounded by cycles, and embeddings of a three-connected planar graph
have a unique list of faces and incidence relations.

Each toroidal representation of a graph gives rise to a unique periodic representation by
tiling the plane with the rectangles, as shown in Fig. 4prAper toroidal representation has
edges crossing each side of the rectangle and no outer vertices.

Figure 4: The periodic representation of a toroidal graph with six vertices.

As indicated in the introduction, we define a rescaled distance, in order to treat outer and
inner vertices on the same footing.

Definition 2 (Rescaled distance)The distance between verticeandj is
Yijlri — xl,

where;; = 1 if both ¢, j are inner vertices, and,; = d > 1 if one of the vertices is inner
and the other one outer. The distance between two outer vertices is irrelévard¢notes the
Euclidean distance). In a given representation, we denotédythe (rescaled) length of an
edgee, i.e. the distance between its end-vertices.

Figure 5: Representation of planar graph in the plane. The outer iagternstrained to lie on
a line segment, wheregsandk are fixed.
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2.1 M-—center of vectors

Letr;, ¢« € I be afinite collection of vectors. Thradiusp of a vectorr w.r.t. this collection is
defined byp(r) = max; |[r — r;|,.

Definition 3 (Radius). The M—center of a finite number of vectars i € [ is the vector,
minimizing the radius w.r.t. this collection:

p(rsc) = min p(r).

The M—center is locally unique: If there were two clagé—centers with the same radius
p, then the intersection of the corresponding circles of ragdiwsuld contain all the neighbors,
but this intersection is contained in a circle of smaller radius.

Lemma 1 (No local minimum besides global one)lf r is not theM—center of vectors;, i €
I, then for each > 0 there is a vector’ with |r' — r| < § such thatp(r) > p(r’).

We note that the\i—center of vectors;, i € I, is the center of a circle touching more than
one point. If it touches only two points, the circle must be in the center of them. On the other
hand, if it passes through three points, these points define the center uniquely. To determine it,
we construct, for each pair and also for each triple of vectors, this unique circle. The center of
the smallest circle with no point on its outside is thé-center.

Definition 4 (M-representation). An M—representation of a graph is a representation where
each inner vertex is th@1—center of its neighbors.

Definition 5 (Pseudo—embedding) A representation of a graph in the plane or a hemisphere
is called apseudo—embeddingit is an embedding except that some faces may collapse into a
line segment. Such faces will be calléat. Moreover, aconvex pseudo—embeddihgs convex
faces and each flat face is a topological subdivisiot’gfa cycle of length two.

An example of a convex pseudo—embedding is shown in Fig. 3.
The following proposition is proven in a sequence of ten lemmas.

Proposition 1. Let £ be a representation of a three-connected planar graph on a plane or
hemisphere, such that each inner vertex belongs to the convex hull of its neighbors, with non-
empty set of outer vertices. Théns a convex pseudo—embedding.

Proof. We proceed analogously to the paragraphs 6-9 of [1]. Sihissthree-connected, its set
of faces is uniquely determined, and each face is bounded by a ¢ydenotes the set of outer
vertices.

Let/ be a line in the plane or a non-trivial intersection of a plane with the hemisphere and
defineg(v),v € V, as the perpendicular distance:ofo [, counted positive on one side and
negative on the other side bf

The outer vertices with the greatest valuggdre calledpositive polesand those with the
least value ofy arenegative polesThe sets of positive and negative poles are disjoint sihce
non-empty and hence the positions of the vertice® débrm a subdivision of a convex—gon.
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A simple pathP = vy,..., v of G is right (left) rising if for eachi, g(v;) < g(v;41) Or
g(v;) = g(viy1) andv;4 is on the right (left) hand-side af; with respect ta (this is not
difficult to formalize e.g. by fixing an orientation éf Right (left) falling paths are defined
analogously.

Lemma 2. Each vertex of G different from a pole has two neighbarsandv” so thatg(v') <
g(v) < g(v")org(v') = g(v) = g(v") andv belongs to the line betweehandv”.

Proof. This follows for outer vertices since they form a subdivision of a comveyon, and for
inner vertices because of the convexity assumption. O

Lemma 3. Let v be a vertex of7. There is a right rising and a left rising path fromto a
positive pole, and also both right and left falling paths frono a negative pole.

Proof. By Lemma 2v has a neighbow’ with g(v) > g(v) or g(v') = g(v) andv’ is on the right
hand-side ob. SinceG is three-connected, has a neighbor different from Using Lemma 2,
we can monotonically continue fromi. This constructs a right rising path, and the remaining
paths may be obtained analogously. O

Lemma 4. If v ¢ O thenv belongs to the convex hull 61.

Proof. If such v does not belong to the convex hull 61, then let/ be a line in the plane
(cycle on the hemisphere) which defines a separating plane, and we get a contradiction with
Lemma 3. U

Lemma 5. Let F’ be a face of> andv,, v, ve, v5, vertices off” appearing along in this order.
ThenG does not have two disjoint, v, and v, v} paths.

Proof. This is a simple property of a face of a planar graph. 0J

Lemma 6. If a faceF is flat then it is a topological subdivision 6f,. Furthermore, let be an
edge of a facé” and let/ be a line in the plane (a cycle on the hemisphere) containinthen
Fis embedded on one sidelof

Proof. This simply follows from Lemma 3 and Lemma 5 (see Fig. 6). O

o] [e]
e i;
o o]
Figure 6:Left: a flat face must be a subdivision©f. Right: each face must lie on one side of
incident edge:.
It follows from Lemma 6 that each face is a subdivision of a conwegon or flat and

subdivision ofCs.
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Each edge belongs to exactly two different faces. An edgedandantif it belongs to
two flat faces. More generally, in a two-connected representation with prescribed faces such
that each flat face is a subdivision©f, a path which is a subdivision of an edge éslundant
if it belongs to two flat faces. A graph issamplificationof G if some redundant edges and,
thereafter, maximal redundant paths have been deleted.

Lemma 7. A flat face of a simplification af is a subdivision of’;.

Proof. If we deletee and unify the two faces containireg we get a planar graph. If the state-
ment does not hold then we can again use Lemma 3 and Lemma 5 to obtain a contradiction.
The same applies for a maximal redundant path. O

Let G’ be the smallest simplification @f and letF’ be a flat face oty’. We know that it is
a subdivision o’, and each edge df belongs to one of the two sides ©f.

Lemma 8. Lete be an edge of’ and let/ be the line in the plane (cycle on the hemisphere)
containinge.

1. If e belongs to a flat facé’, then the faces incident with edges of different sidefs afe
on opposite sides 6f

2. If edgee does not belong to a flat face, then the two faces incidentaithon opposite
sides ofl.

Proof. For the second property: as in the proof of Lemma 7, if we deleted 'unify’ the two
faces containing, we get a planar graph. If the two faces lie on the same sidewé can use
Lemma 5. The first property is analogous. O

Let |G| denote the subset of the surface consisting of the embeddings of the vertices and
edges of7, and letS denote the complement ¢F|.

We define a functior on S as follows:d(xz) = 1 if = is not within the convex hull 0O,
otherwise(z) equals the number of interiors of faces to whichelongs. The correctness of
this definition is guaranteed by Lemma 4.

Lemma 9. For eachz € S, d(z) = 1.

Proof. It follows from Lemma 8 that the functiod does not change when passing an edge.
However, it cannot change elsewhere and outside of the convex halita¥quals tol. Hence
itis 1 everywhere. O

Lemma 10. If an edgee intersects the interior of an edgé then one of them is not i@’ or
they belong to opposite sides of a flat face&-af

Proof. This is a corollary of Lemma 9. O
O

The notion of the pseudo—embedding may be extended to the representations of a graph on
the sphere and to the proper toroidal representations. Here we say that a face is convex if it
contains a shortest connection between any pair of its points.
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Corollary 1 (M-rep. is pseudo—embedding)An M-representation without outer vertices
of three-connected planar graphs on a sphere or three-connected proper toroidal graphs on a
torus is a convex pseudo—embedding.

Proof. As the number of vertices is finite, we can always find a cut (rectangle and plane through
the center, respectively), which does not contain any intersection of two edges. The corollary
follows by taking as outer vertices the intersection of edges with the cut. If the cut does not
intersect any edges, the representation is trivial. O

Definition 6 (Ordering of representations). Consider two representatiogsand&’ of a graph

G. We say that is smallerthan &’ (€ < &') if the ordered vector of lengths of the edges
containing an inner vertex & is lexicographically smaller than the ordered vector of lengths
of the same edges #1.

The above ordering relation cannot generally be mapped into the real numbers, because the
real axis does not admit an uncountable number of disjoint intervals. Therefore, there is no
‘energy’ (generalizing eq. (1)) such that< &' < E(&) < E(&').

Definition 7 (Stable representation).Consider a representatiafof a graphG = (V, E) with
inner, and possibly outer verticeésat positionsr;. £ is stableif there exists a valué such that
all embeddingg’ of G with vertices at; with |r; — r}| < § Vi satisfy€” > €.

Proposition 2. Stable representations avet—representations.

Proof. Let the vertexi of £ have the radiug; and let edg€{, j} have lengthp;. Note that

p; > pi. If ©is not theM—center of its neighbors, then it follows from Lemma 1 that there is
a representatiofi’ obtained from¢ by a small move of vertex such thap! < p;. All edges
{k, [} with length bigger thamp, are the same ig and&’. No edge{k, [} of lengthp; in £

is longer in&’ and at least one such edge has shortened. Finally, ddg&sshorter tharp;

in £ may become longer i&’. As a result, we havé’ < &, which is impossible for a stable
representation. O

Proposition 3 (Existence of stable representation)Each graph has a stable representation.

Proof. Leté > 0 be a sufficiently small constant. Define a sequence of representétidis. . .

as follows:¢&; is arbitrary. If€; is unstable le€;, ; be a lexicographically minimal representation
where each vertex has moved by at mbét exists by compactness). In particulgr; < &;.

Again by compactness, there is a converging subsequence of represeidtatiihdimit £'. £’

must be stable since otherwise #jrvery near ta€’, there is a close-by representatiénc &£’

Taking into account the minimality rule in the construction of the sequence of representations,
this contradicts the assumption tigatmonotonically decreases in lexicographic ordef’to [

Note that the stable representation can consist in all vertices falling onto a single point.
This stable representation is unique for a graph without outer vertices in a plane or on the
hypersphere. This stable representation also exists, but is usually not unique, for a graph without
outer vertices on the sphere.
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2.2 Uniqueness of stable representations

Proposition 1 implies that eachvi—representation is a convex pseudo—embedding. Whereas
Tutte’s barycentric embedding is unique, thé-representations are not necessarily unique, as
can be seen by the counter-example sketched in Fig. 5 (the vertices of the inner triangle are in
M-—position; they can be rotated and rescaled, to remamiposition). However, there is a
uniquestablerepresentation.

Lemma 11. Consider two-dimensional vectars, ro, r, ry, with

r, = (xlayl)a etc

and two midpointg; andrs:

We then have

[r1 — 1oy + 1] — 13,
5 .
We haver, —r;|, = |r} —r5|, = |[F; —T3|, only for parallel transportr; = r}+c;r; = ry+c.

Ty — f2|v <

Proof. Follows from triangle inequalitya + b| < |a| + |b|, witha =r; —r; andb =r} — 1},
with equality only for parallel transport. O

Note that if|r; —rs| # |r} —r5|, the midpoint distancg; —T»| is smaller thamax; |r; —r7|.

Proposition 4 (Unique stable representation in the plane)Each graphG has a unique stable
representation in the plane (up to parallel transport).

Proof. We assume the contrary. Let representati¢thand&?, realized by vectors) andr}, be
two stable representation. We can assudihel £1.

Consider the representatiofi$ realized by

r?:r?+o¢>< [r}—r?} 0<a<l.

The representations” exist. We denote by® ande! the representations of edgen £° and
&Y, respectively. Leti, ... el be the ordered vector of edge lengths. Lete the smallest
index such that! is not parallely transported tg. We observe the following: i is an edge
of G such that(e') = i(e}), thenl(e) < (e}) sinceE® < &' It means by Lemma 11 that
£ < £'Va < 1, which implies that! is not stable. O

Proposition 5 (Unique stable representation on torus) Each graphG has a unique stable
representation on the torus if the sets of edges crossing each boundary are prescribed (up to
parallel transport).

Proof. The representations* of the previous proof can analogously be applied to the corre-
sponding periodic representations, both for edges in the inside of one rectangle and for the edges
going across the boundary. O
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This means that the number of stable representations of a toroidal graph is bounded by the
number of possible sets of boundary horizontal and vertical edges.

Next we will discuss uniqueness of stable embeddings on the hemisphere. The following
Lemma 12 is a nontrivial variant of Lemma 11: Obviously, the triangle inequality remains valid
in three dimensions, but the midpoint would not lie on the surface of the sphere.

Lemma 12. Consider three-dimensional vectars ro, r’, r, on the unit hemisphere with

ry = (21,y1,21 = 11/ 1 —af —yi), etc

and two midpoints; andr, which are defined with respect to a projection of vectors on the
equatorz = 0

T; = %(95@ +27); Ty = %(yz +yi); Zi = V1 -7 -7, i=12 (3)

We then have, for the three-dimensional Euclidean distance-squared:

ry — 1?4 |} — rh)?

T —Tl* < 5

(4)

In (4), we can have equality only for generalized parallel transport with- 2|, = c¢(xo — %)
andy, — ¢} = c(y2 — y5) for special values of.

Proof. We can write (4) as

2 2 / /1\2
o T+ T+l (x1 — 29) (2] — b))
(Zl 22) - [ 2 2 2 2
+ same terms iy, y' + (21 — 20)> + (2] — 25)*. (5)

Explicit calculation shows that the terms on the first row of expression (5) is

T+, zet ]t (11— x0)? N (2} — xh)?
2 2 2 2

=1

i ¥

/ /
(11 — @y — 2] + 25)°,

which allows to show that (5) and (4) are equivalent to

E—%) <t -z — 2+ 7)) + (o — v —oh + )
+i(m—2)?+1-24)". (6)

Furthermore, we have, from eq. (3)
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The inequality (6) now follows from the triangle inequalitya] — |b|)> < |a — b|? with the

four-dimensional vectors
(zl 2 — y1—yi>
a = y

V2'Ve2 2
b — <Q Z_é Ty — T y2—y§)
\/57 \/57 2 ) 2 )
which evidently satisfya| = z;, |b| = z, and|a — b|? equal to the r.h.s. of (6). O

Proposition 6 (Unique stable rep. on hemisphere)Each graphG on the hemisphere with
fixed outer vertices has a unique stable representation.

Proof. Using the definition of midpoints on the sphere from Lemma 12, we can define valid
representation§® as in the proof of Proposition 4. Then we still ha#e < £' Va < 1. Itis
easy to see that, with fixed outer vertices, generalized parallel transport is impossiblel]

2.3 Stable representations on the sphere

On the sphere, there can be several non-trivial stable representations. To see this, consider the
equator-representation of Fig. 7. Besides a central cycle,-at0, there are vertices in the

Figure 7: An equator embedding of a grafghwith a central cycle at = 0, and upper and
lower subgraphsgsygper (at z > 0) and Giower (At z < 0). The edges on the central cycle are
longer than all other edges.

upper subgrapliy,pper (With z > 0) and in the lower subgrapfiewer (at z < 0). Furthermore,
we suppose that the edges on the central cycle are longer than those in the rest of the graph. An
equator representation can give rise to two inequivalent representations, namely by pulling the
central cycleupto z > 0, ordownto z < 0.

Proposition 6 allows us to observe that nevertheless, some degree of uniqueness can be
preserved.

Proposition 7 (Unique representation with fixed cut). There is unique stable representation
of a graph on a sphere when the edges crossing a given equator are fixed.

As mentioned in the introduction, extensive computing experiments suggest the stronger
statement of Conjecture 2. This would imply that a given graph has only a finite number of
stable representations (up to symmetry operations).
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3 Jamming

In this section we derive basic properties of jammed configurations of disks on planar region,
torus and sphere.

Definition 8 (Jammed embedding).An embedding of a graph isammedif

1. £ belongs to the convex hull of the gBtof outer vertices, and each outer vertex is
connected to at least one inner vertex.

2. £ isreqgular i.e. all edges have rescaled lengthand the distance between any two
verticesk, [ not connected by an edge is strictly bigger than

3. there is & such that no representatidi with |r; — r;| < § has some edge longer and no
edge shorter than i§.

The three central disks in Fig. 8 are not jammed, even though each one cannot move indi-
vidually.

Figure 8:Left: Configuration of five disks, in which no disk can move by itself, but three disks
can move together, as indicatellight: The (unjammed yet stable) embedding corresponding
to the configuration. The edges among outer vertices are omitted.

Let us recall that in a representation, the @eof outer vertices forms a subdivision of a
convexn—gon. Let us denote this cycle of outer verticeshyand if G is a jammed embedding
then let us denote b§f» the pseudo—embedding obtained fréhby adding the edges @fp;
let us note thaC'» bounds the outer face 6f». In a jammed embedding each inner vertex
has degree bigger than two and at most five on the sphere, and at most six on planar region and
torus. If Gy is two-connected then each inner face is convex ([7]). Below we show that each
jammed grapltz is three-connected.

Lemma 13. If a graph G is connected but not two-connected and has no vertex of dégree
then there are two vertices, v, (possiblyv; = v;) and components; of G\ v; (i = 1,2) such
that eachs; U v; is two-connected an@; U v; is a subgraph ot \ G..

Lemma 14. If a graphG is two-connected but not three-connected, and has no vertex of degree
2, then it has two paird/;, V, of vertices (possibly witly; N V5, # () and componenté:; of
G \'V; (i = 1,2) such that7; U V; is two-connected an@; U V] is a subgraph ot \ Gs.
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Definition 9. LetG be a two-connected regularly embedded graphklee a face oy bounded

by a cycleC' and letv € C. We say thab is convex with respect té' if there is a plane
containingv and perpendicular to the surface (planar region, torus, sphere), so that a small
neighborhood of in F’ lies completely in one half-space defined by the plane.

We note that ifF' is a convex region bounded by a cycle then each vertex of the cycle is
convex with respect té'.

Lemma 15. Let 7, F» be connected regions bounded by cydgsC; and such that none of
them covers the whole planar region (torus, sphere, hemisphere};;butF; do. Then there
are at least three non-convex verticegfwith respect taF; or of C', with respect tars.

Proof. Cycle C; must be embedded insidg and F;, must be the region defined lay; that is
not a subset of}. ThenCs is a non-self-intersecting cycle dn. As such, it must have at least
three sharp corners an. O

Proposition 8 (Jammed graph three-connected)If an embedding~ is jammed, thett is
three-connected.

Proof. Let G» be a minimum counter-example. @, is not connected then each component

is jammed and three-connected by the minimality assumption. Consider the embeddings of
different component&’; andG, in the embedding ofr. G, is completely embedded in one of

the faces of~, and vice versa, which is not possible by convexity of faces and by Lemma 15.

If Go has a vertex of degree at most two then it cannot be jammed. Therefore, we suppose
thatG is without a vertex of degree two and either connected or two-connected. By Lemma 13
and Lemma 14 there is a subset of vertiteand a componert; of G \ V; such thatz; UV,
is two-connected and has one of the following two properties:

1.V; consists of a single vertex and there is a vertex, with V5, = {v,} and a component,
of Go \ V3 so thatG, U V5 is a two-connected subgraph@p, \ G .

2. V; consists of two vertices and there is a subigedf two vertices and a compone6t, of
Go \ V, so thatG, U V; is a two-connected subgraph@f, \ G .

We consider the embedding 6f, U V; induced by the embedding 6f» (see Fig. 9). Let
F; be the face in whiclt7p \ G is embedded and l&t; be the bounding cycle af;. Clearly
V1 C (4. MoreoverF; cannot be the outer face of the embeddingef sinceGo \ G is
embedded there. Hence all the vertice€'of\ 1} are convex with respect o, .

Let F;, be the face of the induced embeddinghfu V; which containg™; and letC;, be the
cycle that bound#;. ClearlyV, C 5 and as aboves; cannot be the outer face of the embed-
ding of Go. Hence all vertices of’; \ V, are convex with respect tB,. ThenFy, Fy, Cy, Cs
satisfy the properties of Lemma 15 BgtandV; have only two vertices, a contradiction. [

Proposition 9 (Jammed graphs stable)Jammed embeddings are stable on the planar region
and torus and on a hemisphere. On the sphere, jammed embeddings are stable if we fix repre-
sentations of edges across an equator.
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Figure 9: Face$; and F5, and subsets of verticés§ andl; used in the proof of Proposition 8.

Proof. We show that an unstable regular embeddinlgas a small move which leaves some
edges the same and increases the others, which means that it is not jammed.JFsr(atlgere

is a representatiofi’ within § of £ such that some edges decrease in length, and the others stay
the same. LeE” be the inverse of the move which toékinto £’ (on the hemisphere: inverse

of the projected move). The inverse move exists, since a jammed embedding in the plane or on
the torus cannot have an outer vertex on an end point of the corresponding line segment, and
for the hemisphere, if originally an inner vertex positioned on the equator movedf thauld

not have been jammed. For the representatiohan edge ir€, lete’ ande” be the respective
representations of the same edge&irand&”. We can use Lemma 11 (on planar region and
torus) and Lemma 12 (for the hemisphere) to show thdl = I(e) = (") > I(e) and

l(e) <l(e) = (") > I(e). O

The converse of Proposition 9 is not true, and stable representations are not necessarily
jammed. An example is shown in Fig. 8.

As mentioned in the introduction, extensive computing experiments suggest, for the sphere,
the stronger statement of Conjecture 2.

4  Algorithms

In Section 2.1, we discussed a finite algorithm for the determination oftheenter of vectors
r;. This algorithm is of practical use because a circlé+dimensional space is already specified
by d + 1 points. The incrementahinoveralgorithm [8] remains useful in high dimensidrand
is trivial to implement. For a finite number of vectars: € I on the unit sphere, it is defined
by

Ro=0, Rpp < Rp+r,,

where the index,,;, is @ minimal overlap (scalar product) vector with

<Rk7 rimin) = mln <Rk7 rZ) :

1€l

It can be proven [8] that
Rk/\Rk\ — I'o

under the condition that a vect® exists with(R,r;) > 0 Vi € I.
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Figure 10:Left: Minimum overlap algorithm. The rescaled vecl®y/|R;| converges to the
M-—center of vectors on the sphefight: On the plane, the move is in direction of the vector
r; with maximum distance t®,. The amplitude:;, of the move decreases with but ), ¢
diverges.

In the minover algorithm (on the sphere), the correctionR tadecrease with increasirig
On the plane or the torus, we can do the same by using an update

Rit1 — Ry + ¢ [ri.. — R,

wherer; _ is the vector of maximum distance Ry, (see Fig. 10), and where the sequence
satisfies the conditions:

e, — 0fork — oo

Zekﬁoofork—mxa.
k

This algorithm was applied to all vertices sequentially in order to compute stdblepre-sen-
ta-tions.

As a simple test, we have run this algorithm on the three-connected graph of Fig. 1 and
Fig. 3, embedded on a sphere and starting from an equator position. This graph, incidentally,
corresponds to the conjectured optimal packing for the thirteen-sphere problem. The algorithm
converges rapidly to the conjectured optimum solution [6], which is shown in Fig. 11.

Figure 11: Conjectured optimal configuration1df disks on a unit sphere, and corresponding
representation of vertices, obtained by computational experiment as atahlepresentation
of the graph of Fig. 1 and Fig. 3. The algorithm of Section 4 was used.

As stated in Conjecture 1, we are convinced that a finite algorithm for computing a stable
M-—representation exists.
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