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Abstract

The reduced canonical form of a loopfree game G is the simplest game infinites-
imally close to G. Reduced canonical forms were introduced by Calistrate, and
Grossman and Siegel provided an alternate proof of their existence. In this pa-
per, we show that the Grossman–Siegel construction generalizes to find reduced
canonical forms of certain loopy games.

1 Introduction

The reduced canonical form G of a loopfree game G is the simplest game infinitesimally
close to G. Reduced canonical forms were introduced by Calistrate [4], who suggested a
construction for G. Calistrate’s construction was recently proved correct by Grossman
and Siegel [6], who also gave a second, quite different, construction of G. In this paper we
show that the Grossman–Siegel construction generalizes to a class of loopy games known
as stoppers.

The arsenal of tools available in the study of loopy games is currently rather lim-
ited. The temperature theory and the theory of atomic weights, two of the most familiar
techniques used to attack loopfree games, have not yet been adequately generalized to
stoppers; though Berlekamp and others have extended the temperature theory to many
loopy Go positions [2]. The reduced canonical form is therefore a welcome addition to
the theory. It has already proven to be a useful tool in the study of loopfree games,
particularly in situations where temperatures and atomic weights yield little information;
see, for example, [7, Section 7].

In Section 2 we review the basic theory of stoppers and develop the necessary machin-
ery for carrying out the reduction argument. Section 3 presents the construction. Finally,
Section 4 poses some interesting open problems and directions for further research.
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Figure 1: The graphs of on and over.

2 Preliminaries

By a loopy game γ we mean a directed graph with separate Left and Right edge sets and
an identified start vertex. If the play of γ terminates, then the player who made the last
move wins; otherwise the game is drawn. Throughout this paper we will assume that all
loopy games are finite, and this assumption will be built in to all of our definitions.

The theory of loopy games was introduced in [5] and elaborated substantially in Win-
ning Ways [3]. See [9] for an updated introduction. In this section we briefly review the
definitions and facts that will be needed for this paper.

A path (walk) in the graph of γ is alternating if its edges alternate in color. We say
that the path (walk) is Left-alternating or Right-alternating if its first edge is a Left or
Right edge, respectively.

Likewise, a cycle in the graph of γ is alternating if it is even-length and its edges
alternate in color. A game γ is said to be a stopper if its graph contains no alternating
cycles.

In many important respects, stoppers behave just like loopfree games. The following
facts are established in [3].

Fact 2.1. Let G be a stopper, and suppose G′ is obtained from G by eliminating a domi-
nated option or bypassing a reversible one. Then G′ is also a stopper and G′ = G.

Fact 2.2. Let G and H be stoppers with G = H. Suppose that neither G nor H has any
dominated or reversible moves. Then for every GL there is an HL with GL = HL, and
vice versa; likewise for Right options.

Two particular stoppers are critically important to the subsequent analysis: the games
on = {on|} and over = {0|over}. Their graphs are shown in Figure 1. We also define
off = −on = {|off} and under = −over = {under|0}.

Note that when a stopper is played in isolation, play is guaranteed to terminate (since
infinite play would necessarily traverse an alternating cycle). However, infinite play is still
possible among sums of stoppers. For example, in the game on + off , both players may
pass indefinitely.

A Note on Induction

Because stoppers have no alternating cycles, we can often induct along alternating se-
quences of play. The following definition formalizes this principle.
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Definition 2.3. Let γ be a loopy game. The Left (Right) stopping distance of γ, denoted
DL(γ) (DR(γ)), is the length of the longest Left- (Right-) alternating walk proceeding
from γ. We write DL(γ) = ∞ (DR(γ) = ∞) if no such maximum exists.

Clearly, if G is a stopper, then DL(G),DR(G) < ∞. Since DR(GL) < DL(G) and
DL(GR) < DR(G) for all GL, GR, we can use stopping distances as the basis for induction.
This observation will simplify many subsequent arguments, though we will seldom refer
explicitly to DL(G),DR(G).

Strategies

Let γ be a loopy game and let A be the set of all followers of γ. A Left strategy for γ is a
partial map S : A → A such that, whenever Left can move from some δ ∈ A , then S(δ)
is defined and S(δ) = some δL. A Left strategy S is a second-player survival (winning)
strategy for γ if Left, playing second according to S, achieves at least a draw (win), no
matter how Right plays. We say that Left can survive (win) γ playing second if there
exists a second-player Left survival (winning) strategy for γ.

Right strategies and first-player strategies are defined analogously.

Definition 2.4. Let S be a Left strategy for γ. We say that S is a complete survival
strategy provided that, whenever Left can survive some follower δ ∈ A , then he can
survive δ by playing according to S.

It is easy to see that every stopper G admits a complete Left survival strategy: if H is
a follower of G, then S(H) simply follows the recommendation of an arbitrary first-player
Left survival strategy, whenever one exists. In fact, all loopy games admit complete
survival strategies, but the general case is somewhat more complicated; see [10] for a
proof.

We will need the following characterization of ≤, which is established in [3].

Fact 2.5. Let G, H be stoppers. Then G ≤ H iff Left can survive H −G, playing second.

The following facts are easily verified using Fact 2.5.

Fact 2.6. Let x > 0 be any positive number. Then 0 < over < x < on.

Fact 2.7. over + over = over and on + on = on.

Fact 2.8. If G is any stopper, then G ≤ on.

We also have the following lemma.

Lemma 2.9 (Swivel Chair Lemma). Let γ, δ be arbitrary loopy games and let G be
a stopper. If Left can survive both γ − G and G − δ playing second, then he can survive
γ − δ playing second.

Note that Fact 2.5 requires the hypothesis that G and H are stoppers, so the Swivel
Chair Lemma is not completely trivial.
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Proof of Lemma 2.9. Let α−β be a follower of γ−δ. We say that α−β is safe if Left can
survive both α−H and H −β moving second, for some follower H of G. By assumption,
γ − δ is safe. Therefore, it suffices to show that if Right moves from any safe position,
then Left can return to another safe position.

Let α−β be safe, and suppose without loss of generality that Right moves to αR −β.
Since α − β is safe, there exists a follower H of G such that Left can survive αR − H
playing first and H − β playing second. Choose such H with DR(H) minimal and let S
and T be Left survival strategies for αR − H and H − β, respectively.

Now if S(αR − H) = αRL − H , then αRL − β is safe, and we are done. Otherwise,
S(αR−H) = αR−HR. Now consider T (HR−β). It cannot be the case that T (HR−β) =
T (HRL − β): for then Left could survive αR − HRL playing first, as well as HRL − β
playing second; but DR(HRL) < DR(H), contradicting minimality of DR(H). So in fact
T (HR − β) = HR − βR, whence αR − βR is safe.

Infinitesimals and Stops

An arbitrary game γ is infinitesimal if −x < γ < x, for all numbers x > 0. It is well-
known that a loopfree game G is infinitesimal iff its Left and Right stops are both zero.
We will need a suitable generalization of this fact.

Definition 2.10. Let G be a stopper. G is said to be a stop iff either G is a number,
G = on, or G = off . Likewise, we say that G is stoppish iff either G is numberish,
G = on, or G = off .

We begin with some easy generalizations of well-known facts about loopfree games.
As always, we write G� H to mean G 6≥ H and G
 H to mean G 6≤ H .

Theorem 2.11 (Simplicity Theorem). Let G be a stopper and suppose that, for some
number x, we have GL

� x for all GL and x � GR for all GR. Then G is a number.

Proof. Identical to the proof in the loopfree case.

Theorem 2.12 (Stop Avoidance Theorem). Let G be a stopper and let x be a stop.
Assume that G is not a stop and that Left, playing first, can survive G + x by moving in
x. Then he can also survive by moving in G.

Proof. Clearly x 6= off , since Left has no moves in off . If x = on, then Left can survive
α + x for any α. Since G is not a stop, Left must have a move in G, so he can survive
GL + on and there is nothing more to prove.

Now assume that x is a number. We proceed as in the loopfree case. Put x0 = x.
Recursively on n, if xn has a Left option, put xn+1 = xL

n . Since x is a number, only
finitely many xn’s can be so defined. Let n be the largest integer such that Left can
survive G + xn moving second. (Such an n must exist, since by assumption Left can
survive G + x1 moving second.) Now if Right could also survive G + xn moving second,
then we would have G = −xn, contradicting the assumption that G is not a stop. So Left

the electronic journal of combinatorics 13 (2006), #R57 4



must have a winning move from G + xn. By definition of n, his move to G + xL
n (if it

exists) is losing, so his winning move must be to GL + xn. But x is a number, so x > xn

and we are done.

Clearly the stops are totally-ordered, so the max and min of stops are well-defined.
Thus we can make the following definition, by induction on stopping distance.

Definition 2.13. Let G be a stopper. The Left and Right stops of G, denoted L0(G) and
R0(G), are defined as follows.

L0(G) =

{
G if G is a stop;

max{R0(G
L)} otherwise.

R0(G) =

{
G if G is a stop;

min{L0(G
R)} otherwise.

Lemma 2.14. Let G be a stopper and x a number. If L0(G) > x, then G 
 x; if
R0(G) < x, then G� x.

Proof. We prove the first assertion; the second follows by symmetry. Suppose that
L0(G) > x. If G is a stop, then G = L0(G), so trivially G > x. Otherwise, let GL

be such that R0(G
L) = L0(G). Then R0(G

L) > x. If GL is a stop, then GL > x and
hence G 
 x. Otherwise, min{L0(G

LR)} = R0(G
L) > x. We can assume (by induction

on stopping distance) that GLR

 x for each GLR, so by the Stop Avoidance Theorem

GL ≥ x. Thus G
 x.

Lemma 2.15. L0(G) ≥ R0(G) for every stopper G.

Proof. It suffices to show that if

max{R0(G
L)} < x < min{L0(G

R)}
for some number x, then G is itself a number. But by the previous lemma, GL

� x for
each GL and x � GR for each GR, so the desired conclusion follows from the Simplicity
Theorem.

Corollary 2.16. Let G be a stopper. If R0(G) = on, then G = on; if L0(G) = off , then
G = off .

Proof. We prove the first assertion; the proof of the second is identical. It suffices to show
that G is a stop, since then the conclusion follows by definition of R0.

Assume (for contradiction) that G is not a stop. Now G ≤ on (since this is true for
any game). We will show that Left, playing second, can survive G− on, whence G = on,
which is a stop.

It suffices to show that if Right moves from any position X − on, where R0(X) = on,
then Left can return to a position of the same form. If X is a stop, then X = on and
this is immediate. If Right moves to some XR − on, then L0(X

R) = on. If XR is a stop,
then XR = on and we are done. Otherwise, there is some XRL with R0(X

RL) = on, and
Left can move to XRL − on.

Finally, if Right passes from X − on, then by the previous lemma we have L0(X) ≥
R0(X) = on, whence L0(X) = on. So there is some XL with R0(X

L) = on, and Left
can move to XL − on.
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3 Reduction

This section describes the construction of G. The following definition is fundamental.

Definition 3.1. Let G, H be any two games.

(a) G ≥Inf H iff G + x ≥ H for all numbers x > 0.

(b) G ≡Inf H iff G ≥Inf H and H ≥Inf G.

Notice that if G is a stopper and x is a number in simplest form, then since x is
loopfree, G + x is also a stopper. We can therefore evaluate the condition G + x ≥ H
in (a) using Fact 2.5.

Lemma 3.2. ≥Inf is transitive.

Proof. Suppose G ≥Inf H and H ≥Inf K, and fix x > 0. Then G+ x
2
≥ H and H + x

2
≥ K,

so G + x ≥ K, as needed.

In [6] we defined Inf-dominated and Inf-reversible options of loopfree games in terms
of ≥Inf . We then showed that if G is not numberish, and Inf-dominated options are
eliminated from G or Inf-reversible ones bypassed, then the value of G is perturbed at
most by an infinitesimal. We will now extend this technique to stoppers. The main
complication is that we can no longer proceed by induction: because G might be loopy,
it is not safe to assume that its followers are all in reduced canonical form.

We begin with some necessary spadework.

Lemma 3.3. Let G be a stopper and let x be a number. If L0(G) < x, then Left, playing
second, can win x − G.

Proof. Since x − G is a stopper, it suffices to show that Left can survive x − G. Now if
G is a stop, then there is nothing to prove. Otherwise, by the Stop Avoidance Theorem,
we may assume Right moves to x − GL. If GL is a stop, then GL ≤ L0(G) < x, and we
are done. Finally, if GL is not a stop, then there is some GLR such that

L0(G
LR) = R0(G

L) ≤ L0(G) < x,

so Left can respond to x − GLR.

Lemma 3.4. Let G, H be stoppers.

(a) If R0(G) ≥ L0(H), then G ≥Inf H.

(b) If G ≥Inf H, then L0(G) ≥ L0(H) and R0(G) ≥ R0(H).
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Proof. (a) Fix x > 0; we will show that Left, playing second, can survive G − H + x. It
suffices to show that if Right moves from a position of the form

X − Y + z, with R0(X) ≥ L0(Y ) and z > 0,

then Left can either survive outright, or respond to a position of the same form.
If X and Y are both stops, then necessarily X ≥ Y , and the conclusion is immediate.

Otherwise, we may assume by symmetry that X is not a stop. There are three cases.

Case 1 : If Right moves to X−Y +zR, then since L0(X) ≥ R0(X), there is some XL with
R0(X

L) ≥ R0(X) ≥ L0(Y ). Since zR > z > 0, it suffices for Left to move to XL−Y +zR.

Case 2 : Suppose instead that Right moves to XR − Y + z. If XR is not a stop, then for
some XRL, we have R0(X

RL) = L0(X
R) ≥ R0(X), whence XRL − Y + x has the desired

form. If XR is a stop but Y is not, then for some Y R we have L0(Y
R) = R0(Y ) ≤ L0(Y ),

and XR−Y R+z has the desired form. Finally, if XR and Y are both stops, then XR ≥ Y .
Since z > 0, there must be some zL ≥ 0, and Left survives by moving to XR − Y + zL.

Case 3 : If Right moves to X − Y L + z, then the argument is like Case 1 (if Y is a stop)
or Case 2 (if Y is not a stop).

(b) We show that L0(G) ≥ L0(H); the proof that R0(G) ≥ R0(H) is similar. Arguing
by contrapositive, suppose that L0(G) < L0(H). If L0(G) = off , then by Corollary 2.16
G = off . Since L0(H) > off , part (a) of this lemma implies that H > n for some integer n.
Thus G 6≥Inf H . The same argument applies if L0(H) = on.

Now suppose L0(G) and L0(H) are both numbers. Put

x =
L0(H) − L0(G)

2
.

To complete the proof, we will show that G+x � H . If H is a stop, then the conclusion is a
consequence of Lemma 3.3. If H is not a stop, then we describe a first-player Right winning
strategy for G−H+x. Let HL be such that R0(H

L) = L0(H). Now L0(G)+x < R0(H
L).

We conclude by showing the following: if Left moves from any position of the form

X − Y + z, with L0(X) + z < R0(Y ), (†)
then Right has a response that either wins outright, or returns to another position of the
form (†). Furthermore, Right’s response will occur in the same component (X + z) or
(−Y ) as Left’s move. Since both are stoppers, this shows that play must terminate.

Suppose first that Left moves to XL−Y +z. Then R0(X
L) ≤ L0(X). If XL and Y are

both stops, there is nothing more to prove. If XL is a stop but Y is not, then Right moves
to XL −Y L + z with R0(Y

L) = L0(Y ) ≥ R0(Y ); by Lemma 3.3 this is a winning move. If
XL is not a stop, then Right moves to XLR − Y + z with L0(X

LR) = R0(X
L) ≤ L0(X).

A similar argument applies if Left moves from (†) to X − Y R + z.
Finally, suppose Left moves to X − Y + zL. If either X or Y is a stop, then by

Lemma 3.3 Right has a winning move in the other component. Otherwise, there is some
XR with L0(X

R) = R0(X) ≤ L0(X). Since zL < z, the position XR − Y + zL has the
form (†).
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Corollary 3.5. Let G be a stopper. Then G is stoppish iff L0(G) = R0(G).

Proof. The forward direction is trivial. For the converse, suppose L0(G) = R0(G) = x. If
x = on, then by Corollary 2.16 G = on; likewise if x = off . So assume x is a number.
Then R0(G) = L0(x), so by Lemma 3.4(a), we have G ≥Inf x. Similarly, R0(x) = L0(G),
so x ≥Inf G, and we conclude that G is x-ish.

Lemma 3.6. The following are equivalent:

(i) G ≥Inf H;

(ii) Left, playing second, can survive G − H + over.

Proof. (i) ⇒ (ii): Arguing by contrapositive, suppose that Right has a winning move
from G −H + over and let S be her first-player winning strategy. Now if G −H + over
is played according to S, then since S guarantees that play will be finite, we know that
Right will never have to move twice from the same position. Let n be the total number
of followers of G − H . We have shown that, if Right plays according to S, then she will
make at most n moves before reaching a position from which Left has no play. Therefore
S suffices as a winning strategy for

G − H +
1

2n+1
,

whence H 
 G + 2−(n+1).

(ii) ⇒ (i): If x > 0 is a number, then x > over, so Left can survive x − over. By the
Swivel Chair Lemma, he can survive G − H + x.

Most of the proofs that follow involve exhibiting a Left survival strategy S ′ for some
position G−G′+over. Usually G′ will be a modified copy of G (for example, with an Inf-
dominated option removed from some follower), and S ′ will be derived from a complete
survival strategy S for G−G+over. It will be essential that S ′ preserves the component
over until a point is reached where Left absolutely must remove it. The following lemma
is key.

Lemma 3.7 (over Avoidance Theorem). Let G be a stopper and let α be an arbitrary
loopy game. Assume that G is not a stop, and suppose that Left, playing first, can survive

G + α + over

by moving from over to 0. Then he can also survive by moving in G.

Proof. Let GL be any Left option with R0(G
L) = L0(G). By Lemmas 3.4(a) and 3.6, we

know that Left, playing second, can survive GL − G + over.
Now by the hypotheses of the lemma, Left (playing second) can also survive G + α.

Since G is a stopper, the Swivel Chair Lemma establishes that he can survive GL + α +
over.
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Definition 3.8. A stopper G is partially reduced if every stoppish follower of G is a stop
in canonical form.

Lemma 3.9 (Replacement Lemma). Let G be any stopper and let G′ be the game
obtained by replacing every stoppish follower K of G with the associated stop L0(K) (in
canonical form). Then G′ is partially reduced and G ≡Inf G′.

Proof. To see that G′ is partially reduced, it suffices to show that L0(K) = L0(K
′) and

R0(K) = R0(K
′) for every follower K of G. If K is a stop, then this is immediate.

Otherwise, to show that L0(K) = L0(K
′), we may assume (by induction on stopping

distance) that R0(K
L) = R0((K

L)′) for every Left option KL; the conclusion is then
trivial. The same argument shows that R0(K) = R0(K

′).
We now show that G ≡Inf G′. By Lemma 3.6, it suffices to show that Left, playing

second, can survive both G − G′ + over and G′ − G + over. We will give the proof for
G − G′ + over; the other case is identical.

Let S be a complete survival strategy for G − G + over. By the over Avoidance
Theorem, we may assume that S recommends a move in over only when both of the
other components are stops.

Now Left plays G−G′ +over according to S until the −G′ component reaches a stop.
Let X − Y ′ + over be the resulting position, and let X − Y + over be the corresponding
subposition of G−G+over, so that Y ′ is a stop and Y is Y ′-ish. Consider S(X−Y +over).
If S(X − Y + over) = XL − Y + over, then XL ≥Inf Y , so by Lemma 3.4(b), we have
R0(X

L) ≥ R0(Y ) = Y ′. Therefore Left can survive XL − Y ′ + over by playing optimally
in XL until a stop is reached, and then moving in over.

If S(X − Y + over) = X − Y R + over, then L0(X) ≥ L0(Y
R) ≥ R0(Y ) = Y ′. So Left

can survive X − Y ′ + over by playing optimally in X until a stop is reached, and then
moving in over.

Next we define the critical notions of Inf-dominated and Inf-reversible options.

Definition 3.10. Let G be a partially reduced stopper and let GL be a Left option of G.

(a) GL is said to be Inf-dominated if GL′ ≥Inf GL for some other Left option GL′
.

(b) GL is said to be Inf-reversible if GLR ≤Inf G for some Right option GLR.

Inf-dominated and Inf-reversible Right options are defined analogously.

Lemma 3.11. Let G be a partially reduced stopper and let H be any follower of G.
Suppose HL is Inf-dominated by HL′

and let G′ be obtained from G by eliminating H →
HL. Then G′ is partially reduced and G′ ≡Inf G.

Proof. To see that G′ is partially reduced, it suffices to show that L0(K) = L0(K
′) and

R0(K) = R0(K
′) for every follower K of G. This is a simple induction on the stopping

distance of K; the only complication occurs when K = H . In that case, HL′ ≥Inf HL,
so by Lemma 3.4(b) we have R0(H

L′
) ≥ R0(H

L). Therefore HL does not contribute to
L0(H), and so L0(H

′) = L0(H).
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Now it is immediate that G′ ≤Inf G. To complete the proof, we will show that Left,
playing second, can survive G′ − G + over.

Let S be a complete Left survival strategy for G−G + over. By the over Avoidance
Theorem, we may assume that S recommends a move in over only when the other
components are stops. Define a Left strategy S ′ for G′ − G + over as follows. S ′ is
identical to S except when S recommends a move from H −Y +over to HL −Y + over.
In that case, S ′ recommends a move to (HL′

)′ − Y + over instead.
We claim that S ′ is a second-player survival strategy. We first show that, whenever

Left (playing according to S ′) moves to a position X ′ − Y + over of G′ −G + over, then
he can survive the corresponding position X − Y + over. Since S ′ is derived from S, this
is automatic except when Left moves from H ′ − Y + over and S recommends a move to
HL − Y + over. But in that case, we know HL ≥Inf Y (since S is a survival strategy), so
HL′ ≥Inf HL ≥Inf Y . So in fact Left can survive HL′ − Y + over.

To complete the proof, we must show that if Left has a survival move and S ′(X ′ −
Y + over) = X ′ − Y , then X ′ ≥ Y . But by assumption on S, this will not happen unless
X is a stop. Therefore H cannot be a follower of X (since G is partially reduced), and
we conclude that X = X ′. But since S is a survival strategy, we know that X ≥ Y .

Lemma 3.12. Let G be a partially reduced stopper and let H be any follower of G.
Suppose HL1 is Inf-reversible through HL1R1 and let G′ be obtained from G by bypassing
H → HL1 → HL1R1. Then G′ is partially reduced and G′ ≡Inf G.

Proof. As before, to see that G′ is partially reduced, it suffices to show that L0(K) =
L0(K

′) and R0(K) = R0(K
′) for every follower K of G. This is a simple induction on

the stopping distance of K, except when K = H . In that case, we may assume that
R0(H

L) = R0((H
L)′) for every HL, and we must show that L0(H) = L0(H

′). There are
two cases.

Case 1 : R0(H
L1) < L0(H). Then HL1 does not contribute to L0(H), and the conclusion

is trivial.

Case 2 : R0(H
L1) = L0(H). Then L0(H

L1R1) ≥ R0(H
L1) = L0(H), so there is some

HL1R1L with R0(H
L1R1L) ≥ L0(H). By induction, we may assume that R0((H

L1R1L)′) =
R0(H

L1R1L). This shows that L0(H
′) ≥ L0(H).

However, we also know that HL1R1 ≤Inf H , so by Lemma 3.4(b) we have L0(H
L1R1) ≤

L0(H). Therefore every HL1R1L satisfies R0(H
L1R1L) ≤ L0(H), and by induction we

conclude that L0(H
′) ≤ L0(H). Therefore L0(H

′) = L0(H), as needed.

Next, we must show that Left, playing second, can survive both G − G′ + over and
G′−G+over. Let S be a complete Left survival strategy for G−G+over. By the over
Avoidance Theorem, we may assume that S recommends a move in over only in the case
where the other components are stops.

First consider G−G′ +over. Suppose Left can survive X −H +over playing second.
Then X ≥Inf H ≥Inf HL1R1 , so in fact Left can survive X −HL1R1 +over playing second.
Therefore, if Left can survive X −H + over playing second, then he has a survival move
from X−HL1R1L+over, for every HL1R1L. It follows that S suffices, without modification,
as a survival strategy for G − G′ + over.
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To complete the proof, we must show that Left, playing second, can survive G′ −G +
over. We will define a new strategy S ′ for G′ − G + over.

S ′ is identical to S, except at those positions α = H −K + over such that Left has a
survival move from α, and S(α) = HL1 − K + over. In that case, since S is a complete
survival strategy, Left must have a survival move from β = HL1R1 −K +over. There are
three cases; in each case, we specify the definition of S ′(α′), where α′ = H ′ − K + over.

Case 1 : S(β) = HL1R1L − K + over. Then put S ′(α′) = (HL1R1L)′ − K + over.

Case 2 : S(β) = HL1R1 − KL + over. Then put S ′(α′) = H ′ − KL + over.

Case 3 : S(β) = HL1R1 − K. Then by assumption on S, HL1R1 and K are both stops.
Since G is partially reduced and H is not a stop, we know that H is not stoppish. By
Corollary 3.5, it follows that L0(H) > R0(H). But HL1R1 ≤Inf H , so Lemma 3.4(b)
implies that R0(H

L1R1) ≤ R0(H). Combining these inequalities with the fact that HL1R1

is a stop, we obtain
L0(H) > R0(H) ≥ R0(H

L1R1) = HL1R1 .

But HL1R1 ≥ R0(H
L1), so L0(H) > R0(H

L1), and we conclude that H has some other
Left option HL′ 6= HL1 with R0(H

L′
) > HL1R1 . Put S ′(α′) = (HL′

)′ − K + over.

This defines S ′. We now claim that S ′ is a survival strategy. We first show that if Right
moves from any position of the form

X ′ − Y + over, such that Left can survive X − Y + over, (†)
then S ′((X ′ − Y + over)R) is another position of the form (†). This is clear except when
(X ′−Y +over)R = H ′−K +over for some K, and S(H−K +over) = HL1 −K +over.
Then the proof depends on case. In Case 1, the conclusion is immediate. In Case 2, we
have that H ≥Inf HL1R1 ≥Inf KL, so in fact Left can survive H − KL + over. Finally, in
Case 3, we have that HL′ ≥Inf HL1R1 (Lemma 3.4(a)). Since HL1R1 ≥ K, we conclude
that Left can survive HL′ − K + over, as needed.

This completes the proof, except for the case where S ′(X ′ − Y + over) = X ′ − Y
(removing the over component). But then, by assumption on S, we know that X and Y
are both stops. Since H is stoppish and G is partially reduced, H is not a follower of X.
We conclude that X ′ = X, and since S is a survival strategy, X ≥ Y .

Definition 3.13. A stopper G is said to be in reduced canonical form if G is partially
reduced and no follower of G contains any Inf-dominated or Inf-reversible options.

Lemma 3.14. For any stopper G, there exists a stopper G′ in reduced canonical form
with G′ ≡Inf G.

Proof. By the Replacement Lemma we can assume that G is partially reduced. The
conclusion then follows by repeated application of Lemmas 3.11 and 3.12.

We conclude by proving the uniqueness of the G′ guaranteed by Lemma 3.14.

Theorem 3.15. Suppose G ≡Inf H and G, H are in reduced canonical form. Then G = H.
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Proof. We will show that Left, playing second, can survive G − H . It suffices to show
that if Right moves from a subposition X − Y with X ≡Inf Y , then Left can respond to
another position that satisfies the same equivalence.

If X and Y are both stops, then X = Y , and the conclusion is trivial. Otherwise,
neither is a stop, since this would imply that the other is stoppish, contradicting the
fact that both are partially reduced. Suppose Right moves to XR − Y (the argument
is the same if he moves to X − Y L). Now X ≡Inf Y , so Left has a survival move from
XR −Y +over. Since Y is not a number, the over Avoidance Theorem implies that Left
has a survival move in either XR or −Y . It cannot be to XRL − Y + over, for this would
imply XRL ≥Inf Y ≡Inf X, contradicting the fact that X has no Inf-reversible moves. So
it must be to XR − Y R + over. Thus XR ≥Inf Y R.

But Left also has a survival move from Y R −X + over, and by the same argument it
must be to some Y R − XR′

+ over, so that

XR ≥Inf Y R ≥Inf XR′
.

Since X has no Inf-dominated options, this implies XR ≡Inf Y R ≡Inf XR′
, and Left can

respond in XR − Y by moving to XR − Y R.

As a trivial consequence of these results, we have the following neat little theorem.
Recall that if G is a stopper, then a pass move is a move from G to G. A stopper is a
ripe plumtree if its only loops are pass moves (i.e., if its graph contains no n-cycles for
any n > 1).

Theorem 3.16. Let G be a stopper in reduced canonical form. Then G contains no pass
moves except from subpositions equal to on or off . In particular, if G is any ripe plumtree
and no subposition of G is equal to on or off , then G is infinitesimally close to a loopfree
game.

Proof. Suppose (for contradiction) that HR = H for some follower H of G. Since H 6=
off , the over Avoidance Theorem implies that Left can survive HL − H + over for
some HL. Therefore HL ≥Inf H . But then Right’s pass move is Inf-reversible through
HL = HRL.

Note that Theorem 3.16 only applies to plumtrees. There certainly exist more com-
plicated stoppers with no on or off positions that are not infinitesimally close to any
loopfree game. Figure 2 illustrates a typical example.

4 Generalizations and Open Problems

Let K be a subgroup of G, the group of finite loopfree games, and define G ≡K H
iff G − H ∈ K. This generalizes ≡Inf , which is equivalence modulo the group Inf of
infinitesimals.

In [6] we defined a reduction modulo K to be a map ρ : G → G such that ρ(G) ≡K G
for all G; ρ(x) = x for all numbers x; and ρ(G) = ρ(H) whenever G ≡K H . We observed
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Figure 2: A stopper ζ that is not infinitesimally close to any loopfree game.

that the mapping G 7→ G is a reduction modulo Inf, and asked whether one can exhibit
any reductions modulo

Infn = {G ∈ G : k · ↓n < G < k · ↑n for some k},

or some other interesting subgroup of G.
Stoppers can provide useful insights into this question. Suppose we expand our defi-

nition of reduction to allow mappings ρ : G → S, where S is the set of stoppers, and drop
the condition that ρ preserve numbers. Then it is not hard to see that

G 7→ G + over

is a reduction; for if ε is a loopfree infinitesimal, then over + ε = over. Unlike the
examples considered in [6], it is surprisingly easy to define G 7→ G + over and prove that
it is a reduction.

Now let I be any stopper satisfying I + I = I. Then it is easy to see that

KI = {G ∈ G : I + G = I}

is a subgroup of G. For example, Kover = Inf, and Kon = G. Furthermore, the mapping
G 7→ G + I is a reduction modulo KI . This mapping directly generalizes the reduction
G 7→ G + over modulo Inf.

The importance of this observation stems from the fact that S contains a great many
idempotents. Several of these are listed in Figure 8 of [10]. A typical example is

In = {0||0,pass|0, ↓→(n−2)∗} (n ≥ 2),

which satisfies ↑n ∈ KIn, but ↑n−1 6∈ KIn. This does not quite answer our question
regarding reduction modulo Infn: we would prefer to exhibit a mapping G → G. But
perhaps a study of the action G 7→ G +In might yield some insight.

Open Problem. Exhibit a reduction ρ : G → G modulo Inf2 (or some other “interesting”
subgroup of G).
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Finally, note that under + over is not a stopper, so the map G 7→ G + over does not
define a mapping S → S. However, it is true that α +under + over ≡Inf α, for all loopy
games α. Furthermore, if α ≡Inf β, then α + under + over = β + under + over. (Here
≡Inf is defined just as for stoppers.) Therefore the mapping α 7→ α + under + over can
be considered a reduction on the monoid L of all (finite) loopy games. This generalizes
to the mapping α 7→ α + I − I, for any idempotent I.

Many years ago, Clive Bach observed that it is difficult (if not impossible) to define
the canonical form of an arbitrary loopy game. Perhaps one might have more success
defining the reduced canonical form. For example, let κ be Bach’s Carousel [3]. As noted
in Winning Ways, κ+ is not equivalent to a stopper. However, it is not hard to show that
κ+ ≡Inf {1|0}, in the usual sense:

{1|0} + under ≤ κ+ ≤ {1|0} + over.

In Winning Ways, the authors asked: “Is there an alternative notion of simplest form
that applies to all finite loopy games?” We conclude with the following specialization:

Question. Does the notion of reduced canonical form apply to all finite loopy games?
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