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Abstract
A set M of edges of a graph G is a matching if no two edges in M are incident

to the same vertex. The matching number of G is the maximum cardinality of a
matching of G. A set S of vertices in G is a total dominating set of G if every
vertex of G is adjacent to some vertex in S. The minimum cardinality of a total
dominating set of G is the total domination number of G. If G does not contain
K1,3 as an induced subgraph, then G is said to be claw-free. We observe that the
total domination number of every claw-free graph with minimum degree at least
three is bounded above by its matching number. In this paper, we use transversals
in hypergraphs to characterize connected claw-free graphs with minimum degree at
least three that have equal total domination and matching numbers.

Keywords: claw-free, matching number, total domination number

1 Introduction

Total domination in graphs was introduced by Cockayne, Dawes, and Hedetniemi [3] and
is now well studied in graph theory. The literature on this subject has been surveyed and
detailed in the two books by Haynes, Hedetniemi, and Slater [5, 6].

∗Research supported in part by the South African National Research Foundation and the University
of KwaZulu-Natal.
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Let G = (V, E) be a graph with vertex set V and edge set E. A set S ⊆ V is a total
dominating set, abbreviated TDS, of G if every vertex in V is adjacent to a vertex in S.
Every graph without isolated vertices has a TDS, since S = V is such a set. The total
domination number of G, denoted by γt(G), is the minimum cardinality of a TDS of G.
A TDS of G of cardinality γt(G) is called a γt(G)-set.

Two edges in a graph G are independent if they are not adjacent in G. A set of
pairwise independent edges of G is called a matching in G, while a matching of maximum
cardinality is a maximum matching. The number of edges in a maximum matching of G
is called the matching number of G which we denote by α′(G). A perfect matching in G is
a matching with the property that every vertex is incident with an edge of the matching.
Matchings in graphs are extensively studied in the literature (see, for example, the survey
articles by Plummer [10] and Pulleyblank [11]).

For notation and graph theory terminology we in general follow [5]. Specifically, let
G = (V, E) be a graph with vertex set V of order n(G) = |V | and edge set E of size m(G) =
|E|, and let v be a vertex in V . The open neighborhood of v in G is N(v) = {u ∈ V | uv ∈
E}, and its closed neighborhood is the set N [v] = N(v) ∪ {v}. For a set S ⊆ V , its
open neighborhood is the set N(S) = ∪v∈SN(v) and its closed neighborhood is the set
N [S] = N(S) ∪ S. If Y ⊆ V , then the set S is said to dominate the set Y if Y ⊆ N [S],
while S totally dominates Y if Y ⊆ N(S).

Throughout this paper, we only consider finite, simple undirected graphs without
isolated vertices. For a subset S ⊆ V , the subgraph induced by S is denoted by G[S].
A vertex of degree k we call a degree-k vertex. We denote the minimum degree of the
graph G by δ(G) and its maximum degree by ∆(G). A graph G is claw-free if it has no
induced subgraph isomorphic to K1,3. A graph is cubic if every vertex has degree 3, while
we say that a graph is almost cubic if it has one vertex of degree 4 and all other vertices
of degree 3.

The transversal number τ(H) of a hypergraph H is the minimum number of vertices
meeting every edge. For a graph G = (V, E), we denote by HG the open neighbor-
hood hypergraph, abbreviated ONH, of G; that is, HG is the hypergraph with vertex set
V (HG) = V and with edge set E(HG) = {NG(x) | x ∈ V (G)} consisting of the open
neighborhoods of vertices of V in G. We observe that γt(G) = τ(HG).

A hypergraph H is said to be k-uniform if every edge of H has size k. We call an edge
of H that contains ` vertices an `-edge. If H has vertex set V and X ⊆ V , we denote
by H \ X the induced subhypergraph on V \ X; that is, we delete all the vertices of X,
and all the edges having a vertex in X. We denote the degree of v in a hypergraph H
by dH(v), or simply by d(v) if H is clear from context. The hypergraph H is said to be
regular if every vertex of H has the same degree.
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2 Known Hypergraph Results

2.1 Hypergraph Results

Chvátal and McDiarmid [2] and Tuza [15] independently established the following result
about transversals in hypergraphs (see also [14] for a short proof of this result).

Theorem 1 ([2, 15]) If H is a hypergraph on n vertices and m edges with all edges of
size at least three, then 4τ(H) ≤ n + m.

We shall need the following definition.

Definition 1 Let i, j ≥ 0 be arbitrary integers. Let H4edge
i,j be the hypergraph defined as

follows. Let the vertex set and edge set of H4edge
i,j be defined as follows.

V (H4edge
i,j ) = {u, x0, x1, . . . , xi, y0, y1, . . . , yi, w0, w1, . . . , wj, z0, z1, . . . , zj},

E1 =
i⋃

a=1

{{xa−1, xa, ya}, {ya−1, xa, ya}},

E2 =
j⋃

b=1

{{wb−1, wb, zb}, {zb−1, wb, zb}},

E(H4edge
i,j ) = {{u, x0, y0}, {u, w0, z0}, {x0, y0, z0, w0}} ∪ E1 ∪ E2.

Let
H4edge =

⋃

i≥0

⋃

j≥0

{H4edge
i,j }.
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Figure 1: The hypergraph H4edge
3,2 .

In Figure 1 we give an example of a hypergraph in the family H4edge.
We shall need the following result from [8].

Theorem 2 ([8]) Let H be a connected hypergraph on n vertices and m edges where all
edges contain at least three vertices. If H is not 3-uniform and 4τ(H) = n + m, then
H ∈ H4edge.

the electronic journal of combinatorics 13 (2006), #R59 3



2.2 Known Graph Results

As an immediate consequence of Theorem 1, we have that the total domination number
of a graph with minimum degree at least 3 is at most one-half its order.

Theorem 3 If G is a graph of order n with δ(G) ≥ 3, then γt(G) ≤ n/2.

Proof. The ONH hypergraph HG of G has n vertices and n edges with all edges of size at
least three. By Theorem 1, there exists a transversal in HG of size at most (n+n)/4 = n/2.
Hence, γt(G) = τ(HG) ≤ n/2. 2

We remark that Archdeacon et al. [1] recently found an elegant one page graph theo-
retic proof of Theorem 3.

The connected claw-free cubic graphs achieving equality in Theorem 3 are character-
ized in [4] and contain at most eight vertices.

u u

u

u

u u

u

u

��@@

@@��

��@@

@@��G1 :

Figure 2: A claw-free cubic graph G1 with γt(G1) = n/2.

Theorem 4 ([4]) If G is a connected claw-free cubic graph of order n, then γt(G) ≤ bn/2c
with equality if and only if G = K4 or G = G1 where G1 is the graph shown in Figure 2.

We now turn our attention to matchings in claw-free graphs. The following result was
established independently by Las Vergnas [9] and Sumner [12, 13].

Theorem 5 ([9, 12, 13]) Every claw-free graph of even order has a perfect matching.

As a consequence of Theorem 5, we have the following result which was observed in [7].

Theorem 6 If G is a claw-free graph of order n, then α′(G) = bn/2c.

As a consequence of Theorems 3 and 6, it follows that the total domination number
of every claw-free graph with minimum degree at least three is bounded above by its
matching number. This result was first observed in [7].

Theorem 7 ([7]) For every claw-free graph G with δ(G) ≥ 3, γt(G) ≤ α′(G).
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3 Main Result

Our aim in this paper is to characterize the connected claw-free graphs with minimum
degree at least three that achieve equality in the bound of Theorem 7. For this purpose,
we define a collection F of connected claw-free graphs with minimum degree three and
maximum degree four that have equal total domination and matching numbers. Let
F = {F1, F2, . . . , F12} be the collection of twelve graphs shown in Figure 3.

We shall prove:

Theorem 8 Let G be a connected claw-free graph with δ(G) ≥ 3. Then, γt(G) = α′(G)
if and only if G ∈ F ∪ {K4, K5 − e, K5, G1}.

4 Proof of Theorem 8

The sufficiency is straightforward to verify. As a consequence of Theorem 4, the graph
K4 and the graph G1 of Figure 2 are the only connected claw-free cubic graphs that
achieve equality in the bound of Theorem 7. Hence it remains for us to characterize the
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Figure 3: The collection F of twelve graphs.
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connected claw-free graphs with minimum degree at least three that are not cubic and
achieve equality in the bound of Theorem 7. We shall prove:

Theorem 9 If G is a connected claw-free graph with minimum degree at least three and
maximum degree at least four satisfying γt(G) = α′(G), then G ∈ F ∪ {K5 − e, K5}.

Proof. Let G = (V, E) have order n. By Theorem 6, α′(G) = bn/2c. If T is a transversal
of HG, then |T | ≥ τ(HG) = γt(G) = α′(G). Hence we have the following observation.

Observation 1 Every transversal in HG has size at least bn/2c.

We shall frequently use the following observation, which is an application of Theorem 1.

Observation 2 If V ′ ⊂ V and H ′ = HG \ V ′ is a subhypergraph of HG of order n′ and
size m′ in which every edge has size at least 3, then there exists a transversal T ′ of H ′

such that |T ′| ≤ (m′ + n′)/4.

Let v be a vertex of maximum degree in G, and so d(v) = ∆(G) ≥ 4.

Observation 3 n is odd.

Proof. If n is even, then in Observation 2, taking V ′ = {v}, we have n′ = n−1, m′ ≤ n−4
and |T ′| ≤ (2n − 5)/4. Thus, T = T ′ ∪ {v} is a transversal of HG of size less than bn/2c,
contradicting Observation 1. Hence, n is odd. 2

As a consequence of Theorem 2, we have the following observation.

Observation 4 ∆(G) = 4.

Proof. Suppose that ∆(G) ≥ 5. Let H ′ = HG \ {v}. Then, H ′ has order n′ = n − 1 and
size m′ ≤ n − 5, and every edge of H ′ contains at least three vertices. Since H ′ contains
the edge N(v), H ′ has at least one edge of size five or more. Hence, by Theorem 2,
γt(G) ≤ τ(H ′) + 1 ≤ (n′ + m′ − 1)/4 + 1 ≤ (2n − 3)/4. The desired result now follows
from the fact that n is odd. 2

By Observations 3 and 4, G contains an odd number of degree-4 vertices. Furthermore,
by Theorem 6, α′(G) = (n− 1)/2 and, by Observation 1, every transversal in HG has size
at least (n − 1)/2. As a consequence of Theorem 2, we have the following result.

Observation 5 Every two degree-4 vertices in G are at distance at most 2 apart.

Proof. Suppose that G contains two degree-4 vertices, say u and v, at distance at least 3
apart. Let H ′ = HG \ {u, v}. Then, H ′ has order n′ = n − 2 and size m′ = n − 8, and
every edge of H ′ is a 3-edge or a 4-edge. Further, H ′ has at least two 4-edges, namely
N(u) and N(v). Let Hv be the component of H ′ containing the 4-edge N(v) (possibly,
Hv = H ′). Let N(v) = {v1, v2, v3, v4}.
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Suppose Hv ∈ H4edge. Then, Hv contains an edge {v1, v2, v5} containing v1 and v2, and
an edge {v3, v4, v5} containing v3 and v4. Since the edges N(vi), 1 ≤ i ≤ 4, are deleted
from HG when constructing H ′, there must exist vertices v6 and v7 in Hv such that in
the graph G, N(v6) = {v1, v2, v5} and N(v7) = {v3, v4, v5}. Thus in G, v5v6 and v5v7 are
edges. Let w ∈ N(v5)\{v6, v7}. By the claw-freeness of G, we must have that wv6 or wv7 is
an edge, implying that w ∈ N(v). We may assume that w = v1. Thus since Hv ∈ H4edge,
N(v5) = {v1, v6, v7} and there exists a vertex v8 such that in G, N(v8) = {v2, v6, v7}. But
then d(v6) ≥ 4, contradicting our earlier observation that N(v6) = {v1, v2, v5}. Hence,
Hv /∈ H4edge.

By Theorem 2, 4τ(Hv) ≤ |V (Hv)|+ |E(Hv)|−1. Applying Theorems 1 and 2 to every
other component of H ′, if any, it follows that 4τ(H ′) ≤ n′+m′−1 = 2n−11. However if T ′

is a transversal of H ′, then T ′∪{u, v} is a TDS of G, and so γt(G) ≤ τ(H ′)+2 ≤ (2n−3)/4,
a contradiction. 2

Let V = {v, v1, v2, . . . , vn−1}. For i = 1, 2, . . . , n− 1, let Vi = {v1, v2, . . . , vi}. We may
assume that N(v) = V4. Let Gv = G[V4]. If n = 5, then Gv ∈ {C4, K4 − e, K4} in which
case G ∈ {F1, K5 − e, K5} Hence we may assume that n ≥ 7. Thus, Gv contains at most
five edges and, since G is claw-free, Gv contains at least two edges.

Observation 6 If Gv = K4 − e, then G = F5.

Proof. We may assume that v3v4 is the edge missing in Gv and that d(v4) = 4. If
d(v3) = 3, then in Observation 2, taking V ′ = N [v], we have n′ = n − 5, m′ = n − 6 and
|T ′| ≤ (2n−11)/4. Thus, T = T ′∪{v, v4} is a transversal of HG of size at most (2n−3)/4,
contradicting Observation 1. Hence, d(v3) = 4.

Let G′ = G−v. Then, G′ is a claw-free graph with δ(G′) ≥ 3 of even order n′ = n−1.
If γt(G

′) < n′/2, then γt(G
′) ≤ (n′ − 2)/2. However every TDS of G′ contains a vertex

from the set {2, 3, 4} (in order to totally dominate v1) and is therefore also a TDS of
G, implying that γt(G) ≤ (n − 3)/2, a contradiction. Hence, γt(G

′) ≥ n′/2. Thus by
Theorem 4, G′ = G1 and so G = F5. 2

By Observation 6, we may assume that the subgraph induced by the neighborhood of
every degree-4 vertex is not K4 − e.

Observation 7 The subgraph induced by the neighborhood of every degree-4 vertex is not
a 4-cycle.

Proof. Suppose Gv = C4. We may assume that Gv is given by the cycle v1, v2, v3, v4, v1.
Since n ≥ 7, we may assume that d(v1) = 4 and that v1v5 ∈ E(G). Since G is claw-free,
we may further assume that v2v5 ∈ E(G). If v3v5 or v4v5 is an edge, then n = 6, a
contradiction. Hence neither v3v5 nor v4v5 is an edge.

If d(v3) = 3, then in Observation 2, taking V ′ = N [v], we have n′ = n− 5, m′ = n− 6
and |T ′| ≤ (2n − 11)/4. Thus, T = T ′ ∪ {v1, v4} is a transversal of HG of size at
most (2n−3)/4, contradicting Observation 1. Hence, d(v3) = 4. In Observation 2, taking
V ′ = V3∪{v}, we have n′ = n−4, m′ = n−7 and |T ′| ≤ (2n−11)/4. Thus, T = T ′∪{v2, v3}
is a transversal of HG of size at most (2n − 3)/4, contradicting Observation 1. 2
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Observation 8 If Gv = K1 ∪ C3, then G = F6.

Proof. Suppose that Gv = K1 ∪ C3, where v1 is the isolated vertex of Gv. If at least
two vertices in N(v) \ {v1} have degree 3, say v2 and v3, then in Observation 2, taking
V ′ = V3∪{v}, we have n′ = n−4, m′ ≤ n−7 and |T ′| ≤ (2n−11)/4. Thus, T = T ′∪{v, v1}
is a transversal of HG of size at most (2n − 3)/4, contradicting Observation 1. Hence at
most one vertex in N(v)\{v1} has degree 3. We proceed further with the following claim.

Claim 1 One vertex in N(v) \ {v1} has degree 3.

Proof. Suppose, to the contrary, that each vertex in {v2, v3, v4} has degree 4. Let
{v5, v6} ⊆ N(v1)\{v}. Then, v5v6 is an edge. Suppose there is an edge joining {v2, v3, v4}
and {v5, v6}, say v2v5. Then in Observation 2, taking V ′ = V2∪{v, v5}, we have n′ = n−4,
m′ ≤ n−7 and |T ′| ≤ (2n−11)/4. Thus, T = T ′∪{v, v1} is a transversal of HG of size at
most (2n− 3)/4, contradicting Observation 1. Hence, there is no edge joining {v2, v3, v4}
and {v5, v6}. For i = 2, 3, 4, let N(vi) \ N [v] = {v′

i}.
Case 1. v′

i = v′
j for some i and j, where 2 ≤ i < j ≤ 4. We may assume that i = 2

and j = 3, and that v7 = v′
2. If v′

4 = v7, then we contradict our assumption that the
subgraph induced by the neighborhood of every degree-4 vertex is not K4 − e. Hence,
v′
4 6= v7. We may assume that v′

4 = v8, and so N(v4) = {v, v2, v3, v8}.
Suppose that v7 is adjacent to v5 or v6, say v5. If d(v1) = 4 or d(v5) = 4, then in

Observation 2, taking V ′ = V3 ∪ {v, v5, v7}, we have n′ = n − 6, m′ ≤ n − 9 and |T ′| ≤
(2n − 15)/4. Thus, T = T ′ ∪ {v, v1, v5} is a transversal of HG of size at most (2n − 3)/4,
contradicting Observation 1. Hence, d(v1) = d(v5) = 3. If v6v7 is an edge, then taking
V ′ = (V7 \ {v4}) ∪ {v}, we have n′ = n − 7, m′ = n − 8 and |T ′| ≤ (2n − 15)/4. Thus,
T = T ′ ∪ {v, v1, v5} is a transversal of HG of size at most (2n − 3)/4, contradicting
Observation 1. Hence, v6v7 is not an edge, implying that d(v7) = 3. If v6v8 is not an
edge, then in Observation 2, taking V ′ = V5 ∪{v, v7, v8}, we have n′ = n− 8, m′ ≤ n− 11
and |T ′| ≤ (2n − 19)/4. Thus, T = T ′ ∪ {v1, v4, v5, v8} is a transversal of HG of size
at most (2n − 3)/4, contradicting Observation 1. Hence, v6v8 is an edge. Therefore in
Observation 2, taking V ′ = V8∪{v}, we have n′ = n−9, m′ ≤ n−10 and |T ′| ≤ (2n−19)/4.
Thus, T = T ′∪{v1, v4, v5, v8} is a transversal of HG of size at most (2n−3)/4, contradicting
Observation 1. Hence, v7 is adjacent to neither v5 nor v6.

Suppose that v7v8 is an edge. Let v9 be the common neighbor of v7 and v8, which
exists as G is claw-free. In Observation 2, taking V ′ = V4 ∪ {v, v9}, we have n′ = n − 6,
m′ ≤ n − 9 and |T ′| ≤ (2n − 15)/4. Thus, T = T ′ ∪ {v, v1, v9} is a transversal of HG of
size at most (2n − 3)/4, contradicting Observation 1. Hence, v7v8 is not an edge.

Suppose that v8 is adjacent to v5 or v6, say v5. In Observation 2, taking V ′ = V8∪{v},
we have n′ = n− 9, m′ ≤ n− 10 and |T ′| ≤ (2n− 19)/4. Thus, T = T ′ ∪ {v2, v5, v6, v7} is
a transversal of HG of size at most (2n − 3)/4, contradicting Observation 1. Hence, v8 is
adjacent to neither v5 nor v6.

Suppose that v7 and v8 have a common neighbor, say v9. In Observation 2, taking
V ′ = V4 ∪ {v, v9}, we have n′ = n − 6, m′ ≤ n − 9 and |T ′| ≤ (2n − 15)/4. Thus,
T = T ′ ∪ {v, v1, v9} is a transversal of HG of size at most (2n − 3)/4, contradicting
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Observation 1. Hence, v7 and v8 have no common neighbor. Let v9 ∈ N(v7) \ {v2, v3} and
let {v10, v11} ⊆ N(v8).

Suppose that v9 is adjacent to v10 or v11, say v10. In Observation 2, taking V ′ =
(V10 \ {v5, v6}) ∪ {v}, we have n′ = n − 9, m′ ≤ n − 12 and |T ′| ≤ (2n − 21)/4. Thus,
T = T ′ ∪ {v, v1, v9, v10} is a transversal of HG of size at most (2n − 5)/4, contradicting
Observation 1. Hence, v9 is adjacent to neither v10 nor v11. Suppose that v9 is adjacent
to v5 or v6, say v5. In Observation 2, taking V ′ = (V9 \ {v6}) ∪ {v}, we have n′ = n − 9,
m′ ≤ n− 12 and |T ′| ≤ (2n− 21)/4. Thus, T = T ′ ∪ {v4, v5, v8, v9} is a transversal of HG

of size at most (2n − 5)/4, contradicting Observation 1. Hence, v9 is adjacent to neither
v5 nor v6. Thus in Observation 2, taking V ′ = (V9 \{v1, v6, v7})∪{v}, we have n′ = n−7,
m′ ≤ n − 12 and |T ′| ≤ (2n − 19)/4. Thus, T = T ′ ∪ {v4, v5, v8, v9} is a transversal of
HG of size at most (2n− 3)/4, contradicting Observation 1. We conclude that v′

i 6= v′
j for

2 ≤ i < j ≤ 4.

Case 2. v′
i 6= v′

j for 2 ≤ i < j ≤ 4. For i ∈ {2, 3, 4}, let v′
i = vi+5. Thus, v2v7, v3v8

and v4v9 are edges.
Suppose that there is an edge joining {v5, v6} and {v7, v8, v9}, say v5v7. If v6v7 is an

edge, then in Observation 2, taking V ′ = (V8\{v4})∪{v}, we have n′ = n−8, m′ ≤ n−11
and |T ′| ≤ (2n − 19)/4. Thus, T = T ′ ∪ {v3, v5, v7, v8} is a transversal of HG of size at
most (2n− 3)/4, contradicting Observation 1. Hence, v6v7 is not an edge. If v8 or v9, say
v8, is a common neighbor of v5 and v7, then in Observation 2, taking V ′ = (V9\{v6})∪{v},
we have n′ = n − 9, m′ ≤ n − 10 and |T ′| ≤ (2n − 19)/4. Thus, T = T ′ ∪ {v1, v4, v5, v9}
is a transversal of HG of size at most (2n − 3)/4, contradicting Observation 1. Hence we
may assume that v10 is the common neighbor of v5 and v7. But then in Observation 2,
taking V ′ = (V5 \ {v1}) ∪ {v}, we have n′ = n − 5, m′ ≤ n − 10 and |T ′| ≤ (2n − 15)/4.
Thus, T = T ′∪{v3, v4, v5} is a transversal of HG of size at most (2n− 3)/4, contradicting
Observation 1. Hence there is no edge joining {v5, v6} and {v7, v8, v9}.

Suppose that {v7, v8, v9} is not an independent set. We may assume that v7v8 is an
edge. Then in Observation 2, taking V ′ = (V8 \ {v1, v4, v6}) ∪ {v}, we have n′ = n − 6,
m′ ≤ n − 10 and |T ′| ≤ (2n − 16)/4. Thus, T = T ′ ∪ {v2, v5, v7} is a transversal of HG of
size at most (2n−4)/4, contradicting Observation 1. Hence, {v7, v8, v9} is an independent
set.

Suppose that two vertices in {v7, v8, v9} have a common neighbor. We may assume
that v7 and v8 have a common neighbor, say v10. Then in Observation 2, taking V ′ = V3∪
{v, v10}, we have n′ = n−5, m′ ≤ n−10 and |T ′| ≤ (2n−15)/4. Thus, T = T ′∪{v, v1, v10}
is a transversal of HG of size at most (2n−3)/4, contradicting Observation 1. Hence no two
vertices in {v7, v8, v9} have a common neighbor. Let {v10, v11} ⊆ N(v7), {v12, v13} ⊆ N(v8)
and {v14, v15} ⊆ N(v9). Then, v10v11, v12v13 and v14v15 are all edges.

Suppose there is an edge joining two triangles each of which contain a vertex from
{v10, v11, v12, v13, v14, v15}. We may assume that v10v12 is an edge. Then in Observation 2,
taking V ′ = V3 ∪ {v, v7, v8, v10, v12}, we have n′ = n − 8, m′ ≤ n − 13 and |T ′| ≤
(2n−21)/4. Thus, T = T ′∪{v, v1, v10, v12} is a transversal of HG of size at most (2n−5)/4,
contradicting Observation 1. Hence there is no edge joining two triangles each of which
contain a vertex from {v10, v11, v12, v13, v14, v15}.
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Suppose there is an edge joining {v5, v6} and {v10, v11, v12, v13, v14, v15}, say v5v10. Then
in Observation 2, taking V ′ = (V8 \ {v4})∪{v, v10, v14}, we have n′ = n− 10, m′ ≤ n− 15
and |T ′| ≤ (2n−25)/4. Thus, T = T ′∪{v3, v5, v8, v10, v14} is a transversal of HG of size at
most (2n−5)/4, contradicting Observation 1. Hence there is no edge joining {v5, v6} and
{v10, v11, v12, v13, v14, v15}. Then in Observation 2, taking V ′ = V4 ∪ {v, v10, v12, v14}, we
have n′ = n−8, m′ ≤ n−15 and |T ′| ≤ (2n−23)/4. Thus, T = T ′∪{v, v1, v10, v12, v14} is a
transversal of HG of size at most (2n−3)/4, contradicting Observation 1. This completes
the proof of Claim 1. 2

By Claim 1, one vertex in N(v) \ {v1} has degree 3. We may assume that d(v2) = 3.
Then, d(v3) = d(v4) = 4. If d(v1) = 4, then in Observation 2, taking V ′ = V2 ∪ {v}, we
have n′ = n−3, m′ = n−8 and |T ′| ≤ (2n−11)/4. Thus, T = T ′∪{v, v1} is a transversal
of HG of size at most (2n−3)/4, contradicting Observation 1. Hence, d(v1) = 3. We may
assume that N(v1) = {v, v5, v6}. Thus, v5v6 is an edge.

Suppose there is an edge joining {v3, v4} and {v5, v6}, say v3v5. Then in Observation 2,
taking V ′ = V3 ∪ {v}, we have n′ = n− 4, m′ = n− 7 and |T ′| ≤ (2n− 11)/4. Thus, T =
T ′∪{v, v1} is a transversal of HG of size at most (2n−3)/4, contradicting Observation 1.
Hence, there is no edge joining {v3, v4} and {v5, v6}. Let N(v3) = {v, v2, v4, v7}.

Claim 2 v4v7 is an edge.

Proof. Suppose, to the contrary, that v4v7 is not an edge. Let N(v4) = {v, v2, v3, v8}.
Suppose there is an edge joining {v5, v6} and {v7, v8}, say v5v7. If v6v7 is an edge, then
in Observation 2, taking V ′ = (V7 \ {v4}) ∪ {v}, we have n′ = n − 7, m′ ≤ n − 8 and
|T ′| ≤ (2n − 15)/4. If v6v7 is not an edge, then there is a common neighbor of v5 and v7

(which may possibly be v8), and in Observation 2, taking V ′ = V3 ∪ {v, v5, v7}, we have
n′ = n − 6, m′ = n − 9 and |T ′| ≤ (2n − 15)/4. In both cases, T = T ′ ∪ {v, v1, v5} is a
transversal of HG of size at most (2n − 3)/4, contradicting Observation 1. Hence, there
is no edge joining {v5, v6} and {v7, v8}.

Since each of v5 and v6 is at distance 3 from a degree-4 vertex (namely, v3 and v4),
d(v5) = d(v6) = 3 by Observation 5. Further for i ≥ 9, d(v, vi) ≥ 3, and so, by Observa-
tion 5, d(vi) = 3.

Suppose that v7v8 is an edge. Let v9 be a common neighbor of v7 and v8. In Observa-
tion 2, taking V ′ = V4 ∪ {v, v9}, we have n′ = n − 6, m′ ≤ n − 9 and |T ′| ≤ (2n − 15)/4.
Thus, T = T ′ ∪ {v, v1, v9} is a transversal of HG of size at most (2n− 3)/4, contradicting
Observation 1. Hence, v7v8 is not an edge.

Suppose d(v7) = 4. Then N [v7]\{v3} induces a clique K4. Let v′
7 ∈ N [v7]\{v3}. Then,

N [v′
7] = N [v7] \ {v3}. In Observation 2, taking V ′ = N [v] ∪ N [v7], we have n′ = n − 9,

m′ = n − 11 and |T ′| ≤ (2n − 20)/4. Thus, T = T ′ ∪ {v, v1, v7, v
′
7} is a transversal of

HG of size at most (2n − 4)/4, contradicting Observation 1. Hence, d(v7) = 3. Similarly,
d(v8) = 3.

Let N(v7) = {v3, v9, v10}. Then, v9v10 is an edge. Suppose v8 is adjacent to v9 or
v10, say v9. Then, N(v9) = {v7, v8, v10}. By the claw-freeness of G, v8v10 is an edge
and N(v8) = {v4, v9, v10}. In Observation 2, taking V ′ = V4 ∪ {v, v7, v8, v9, v10}, we have
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n′ = n − 9, m′ = n − 11 and |T ′| ≤ (2n − 20)/4. Thus, T = T ′ ∪ {v, v1, v7, v9} is a
transversal of HG of size at most (2n − 4)/4, contradicting Observation 1. Hence, v8 is
adjacent to neither v9 nor v10. Let N(v8) = {v3, v11, v12}. Then, v11v12 is an edge.

Suppose that there is an edge joining {v5, v6} and {v9, v10, v11, v12}, say v5v9. In
Observation 2, taking V ′ = V5 ∪ {v, v7, v9}, we have n′ = n − 8, m′ = n − 11 and
|T ′| ≤ (2n − 19)/4. Thus, T = T ′ ∪ {v, v4, v5, v9} is a transversal of HG of size at
most (2n − 3)/4, contradicting Observation 1. Hence, there is no edge joining {v5, v6}
and {v9, v10, v11, v12}.

Suppose that there is an edge joining {v9, v10} and {v11, v12}, say v9v11. In Obser-
vation 2, taking V ′ = V4 ∪ {v, v7, v8, v9, v11}, we have n′ = n − 9, m′ = n − 13 and
|T ′| ≤ (2n − 22)/4. Thus, T = T ′ ∪ {v, v1, v9, v11} is a transversal of HG of size at
most (2n − 6)/4, contradicting Observation 1. Hence, there is no edge joining {v9, v10}
and {v11, v12}. Thus in Observation 2, taking V ′ = V4 ∪ {v, v9, v11}, we have n′ = n − 7,
m′ ≤ n − 12 and |T ′| ≤ (2n − 19)/4. Thus, T = T ′ ∪ {v, v1, v9, v11} is a transversal of
HG of size at most (2n − 3)/4, contradicting Observation 1. This completes the proof of
Claim 2. 2

By Claim 2, v4v7 is an edge. If v7 is adjacent to v5 or v6, say v5v7, then in Observation 2,
taking V ′ = V5 ∪ {v, v7}, we have n′ = n − 7, m′ ≤ n − 8 and |T ′| ≤ (2n − 15)/4. Thus,
T = T ′ ∪ {v, v1, v5} is a transversal of HG of size at most (2n − 3)/4, contradicting
Observation 1. Hence, v7 is adjacent to neither v5 nor v6. Thus each of v5 and v6 is
at distance 3 from a degree-4 vertex (namely, v3 and v4), and so d(v5) = d(v6) = 3 by
Observation 5.

Let v8 ∈ N(v7) \ {v3, v4}. If N(v8) 6= {v5, v6, v7}, then in Observation 2, taking
V ′ = V4 ∪ {v, v8}, we have n′ = n − 6, m′ ≤ n − 9 and |T ′| ≤ (2n − 15)/4. Thus,
T = T ′ ∪ {v, v1, v8} is a transversal of HG of size at most (2n − 3)/4, contradicting
Observation 1. Hence, N(v8) = {v5, v6, v7}, implying that G = F6. This completes the
proof of Observation 8. 2

By Observation 8, we may assume that the subgraph induced by the neighborhood of
every degree-4 vertex is not K1 ∪ C3.

Observation 9 If Gv = K1,3 + e, then G = F4.

Proof. We may assume that v1 is the degree-1 vertex in Gv and that v1v2 is an edge. Thus,
v2, v3, v4, v2 is a cycle. If d(v3) = d(v4) = 3, then in Observation 2, taking V ′ = V4 ∪ {v},
we have n′ = n − 5, m′ ≤ n − 6 and |T ′| ≤ (2n − 11)/4. Thus, T = T ′ ∪ {v, v1} is a
transversal of HG of size at most (2n−3)/4, contradicting Observation 1. Hence, we may
assume that d(v3) = 4. Let N(v3) = {v, v2, v4, v5}.

If v1v5 is an edge, then in Observation 2, taking V ′ = V3 ∪{v, v5}, we have n′ = n− 5,
m′ ≤ n − 6 and |T ′| ≤ (2n − 11)/4. Thus, T = T ′ ∪ {v, v1} is a transversal of HG of size
at most (2n − 3)/4, contradicting Observation 1. Hence, v1v5 is not an edge. But then
v4v5 must be an edge, for otherwise G[N(v3)] = K1 ∪ C3, contrary to assumption. Let
v6 ∈ N(v5) \ {v3, v4}.
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Suppose that v1 and v5 have a common neighbor. We may assume that v1v6 is an
edge. Then in Observation 2, taking V ′ = V6 ∪ {v}, we have n′ = n − 7, m′ ≤ n − 8
and |T ′| ≤ (2n − 15)/4. Thus, T = T ′ ∪ {v, v1, v6} is a transversal of HG of size at
most (2n−3)/4, contradicting Observation 1. Hence, v1 and v5 have no common neighbor.
In particular, v1v6 is not an edge. Thus, d(v, v6) = 3, and so, by Observation 5, d(v6) = 3.
Let v7 ∈ N(v1) \ {v, v2}. Then, v5v7 is not an edge. Thus, d(v3, v7) = 3, and so, by
Observation 5, d(v7) = 3.

If v6v7 is not an edge, then in Observation 2, taking V ′ = V4 ∪ {v, v6}, we have
n′ = n− 6, m′ ≤ n− 9 and |T ′| ≤ (2n− 15)/4. Thus, T = T ′ ∪ {v, v1, v6} is a transversal
of HG of size at most (2n − 3)/4, contradicting Observation 1. Hence, v6v7 is an edge.

Suppose that d(v1) = d(v5) = 3. Then, v6 and v7 have a common neighbor, v8

say. In Observation 2, taking V ′ = V5 ∪ {v, v8}, we have n′ = n − 7, m′ ≤ n − 9
and |T ′| ≤ (2n − 16)/4. Thus, T = T ′ ∪ {v, v4, v8} is a transversal of HG of size at
most (2n− 4)/4, contradicting Observation 1. Hence, by symmetry, we may assume that
d(v1) = 4. Let N(v1) = {v, v2, v7, v8}. Then, v7v8 is an edge. As shown with the vertex
v7, we must have that v6v8 is an edges and d(v8) = 3. But then, G = F4. 2

By Observation 9, we may assume that the subgraph induced by the neighborhood of
every degree-4 vertex is not K1,3 + e.

Observation 10 If Gv = P4, then G ∈ {F8, F9, F10}.

Proof. We may assume that Gv is given by the path v1, v2, v3, v4. We desired result now
follows from Claim 3 and Claim 4.

Claim 3 If d(v2) = d(v3) = 3, then G = F8.

Proof. Suppose that v1 or v4 has degree 4. We may assume that d(v1) = 4. In Observa-
tion 2, taking V ′ = V3∪{v}, we have n′ = n−4, m′ ≤ n−7 and |T ′| ≤ (2n−11)/4. Thus,
T = T ′ ∪ {v, v1} is a transversal of HG of size at most (2n− 3)/4, contradicting Observa-
tion 1. Hence, d(v1) = d(v4) = 3. Thus, since G is claw-free, v1 and v4 have no common
neighbor other than v. Let N(v1) = {v, v2, v5} and N(v4) = {v, v3, v6}. For i ≥ 7, the
vertex vi is at distance at least 3 from the degree-4 vertex v, and so, by Observation 5,
d(vi) = 3.

If v5v6 is an edge, then in Observation 2, taking V ′ = V6 ∪ {v}, we have n′ = n − 7,
m′ ≤ n − 8 and |T ′| ≤ (2n − 15)/4. Thus, T = T ′ ∪ {v, v1, v5} is a transversal of HG of
size at most (2n − 3)/4, contradicting Observation 1. Hence, v5v6 is not an edge.

By our assumption that the subgraph induced by the neighborhood of every degree-4
vertex is not K1 ∪ C3, we have that d(v5) = d(v6) = 3. Let N(v5) = {v1, v7, v8}. Then,
v7v8 ∈ E. If v6v7 is not an edge, then in Observation 2, taking V ′ = N [v]∪ {v7}, we have
n′ = n− 6, m′ ≤ n− 9 and |T ′| ≤ (2n− 15)/4. Thus, T = T ′ ∪ {v, v4, v7} is a transversal
of HG of size at most (2n − 3)/4, contradicting Observation 1. Hence, v6v7 is an edge.
Thus, by the claw-freeness of G, v6v8 is an edge. Thus, G = F8. 2

Claim 4 If v2 or v3 has degree 4, then G ∈ {F9, F10}.
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Proof. We may assume that d(v2) = 4. Let N(v2) = {v, v1, v3, v5}. Since G is claw-free,
v1v5 or v3v5 is an edge. We consider two cases.

Case 1. v3v5 is an edge. Then, v1v5 is not an edge, for otherwise, N(v2) induces a 4-
cycle, contradicting Observation 7. Similarly, v4v5 is not an edge. Let v6 ∈ N(v5)\{v2, v3}.

Case 1.1. v5 has a common neighbor with v1 or with v4 that does not belong to N(v).
We may assume that v1v6 is an edge. Suppose that d(v6) = 4. Let v7 ∈ N(v6) \ {v1, v5}.
On the one hand, if v4v7 is not an edge, then in Observation 2, taking V ′ = V3∪{v, v5, v6},
we have n′ = n − 6, m′ ≤ n − 9 and |T ′| ≤ (2n − 15)/4. On the other hand, if v4v7 is an
edge, then in Observation 2, taking V ′ = V6 ∪ {v}, we have n′ = n − 7, m′ ≤ n − 8 and
|T ′| ≤ (2n − 15)/4. In both cases, T = T ′ ∪ {v, v1, v6} is a transversal of HG of size at
most (2n− 3)/4, contradicting Observation 1. Hence, d(v6) = 3 and N(v6) = {v1, v5, v7}.
Then, v1v7 or v5v7 is an edge.

If v1v7 and v5v7 are edges, then in Observation 2, taking V ′ = (V7 \ {v4}) ∪ {v}, we
have n′ = n − 7, m′ ≤ n − 8 and |T ′| ≤ (2n − 15)/4. Thus, T = T ′ ∪ {v, v1, v7} is a
transversal of HG of size at most (2n − 3)/4, contradicting Observation 1. Hence, either
v1v7 or v5v7 is an edge (but not both).

Suppose v5v7 is an edge. Then, d(v1) = 3. If v4v7 is an edge, then in Observation 2,
taking V ′ = V7 ∪ {v}, we have n′ = n − 8, m′ ≤ n − 8 and |T ′| ≤ (2n − 16)/4. Thus,
T = T ′ ∪ {v2, v5, v7} is a transversal of HG of size at most (2n − 4)/4, contradicting
Observation 1. Hence, v4v7 is not an edge. Thus, d(v, v7) = 3, and so by Observation 5,
d(v7) = 3. Let N(v7) = {v5, v6, v8}. In Observation 2, taking V ′ = V8 ∪ {v}, we have
n′ = n − 9, m′ ≤ n − 10 and |T ′| ≤ (2n − 19)/4. Thus, T = T ′ ∪ {v, v4, v7, v8} is a
transversal of HG of size at most (2n − 3)/4, contradicting Observation 1. Hence, v5v7 is
not an edge. Thus, v1v7 is an edge and d(v5) = 3.

If v4v7 is an edge, then in Observation 2, taking V ′ = V7 ∪ {v}, we have n′ = n − 8,
m′ ≤ n − 8 and |T ′| ≤ (2n − 16)/4. Thus, T = T ′ ∪ {v3, v4, v7} is a transversal of HG

of size at most (2n − 4)/4, contradicting Observation 1. Hence, v4v7 is not an edge. If
d(v4) = d(v7) = 3, then since G is claw-free, v4 and v7 have no common neighbor. Thus
in Observation 2, taking V ′ = (V5 \ {v1}) ∪ {v, v7}, we have n′ = n − 6, m′ ≤ n − 9
and |T ′| ≤ (2n − 13)/4. Thus, T = T ′ ∪ {v2, v3, v7} is a transversal of HG of size at
most (2n − 5)/4, contradicting Observation 1.

Case 1.2. v5 has no common neighbor with v1 or with v4 that does not belong to
N(v). In particular, neither v1v6 nor v4v6 is an edge. Thus, d(v, v6) = 3, and so, by
Observation 5, d(v6) = 3.

Case 1.2.1 v6 has a common neighbor with v1 or v4. We may assume that v1 and v6

have a common neighbor, v7 say. By Case 1.1, v5v7 is not an edge. By the claw-freeness
of G, v4v7 is not an edge. Thus, d(v3, v7) = 3, and so, by Observation 5, d(v7) = 3. Let
N(v7) = {v1, v6, v8}. Then, v1v8 or v6v8 is an edge. If both v1v8 and v6v8 are edges,
then in Observation 2, taking V ′ = V8 ∪ {v}, we have n′ = n − 9, m′ ≤ n − 10 and
|T ′| ≤ (2n − 19)/4. Thus, T = T ′ ∪ {v, v4, v5, v6} is a transversal of HG of size at
most (2n − 3)/4, contradicting Observation 1. Hence either v1v8 or v6v8 is an edge (but
not both).
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Suppose v1v8 is an edge. Let N(v6) = {v5, v7, v9}. Then, v5v9 or v7v9 is an edge. If
v4v9 is an edge, then in Observation 2, taking V ′ = V7 ∪ {v, v9}, we have n′ = n − 9,
m′ ≤ n − 10 and |T ′| ≤ (2n − 19)/4. If v8v9 is an edge, then in Observation 2, taking
V ′ = (V9 \ {v4}) ∪ {v}, we have n′ = n − 9, m′ ≤ n − 10 and |T ′| ≤ (2n − 19)/4. If v9 is
adjacent to vertex vi, where i ≥ 10, then taking V ′ = V7 ∪ {v, v9}, we have n′ = n − 8,
m′ ≤ n − 11 and |T ′| ≤ (2n − 19)/4. In all three cases, T = T ′ ∪ {v, v1, v6, v9} is a
transversal of HG of size at most (2n − 3)/4, contradicting Observation 1. Hence we
must have that d(v9) = 3 and N(v9) = {v5, v6, v7}. But then in Observation 2, taking
V ′ = V7 ∪ {v, v9}, we have n′ = n − 9, m′ ≤ n − 10 and |T ′| ≤ (2n − 19)/4. Thus,
T = T ′ ∪ {v, v4, v7, v9} is a transversal of HG of size at most (2n − 3)/4, contradicting
Observation 1. Hence, v1v8 is not an edge, implying that v6v8 is an edge. We may assume
that d(v1) = 3 for otherwise if v1 and v7 have a common neighbor (not adjacent with v6),
then as shown earlier we reach a contradiction.

If v4v8 is not an edge, then in Observation 2, taking V ′ = V8∪{v}, we have n′ = n−9,
m′ ≤ n − 10 and |T ′| ≤ (2n − 19)/4. Thus, T = T ′ ∪ {v, v4, v6, v8} is a transversal of
HG of size at most (2n − 3)/4, contradicting Observation 1. Hence, v4v8 is an edge and
d(v6) = 3. But then G = F10.

Case 1.2.2 v6 has no common neighbor with v1 or v4. If d(v1) = 4 or if d(v6) = 4,
then in Observation 2, taking V ′ = V3 ∪ {v, v6}, we have n′ = n − 5, m′ ≤ n − 10
and |T ′| ≤ (2n − 15)/4. Thus, T = T ′ ∪ {v, v1, v6} is a transversal of HG of size at
most (2n − 3)/4, contradicting Observation 1. Hence, d(v1) = d(v6) = 3. Similarly,
d(v4) = 3. Thus by the claw-freeness of G, v is the only common neighbor of v1 and v4.
It follows that for i ≥ 6, the vertex vi is at distance at least 3 from at least one vertex in
{v, v2, v3}, and so, by Observation 5, d(vi) = 3.

Suppose that d(v5) = 4. Let N(v5) = {v2, v3, v6, v7}. Then, v6v7 is an edge. Let
N(v6) = {v5, v7, v8}. Then, v1v8 and v4v8 are not edges. Suppose v7v8 is an edge, i.e.,
if N(v7) = {v5, v6, v8}. Since G is claw-free, and d(v1) = d(v8) = 3, v1 and v8 have
no common neighbor. Thus in Observation 2, taking V ′ = (V8 \ {v4}) ∪ {v}, we have
n′ = n − 8, m′ ≤ n − 11 and |T ′| ≤ (2n − 19)/4. Thus, T = T ′ ∪ {v, v1, v6, v8} is a
transversal of HG of size at most (2n − 3)/4, contradicting Observation 1. Hence, v7v8

is not an edge. In Observation 2, taking V ′ = (V6 \ {v4}) ∪ {v, v8}, we have n′ = n − 7,
m′ ≤ n − 11 and |T ′| ≤ (2n − 19)/4. Thus, T = T ′ ∪ {v, v1, v6, v8} is a transversal
of HG of size at most (2n − 3)/4, contradicting Observation 1. Hence, d(v5) = 3, i.e.,
N(v5) = {v2, v3, v6}. Let N(v6) = {v5, v7, v8}. Then, v7v8 is an edge, and there is no edge
joining {v1, v4} and {v7, v8}.

Suppose that a vertex in {v1, v4} has a common neighbor with a vertex in {v7, v8}.
We may assume that v1 and v7 have a common neighbor, say v10. By the claw-freeness
of G, N(v10) = {v1, v7, v8}. Thus in Observation 2, taking V ′ = (V10 \ {v4}) ∪ {v}, we
have n′ = n − 9, m′ ≤ n − 10 and |T ′| ≤ (2n − 19)/4. Thus, T = T ′ ∪ {v, v1, v6, v7} is
a transversal of HG of size at most (2n − 3)/4, contradicting Observation 1. Hence no
vertex in {v1, v4} has a common neighbor with a vertex in {v7, v8}.

Let N(v7) = {v6, v8, v9}. If v8v9 is an edge, then in Observation 2, taking V ′ =
(V8 \ {v4}) ∪ {v}, we have n′ = n − 8, m′ ≤ n − 11 and |T ′| ≤ (2n − 19)/4. Thus,
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T = T ′ ∪ {v, v1, v6, v7} is a transversal of HG of size at most (2n − 3)/4, contradicting
Observation 1. Hence, v8v9 is not an edge. Let N(v8) = {v6, v7, v10}.

If v9v10 is an edge, then in Observation 2, taking V ′ = (V10 \ {v1, v4}) ∪ {v}, we have
n′ = n − 10, m′ = n − 12 and |T ′| ≤ (2n − 22)/4. Thus, T = T ′ ∪ {v2, v3, v7, v9} is a
transversal of HG of size at most (2n − 6)/4, contradicting Observation 1. Hence, v9v10

is not an edge. Let N(v9) = {v7, v11, v12}.
Suppose v10 is not adjacent to v11 or v12. Let N(v10) = {v8, v13, v14}. If there is an

edge joining {v11, v12} and {v13, v14}, say v11v13 is an edge, then in Observation 2, taking
V ′ = (V11 \ V4)∪ {v, v13}, we have n′ = n− 8, m′ = n− 12 and |T ′| ≤ (2n− 20)/4. Thus,
T = T ′ ∪ {v5, v6, v11, v13} is a transversal of HG of size at most (2n − 4)/4, contradicting
Observation 1. Hence there is no edge joining {v11, v12} and {v13, v14}. Suppose that there
is an edge joining {v1, v4} and {v11, v12, v13, v14}, say v1v11. Then in Observation 2, taking
V ′ = (V9\{v4})∪{v, v11}, we have n′ = n−10, m′ = n−13 and |T ′| ≤ (2n−23)/4. Thus,
T = T ′ ∪{v, v1, v6, v8, v11} is a transversal of HG of size at most (2n− 3)/4, contradicting
Observation 1. Hence there is no edge joining {v1, v4} and {v11, v12, v13, v14}. Now at least
one of v11 or v13, say v11, has no common neighbor with v1. Therefore in Observation 2,
taking V ′ = (V8 \{v4})∪{v, v11}, we have n′ = n−9, m′ = n−14 and |T ′| ≤ (2n−23)/4.
Thus, T = T ′ ∪ {v, v1, v6, v8, v11} is a transversal of HG of size at most (2n − 3)/4,
contradicting Observation 1. Hence, v10 is adjacent to v11 or v12. Thus, by the claw-
freeness of G, N(v10) = {v8, v11, v12}.

By the claw-freeness of G, v is the only common neighbor of v1 and v4. Let N(v1) =
{v, v2, v13} and N(v2) = {v, v3, v14}. If v13v14 is an edge, then in Observation 2, taking
V ′ = (V13 \ {v1}) ∪ {v}, we have n′ = n − 13, m′ = n − 15 and |T ′| ≤ (2n − 28)/4.
Thus, T = T ′ ∪ {v3, v5, v9, v10, v11, v14} is a transversal of HG of size at most (2n − 4)/4,
contradicting Observation 1. Hence, v13v14 is not an edge. Let N(v13) = {v1, v15, v16}.

If v14 is adjacent to v15 or v16, then N(v14) = {v4, v15, v16} and the graph G is fully
described (and has order n = 17). But then {v2, v5, v9, v10, v11, v14, v15}, for example, is
a TDS of G, and so γt(G) ≤ 7 = (n − 3)/2, a contradiction. Hence, v14 is adjacent to
neither v15 nor v16. Let N(v14) = {v4, v17, v18}. Then in Observation 2, taking V ′ =
(V15 \ {v13}) ∪ {v}, we have n′ = n − 15, m′ ≤ n − 17 and |T ′| ≤ (2n − 32)/4. Thus,
T = T ′ ∪ {v2, v5, v9, v10, v11, v14, v15} is a transversal of HG of size at most (2n − 4)/4,
contradicting Observation 1.

Case 2. v3v5 is not an edge. Then, v1v5 is an edge since G is claw-free.
Suppose that v4v5 is an edge. Suppose d(v1) = 4. Let N(v1) = {v, v2, v5, v6}. Then,

N(v5) = {v1, v2, v4, v6}. Thus in Observation 2, taking V ′ = (V5 \ {v3}) ∪ {v}, we have
n′ = n − 5, m′ = n − 7 and |T ′| ≤ (2n − 12)/4. Thus, T = T ′ ∪ {v, v1} is a transversal
of HG of size at most (2n − 4)/4, contradicting Observation 1. Hence, d(v1) = 3. Thus
in Observation 2, taking V ′ = (V5 \ {v3}) ∪ {v}, we have n′ = n − 5, m′ ≤ n − 6 and
|T ′| ≤ (2n−11)/4. Thus, T = T ′∪{v, v4} is a transversal of HG of size at most (2n−4)/4,
contradicting Observation 1. Hence, v4v5 is not an edge.

Case 2.1 d(v1) = 3. If d(v3) = 4, then in Observation 2, taking V ′ = V3∪{v}, we have
n′ = n − 4, m′ ≤ n − 7 and |T ′| ≤ (2n − 11)/4. Thus, T = T ′ ∪ {v2, v3} is a transversal
of HG of size at most (2n − 3)/4, contradicting Observation 1. Hence, d(v3) = 3. Let
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v6 ∈ N(v5) \ {v1, v2}.
Suppose that v4 and v5 have a common neighbor. We may assume that v4v6 is an

edge. Then in Observation 2, taking V ′ = V6 ∪ {v}, we have n′ = n − 7, m′ ≤ n − 8
and |T ′| ≤ (2n − 15)/4. Thus, T = T ′ ∪ {v, v4, v6} is a transversal of HG of size at
most (2n−3)/4, contradicting Observation 1. Hence, v4 and v5 have no common neighbor.
It follows that for i ≥ 6, the vertex vi is at distance at least 3 from at least one of v and
v2, and so, by Observation 5, d(vi) = 3. In particular, d(v6) = 3.

If v4 and v6 have no common neighbor, then in Observation 2, taking V ′ = V4∪{v, v6},
we have n′ = n − 6, m′ ≤ n − 9 and |T ′| ≤ (2n − 15)/4. Thus, T = T ′ ∪ {v, v4, v6} is a
transversal of HG of size at most (2n− 3)/4, contradicting Observation 1. Hence, v4 and
v6 have a common neighbor, v7 say. Since v4 and v5 have no common neighbor, v5v7 is
not an edge.

Let N(v7) = {v4, v6, v8}. If v8 is adjacent to a vertex not in {v4, v5, v6, v7}, then in
Observation 2, taking V ′ = V8∪{v}, we have n′ = n−9, m′ ≤ n−10 and |T ′| ≤ (2n−19)/4.
Thus, T = T ′∪{v2, v5, v7, v8} is a transversal of HG of size at most (2n−3)/4, contradicting
Observation 1. Hence, N(v8) ⊆ {v4, v5, v6, v7}.

On the one hand, if v5v8 is not an edge, then N(v8) = {v4, v6, v7} and d(v5) = 3.
But then G = F9. On the other hand, if v5v8 is an edge, then since v4 and v5 have
no common neighbor, N(v8) = {v5, v6, v7}. If now d(v4) = 4, then in Observation 2,
taking V ′ = V8 ∪ {v}, we have n′ = n − 9, m′ ≤ n − 10 and |T ′| ≤ (2n − 19)/4. Thus,
T = T ′ ∪ {v1, v4, v5, v7} is a transversal of HG of size at most (2n − 3)/4, contradicting
Observation 1. Hence, d(v4) = 3, and so G = F9.

Case 2.2 d(v1) = 4. Let N(v1) = {v, v2, v5, v6}. Then, v5v6 is an edge. If d(v5) = 3,
then in Observation 2, taking V ′ = V2 ∪ {v, v5}, we have n′ = n − 4, m′ ≤ n − 7 and
|T ′| ≤ (2n−11)/4. Thus, T = T ′∪{v, v1} is a transversal of HG of size at most (2n−3)/4,
contradicting Observation 1. Hence, d(v5) = 4. Let N(v5) = {v1, v2, v6, v7}. Then, v6v7 is
an edge.

If d(v3) = 3, then in Observation 2, taking V ′ = V3 ∪ {v}, we have n′ = n − 4,
m′ ≤ n − 7 and |T ′| ≤ (2n − 11)/4. Thus, T = T ′ ∪ {v, v1} is a transversal of HG of size
at most (2n − 3)/4, contradicting Observation 1. Hence, d(v3) = 4. Since G is claw-free,
v3v6 is not an edge. If v3v7 is an edge, then so too is v4v7. But then in Observation 2,
taking V ′ = V5 ∪ {v, v7}, we have n′ = n − 7, m′ ≤ n − 8 and |T ′| ≤ (2n − 15)/4.
Thus, T = T ′ ∪ {v, v1, v4} is a transversal of HG of size at most (2n− 3)/4, contradicting
Observation 1. Hence, v3v7 is not an edge. Let N(v3) = {v, v2, v4, v8}. Then, v4v8 is an
edge.

If d(v4) = 3 or if v4 is adjacent to v6 or v7, then in Observation 2, taking V ′ = V5∪{v},
we have n′ = n − 6, m′ ≤ n − 9 and |T ′| ≤ (2n − 15)/4. Thus, T = T ′ ∪ {v2, v3, v5} is
a transversal of HG of size at most (2n − 3)/4, contradicting Observation 1. Hence,
d(v4) = 4 and neither v4v6 nor v4v7 is an edge. Let N(v4) = {v, v3, v8, v9}. Then, v8v9 is
an edge. In Observation 2, taking V ′ = (V9 \ {v7})∪{v}, we have n′ = n−9, m′ ≤ n−10
and |T ′| ≤ (2n − 19)/4. Thus, T = T ′ ∪ {v1, v4, v6, v9} is a transversal of HG of size at
most (2n − 3)/4, contradicting Observation 1. This completes the proof of Claim 4 and
of Observation 10. 2

the electronic journal of combinatorics 13 (2006), #R59 16



By Observation 10, we may assume that the subgraph induced by the neighborhood of
every degree-4 vertex is not isomorphic to P4. This, together with our earlier assumptions,
implies the following observation.

Observation 11 The subgraph induced by the neighborhood of every degree-4 vertex is
isomorphic to 2K2.

Since G is claw-free, we have the following observation.

Observation 12 If u and w are adjacent vertices that do not have exactly one common
neighbor, then d(u) = d(w) = 3.

Proof. Suppose, to the contrary, that d(u) = 4. If u and w have no common neighbor,
then N(u) induces a subgraph isomorphic to K1 ∪ C3, while if u and w have at least two
common neighbors, then N(u) induces a subgraph that contains a path P3, contrary to
assumption. 2

By Observation 11, Gv = 2K2. We may assume that v1v2 and v3v4 are edges.

Observation 13 If two vertices in N(v) have a common neighbor different from v, then
G ∈ {F2, F3, F7}.

Proof. We may assume that v1 and v2 have a common neighbor v5 different from v. By
Observation 12, d(v1) = d(v2) = 3.

If v5 is adjacent to v3 or v4, say to v3, then in Observation 2, taking V ′ = V3∪{v, v5}, we
have n′ = n−5, m′ = n−6 and |T ′| ≤ (2n−11)/4. Thus, T = T ′∪{v, v3} is a transversal
of HG of size at most (2n−3)/4, contradicting Observation 1. Hence, N(v5)∩N(v) = V2.

Case 1. d(v5) = 3. Let N(v5) = {v1, v2, v6}. By Observation 12, d(v6) = 3. If
N(v6) = {v3, v4, v5}, then G = F2. Hence we may assume that v6 is not adjacent with
both v3 or v4, say v4v6 is not an edge.

Suppose v3v6 is an edge. Let N(v6) = {v3, v5, v7}. Then, v3v7 is an edge. By Observa-
tion 12, v4v7 is not an edge. Let v8 ∈ N(v7) \ {v3, v6}. If v4v8 is an edge, then in Obser-
vation 2, taking V ′ = V8 ∪ {v}, we have n′ = n − 9, m′ ≤ n − 10 and |T ′| ≤ (2n − 19)/4.
If v4v8 is not an edge, then in Observation 2, taking V ′ = (V8 \ {v4}) ∪ {v}, we have
n′ = n− 8, m′ = n− 11 and |T ′| ≤ (2n− 19)/4. In both cases, T = T ′ ∪{v, v1, v7, v8} is a
transversal of HG of size at most (2n − 3)/4, contradicting Observation 1. Hence, v3v6 is
not an edge. Thus, v and v6 have no common neighbor. Let N(v6) = {v5, v7, v8}. Then,
v7v8 ∈ E.

Case 1.1 There is an edge joining {v3, v4} and {v7, v8}. We may assume that v3v7 is
an edge.

If v4v7 is an edge, then by Observation 12, d(v3) = d(v4) = 3. In Observation 2,
taking V ′ = V8 ∪ {v}, we have n′ = n − 9, m′ ≤ n − 10 and |T ′| ≤ (2n − 19)/4. Thus,
T = T ′ ∪ {v1, v5, v7, v8} is a transversal of HG of size at most (2n − 3)/4, contradicting
Observation 1. Hence, v4v7 is not an edge.
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If v3v8 is an edge, then by Observation 12, d(v7) = d(v8) = 3. Thus in Observation 2,
taking V ′ = V8 ∪ {v}, we have n′ = n − 9, m′ ≤ n − 10 and |T ′| ≤ (2n − 19)/4. Thus,
T = T ′ ∪ {v1, v3, v4, v5} is a transversal of HG of size at most (2n − 3)/4, contradicting
Observation 1. Hence, v3v8 is not an edge.

Suppose that d(v3) = 3. Then, d(v7) = 3. If v4v8 is not an edge or if d(v4) = 4, then in
Observation 2, taking V ′ = V8∪{v}, we have n′ = n−9, m′ ≤ n−10 and |T ′| ≤ (2n−19)/4.
Thus, T = T ′∪{v, v4, v6, v8} is a transversal of HG of size at most (2n−3)/4, contradicting
Observation 1. Hence, v4v8 is an edge and d(v4) = 3, implying that d(v8) = 3 and G = F3.
Hence we may assume that d(v3) = 4. Similarly, we may assume that d(v4) = 4.

Let N(v3) = {v, v4, v7, v9}. Then, v7v9 is an edge, and so d(v7) = 4. By Observation 12,
v9 is adjacent to neither v4 nor v8. In Observation 2, taking V ′ = V7 ∪ {v}, we have
n′ = n − 8, m′ ≤ n − 11 and |T ′| ≤ (2n − 19)/4. Thus, T = T ′ ∪ {v, v4, v6, v7} is a
transversal of HG of size at most (2n − 3)/4, contradicting Observation 1.

Case 1.2 There is no edge joining {v3, v4} and {v7, v8}. Then both v7 and v8 are at
distance at least 3 from v, and so, by Observation 5, d(v7) = d(v8) = 3.

Suppose v7 and v8 have a common neighbor v9, different from v6. By Observation 12,
d(v7) = d(v8) = 3. If N(v9) ∩ {v3, v4} = ∅, then in Observation 2, taking V ′ = (V9 \
{v3, v4}) ∪ {v}, we have n′ = n − 8, m′ = n − 11 and |T ′| ≤ (2n − 19)/4. Thus,
T = T ′ ∪ {v, v1, v7, v9} is a transversal of HG of size at most (2n − 3)/4, contradicting
Observation 1. Hence we may assume that v3v9 in an edge. But then in Observation 2,
taking V ′ = (V9 \ {v4}) ∪ {v}, we have n′ = n − 9, m′ ≤ n − 10 and |T ′| ≤ (2n − 19)/4.
Thus, T = T ′∪{v, v1, v7, v9} is a transversal of HG of size at most (2n−3)/4, contradicting
Observation 1. Hence we may assume that v6 is the only common neighbor of v7 and v8.

Let N(v7) = {v6, v8, v9}. Then, v8v9 is not an edge. By Observation 12, d(v9) = 3. If
v3v9 is an edge, then in Observation 2, taking V ′ = (V9\{v4, v8})∪{v}, we have n′ = n−8,
m′ = n−11 and |T ′| ≤ (2n−19)/4. Thus, T = T ′∪{v, v1, v7, v9} is a transversal of HG of
size at most (2n−3)/4, contradicting Observation 1. Hence, v3v9 is not an edge. Similarly,
v4v9 is not an edge. But then in Observation 2, taking V ′ = (V9 \ {v3, v4, v8}) ∪ {v}, we
have n′ = n − 7, m′ ≤ n − 12 and |T ′| ≤ (2n − 19)/4. Thus, T = T ′ ∪ {v, v1, v7, v9} is a
transversal of HG of size at most (2n − 3)/4, contradicting Observation 1.

Case 2. d(v5) = 4. Let N(v5) = {v1, v2, v6, v7}. Then, v6v7 is an edge.
Case 2.1. There is an edge joining {v3, v4} and {v6, v7}. We may assume that

v3v6 is an edge. If v4v6 is an edge, then by Observation 12, d(v3) = d(v4) = 3. Thus in
Observation 2, taking V ′ = V6∪{v}, we have n′ = n−7, m′ ≤ n−8 and |T ′| ≤ (2n−15)/4.
Thus, T = T ′∪{v1, v5, v6} is a transversal of HG of size at most (2n− 3)/4, contradicting
Observation 1. Hence, v4v6 is not an edge.

If d(v6) = 4, then in Observation 2, taking V ′ = (V6 \ {v4})∪ {v}, we have n′ = n− 6,
m′ ≤ n − 9 and |T ′| ≤ (2n − 15)/4. Thus, T = T ′ ∪ {v3, v5, v6} is a transversal of HG

of size at most (2n − 3)/4, contradicting Observation 1. Hence, d(v6) = 3. Therefore,
d(v3) = 3.

If v4v7 is an edge, then in Observation 2, taking V ′ = V7 ∪ {v}, we have n′ = n − 8,
m′ ≤ n − 8 and |T ′| ≤ (2n − 16)/4. Thus, T = T ′ ∪ {v, v4, v7} is a transversal of HG of
size at most (2n − 4)/4, contradicting Observation 1. Hence, v4v7 is not an edge.
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If v4 and v7 have a common neighbor, say v8, then in Observation 2, taking V ′ = V8 ∪
{v}, we have n′ = n−9, m′ ≤ n−10 and |T ′| ≤ (2n−19)/4. Thus, T = T ′∪{v, v4, v7, v8}
is a transversal of HG of size at most (2n − 3)/4, contradicting Observation 1. Hence, v4

and v7 have no common neighbor.
Let v9 ∈ N(v4)\{v, v3}. In Observation 2, taking V ′ = V7∪{v, v9}, we have n′ = n−9,

m′ ≤ n− 10 and |T ′| ≤ (2n− 19)/4. Thus, T = T ′ ∪ {v4, v5, v7, v9} is a transversal of HG

of size at most (2n − 3)/4, contradicting Observation 1.
Case 2.2. There is no edge joining {v3, v4} and {v6, v7}. Then both v6 and v7 are at

distance 3 from v, and so, by Observation 5, d(v6) = d(v7) = 3. Let N(v6) = {v5, v7, v8}.
Suppose that there is a vertex that is a common neighbor of a vertex in {v3, v4}

and a vertex in {v6, v7}. We may assume that v3v8 is an edge. Suppose v7v8 is not an
edge. Then, by Observation 12, d(v8) = 3 and v3 and v8 have a common neighbor. If
v4v8 is an edge, then by Observation 12, d(v3) = d(v4) = 3. Let N(v7) = {v5, v6, v9}.
Then in Observation 2, taking V ′ = V9 ∪ {v}, we have n′ = n − 10, m′ ≤ n − 12 and
|T ′| ≤ (2n − 22)/4. Thus, T = T ′ ∪ {v, v3, v7, v9} is a transversal of HG of size at
most (2n − 6)/4, contradicting Observation 1. Hence, v4v8 is not an edge. But then
in Observation 2, taking V ′ = V6 ∪ {v, v8}, we have n′ = n − 8, m′ ≤ n − 11 and
|T ′| ≤ (2n − 19)/4. Thus, T = T ′ ∪ {v, v4, v6, v8} is a transversal of HG of size at
most (2n − 3)/4, contradicting Observation 1. Hence, v7v8 is an edge. If v4v8 is not an
edge, then in Observation 2, taking V ′ = V8 ∪ {v}, we have n′ = n − 9, m′ ≤ n − 10
and |T ′| ≤ (2n − 19)/4. Thus, T = T ′ ∪ {v, v4, v6, v8} is a transversal of HG of size at
most (2n − 3)/4, contradicting Observation 1. Hence, v4v8 is an edge, and so G = F7.

Hence we may assume that no vertex is a common neighbor of a vertex in {v3, v4} and
a vertex in {v6, v7}, for otherwise G = F7. Thus, d(v, v8) ≥ 3, and so, by Observation 5,
d(v8) = 3.

Suppose that v3 or v4, say v3, has degree 3. Then in Observation 2, taking V ′ =
V2 ∪ {v, v3, v6}, we have n′ = n − 5, m′ ≤ n − 10 and |T ′| ≤ (2n − 15)/4. Thus,
T = T ′ ∪ {v, v3, v6} is a transversal of HG of size at most (2n − 3)/4, contradicting
Observation 1. Hence, d(v3) = d(v4) = 3.

If v3 and v4 have a common neighbor different from v, then in Observation 2, taking
V ′ = V4 ∪ {v, v6}, we have n′ = n − 6, m′ ≤ n − 9 and |T ′| ≤ (2n − 15)/4. Thus,
T = T ′ ∪ {v, v3, v6} is a transversal of HG of size at most (2n − 3)/4, contradicting
Observation 1. Hence, v is the only common neighbor of v3 and v4. Let N(v3) = {v, v4, v9}.
By Observation 12, d(v9) = 3.

If v7v8 is an edge, then in Observation 2, taking V ′ = V7 \ {v4}, we have n′ = n − 6,
m′ ≤ n − 9 and |T ′| ≤ (2n − 15)/4. Thus, T = T ′ ∪ {v3, v5, v6} is a transversal of HG of
size at most (2n − 3)/4, contradicting Observation 1. Hence, v7v8 is not an edge. If v8v9

is not an edge, then in Observation 2, taking V ′ = V3 ∪ {v, v5, v6, v9}, we have n′ = n− 7,
m′ = n− 12 and |T ′| ≤ (2n− 19)/4. Thus, T = T ′ ∪ {v3, v5, v6, v9} is a transversal of HG

of size at most (2n − 3)/4, contradicting Observation 1. Hence, v8v9 is an edge.
Let v10 be the common neighbor of v8 and v9, and so N(v8) = {v6, v9, v10} and N(v9) =

{v3, v8, v10}. Then in Observation 2, taking V ′ = (V9 \ {v4}) ∪ {v}, we have n′ = n − 9,
m′ ≤ n − 11 and |T ′| ≤ (2n − 20)/4. Thus, T = T ′ ∪ {v3, v5, v7, v9} is a transversal of
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HG of size at most (2n − 4)/4, contradicting Observation 1. This completes the proof of
Observation 13. 2

By Observation 13, we may assume that no two vertices in N(v) have a common
neighbor different from v. Thus, N(vi)∩N(vj) = {v} for 1 ≤ i < j ≤ 4. For i = 1, 2, 3, 4,
let vi+4 be the neighbor of vi not in N [v]. Thus, {v1v5, v2v6, v3v7, v4v8} ⊂ E.

Observation 14 There is no 4-cycle containing both v1 and v2 or containing both v3

and v4.

Proof. Suppose, to the contrary, that there is a 4-cycle containing both v1 and v2 or
containing both v3 and v4. By symmetry, we may assume there is a 4-cycle containing
both v1 and v2 and that v5v6 is an edge.

Case 1. v1 or v2 has degree 4. We may assume that d(v1) = 4. Let N(v1) =
{v, v2, v5, v9}. Then, v5v9 is an edge. If v6v9 is an edge, then by Observation 12, d(v5) =
d(v9) = 3. Thus in Observation 2, taking V ′ = V2 ∪ {v5, v6, v9}, we have n′ = n − 5,
m′ = n − 6 and |T ′| ≤ (2n − 11)/4. Thus, T = T ′ ∪ {v2, v6} is a transversal of HG of
size at most (2n − 3)/4, contradicting Observation 1. Hence, v6v9 is not an edge. Every
neighbor of v6, different from v2 and v5, is adjacent to v2 or v5.

Suppose that v6 is adjacent to v7 or v8, say v7. Then, v5v7 is an edge. If v3 or v4

or v6 has degree 4, then in Observation 2, taking V ′ = V7 ∪ {v}, we have n′ = n − 8,
m′ ≤ n− 11 and |T ′| ≤ (2n− 19)/4. Thus, T = T ′ ∪ {v3, v4, v5, v6} is a transversal of HG

of size at most (2n−3)/4, contradicting Observation 1. Hence, d(v3) = d(v4) = d(v6) = 3.
Thus in Observation 2, taking V ′ = (V7 \ {v4}) ∪ {v}, we have n′ = n − 7, m′ = n − 9
and |T ′| ≤ (2n − 16)/4. Thus, T = T ′ ∪ {v, v1, v5} is a transversal of HG of size at
most (2n − 4)/4, contradicting Observation 1. Hence, v6 is adjacent to neither v7 nor v8.
By the claw-freeness of G, v5 is also adjacent to neither v7 nor v8.

If one of v3 or v4, say v3, has degree 4 or if d(v6) = 4, then in Observation 2, taking
V ′ = V3 ∪ {v5, v6}, we have n′ = n − 5, m′ ≤ n − 10 and |T ′| ≤ (2n − 15)/4. Thus,
T = T ′ ∪ {v3, v5, v6} is a transversal of HG of size at most (2n − 3)/4, contradicting
Observation 1. Hence, d(v3) = d(v4) = d(v6) = 3. Thus, by Observation 12, d(v7) =
d(v8) = 3. Let N(v6) = {v2, v5, v10}.

If v7v8 is an edge, then in Observation 2, taking V ′ = V8 ∪ {v}, we have n′ = n − 9,
m′ ≤ n− 11 and |T ′| ≤ (2n− 20)/4. Thus, T = T ′ ∪ {v3, v5, v6, v7} is a transversal of HG

of size at most (2n − 3)/4, contradicting Observation 1. Hence, v7v8 is not an edge.
If v7 or v8, say v7, is adjacent to neither v9 nor v10, then in Observation 2, taking

V ′ = (V7 \ {v4}) ∪ {v}, we have n′ = n − 7, m′ = n − 12 and |T ′| ≤ (2n − 19)/4. Thus,
T = T ′ ∪ {v3, v5, v6, v7} is a transversal of HG of size at most (2n − 3)/4, contradicting
Observation 1. Hence each of v7 and v8 is adjacent to at least one of v9 and v10. By the
claw-freeness of G, each of v7 and v8 is adjacent to at most one of v9 and v10. Hence we
may assume that N(v7) = {v3, v9, v11} and N(v8) = {v4, v10, v12}. Thus, v9v11 is an edge
and v10v12 is an edge. In Observation 2, taking V ′ = V10 ∪ {v}, we have n′ = n − 11,
m′ ≤ n − 13 and |T ′| ≤ (2n − 24)/4. Thus, T = T ′ ∪ {v, v1, v8, v9, v10} is a transversal of
HG of size at most (2n − 4)/4, contradicting Observation 1.
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Case 2. d(v1) = d(v2) = 3. Thus by Observation 12, d(v5) = d(v6) = 3.
If v7 or v8, say v7, is the common neighbor of v5 and v6, then in Observation 2, taking

V ′ = (V7 \ {v4}) ∪ {v}, we have n′ = n − 7, m′ ≤ n − 8 and |T ′| ≤ (2n − 15)/4. Thus,
T = T ′ ∪ {v, v3, v7} is a transversal of HG of size at most (2n − 3)/4, contradicting
Observation 1. Hence neither v7 nor v8 is the common neighbor of v5 and v6. Let v9 be
the common neighbor of v5 and v6.

Suppose that v9 has a common neighbor with v3 or v4. We may assume that v7v9 is an
edge. Then in Observation 2, taking V ′ = V7 ∪ {v, v9}, we have n′ = n − 9, m′ ≤ n − 10
and |T ′| ≤ (2n − 19)/4. Thus, T = T ′ ∪ {v, v4, v7, v9} is a transversal of HG of size at
most (2n − 3)/4, contradicting Observation 1. Hence, v9 has no common neighbor with
v3 or v4. In particular, v9 is adjacent to neither v7 nor v8. Thus, d(v, v9) = 3, and so,
by Observation 5, d(v9) = 3. Let N(v9) = {v5, v6, v10}. Then in Observation 2, taking
V ′ = V3∪{v, v5, v6, v9, v10}, we have n′ = n−8, m′ ≤ n−11 and |T ′| ≤ (2n−19)/4. Thus,
T = T ′ ∪ {v, v3, v9, v10} is a transversal of HG of size at most (2n − 3)/4, contradicting
Observation 1.

Since both Case 1 and Case 2 produce a contradiction, we conclude that v5v6 is not
an edge, i.e., there is no 4-cycle containing both v1 and v2 or containing both v3 and v4. 2

Observation 15 {v5, v6, v7, v8} is an independent set.

Proof. Assume, to the contrary, that {v5, v6, v7, v8} is not an independent set. Then, by
Observation 14, there is an edge joining a vertex in {v5, v6} with a vertex in {v7, v8}. We
may assume that v6v7 ∈ E. We show first that v6 and v7 have a common neighbor.

Claim 5 v6 and v7 have a common neighbor.

Proof. Suppose, to the contrary, that v6 and v7 have no common neighbor. Then, by
Observation 12, d(v6) = d(v7) = 3. Let N(v6) = {v2, v7, v9} and let N(v7) = {v3, v6, v10}.
Then, v2v9 and v3v10 are edges, and d(v2) = d(v3) = 4. By Observation 14, v5v9 is not an
edge and v8v10 is not an edge.

If v5v10 is an edge, then in Observation 2, taking V ′ = (V7 \ {v4}) ∪ {v, v10}, we have
n′ = n − 8, m′ ≤ n − 11 and |T ′| ≤ (2n − 19)/4. Thus, T = T ′ ∪ {v, v2, v5, v10} is a
transversal of HG of size at most (2n − 3)/4, contradicting Observation 1. Hence, v5v10

is not an edge. Similarly, v8v9 is not an edge.
Suppose v9v10 is an edge. If d(v1) = 4 or if d(v9) = 4 or if d(v10) = 4, then in

Observation 2, taking V ′ = V3 ∪ {v, v6, v7, v9, v10}, we have n′ = n − 8, m′ ≤ n − 11
and |T ′| ≤ (2n − 19)/4. Thus, T = T ′ ∪ {v, v1, v9, v10} is a transversal of HG of size
at most (2n − 3)/4, contradicting Observation 1. Hence, d(v1) = d(v9) = d(v10) = 3.
Similarly, d(v4) = 3. But then in Observation 2, taking V ′ = (V10 \ {v5, v8}) ∪ {v}, we
have n′ = n − 9, m′ ≤ n − 11 and |T ′| ≤ (2n − 20)/4. Thus, T = T ′ ∪ {v1, v2, v3, v4} is a
transversal of HG of size at most (2n − 4)/4, contradicting Observation 1. Hence, v9v10

is not an edge.
Suppose v5v8 is an edge. Suppose v5 and v8 have a common neighbor, say v11. Then,

in Observation 2, taking V ′ = (V7 \ {v5}) ∪ {v, v11}, we have n′ = n − 8, m′ ≤ n − 11
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and |T ′| ≤ (2n − 19)/4. Thus, T = T ′ ∪ {v, v2, v3, v11} is a transversal of HG of size
at most (2n − 3)/4, contradicting Observation 1. Hence, v5 and v8 have no common
neighbor. Thus by Observation 12, d(v5) = d(v8) = 3. Let N(v5) = {v1, v8, v11} and let
N(v8) = {v4, v5, v12}. Thus, v1v11 and v4v12 are edges, and d(v1) = d(v4) = 4. A similar
argument to the one that show that v9v10 is not an edge, shows that v11v12 is not an edge.

By Observation 14, we know that neither v9v11 nor v10v12 is an edge. Suppose that
v9v12 or v10v11 is an edge. By symmetry, we may assume v9v12 is an edge. In Observation 2,
taking V ′ = V9 ∪{v, v12}, we have n′ = n−11, m′ ≤ n−13 and |T ′| ≤ (2n−24)/4. Thus,
T = T ′ ∪{v, v1, v3, v9, v12} is a transversal of HG of size at most (2n− 4)/4, contradicting
Observation 1. Hence, neither v9v12 nor v10v11 is an edge. Thus, {v9, v10, v11, v12} is an
independent set.

Let v13 ∈ N(v12). Since {v9, v10, v11, v12} is an independent set, v13 is adjacent to at
most two vertices in {v9, v10, v11, v12}. Thus, v13 has at least one neighbor not in the set
{v9, v10, v11, v12}. Therefore in Observation 2, taking V ′ = V8 ∪ {v, v11, v12, v13}, we have
n′ = n−12, m′ ≤ n−15 and |T ′| ≤ (2n−27)/4. Thus, T = T ′∪{v1, v6, v7, v11, v12, v13} is a
transversal of HG of size at most (2n−3)/4, contradicting Observation 1. This completes
the proof of Claim 5. 2

By Claim 5, v6 and v7 have a common neighbor, say v9. By Observation 14, v9 is
adjacent to neither v1 nor v4. Thus, d(v, v9) = 3, and so, by Observation 4, d(v9) = 3.

Suppose that d(v2) = d(v3) = 3. Then, by Observation 12, d(v6) = d(v7) = 3. Suppose
that v9 is adjacent to v5 or v8, say v5. Then in Observation 2, taking V ′ = V7 ∪ {v, v9},
we have n′ = n − 9, m′ ≤ n − 10 and |T ′| ≤ (2n − 19)/4. Thus, T = T ′ ∪ {v, v4, v5, v9}
is a transversal of HG of size at most (2n − 3)/4, contradicting Observation 1. Hence,
neither v5v9 nor v8v9 is an edge. Let N(v9) = {v6, v7, v10}. In Observation 2, taking
V ′ = V3 ∪ {v, v6, v7, v9, v10}, we have n′ = n − 8, m′ ≤ n − 11 and |T ′| ≤ (2n − 19)/4.
Thus, T = T ′∪{v, v1, v9, v10} is a transversal of HG of size at most (2n−3)/4, contradicting
Observation 1. Hence at least one of v2 and v3 has degree 4.

If v2v9 is an edge, then by Observation 12, d(v6) = d(v9) = 3, and so in Observation 2,
taking V ′ = (V7 \ {v4})∪{v, v9}, we have n′ = n− 8, m′ ≤ n− 11 and |T ′| ≤ (2n− 19)/4.
Thus, T = T ′∪{v1, v3, v5, v7} is a transversal of HG of size at most (2n−3)/4, contradicting
Observation 1. Hence, v2v9 is not an edge. Similarly, v3v9 is not an edge. Thus, if
d(v2) = 4, then v2 and v6 have a common neighbor which is different from v9, while
if d(v3) = 4, then v3 and v7 have a common neighbor which is different from v9. In
particular, d(v6) = 4 or d(v7) = 4.

Suppose v9 is adjacent to v5 or v8, say v5. By Observation 12, d(v5) = 3. Hence,
d(v1) = 4 and v1 and v5 have a common neighbor. In Observation 2, taking V ′ =
(V7 \ {v4}) ∪ {v, v9}, we have n′ = n − 8, m′ ≤ n − 11 and |T ′| ≤ (2n − 19)/4. Thus,
T = T ′ ∪ {v, v1, v6, v7} is a transversal of HG of size at most (2n − 3)/4, contradicting
Observation 1. Hence, v9 is adjacent to neither v5 nor v8. Let N(v9) = {v6, v7, v10}. By
Observation 12, d(v10) = 3.

If v10 is adjacent to v2 or v3, say v2, then v6v10 is an edge, and so N(v6) induces a
subgraph that contains a P4, contradicting Observation 11. Hence, v10 is adjacent to
neither v2 nor v3. If v10 is adjacent to v1 or v4, say v1, then v5v10 is an edge. But then
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in Observation 2, taking V ′ = V3 ∪ {v, v6, v7, v9, v10}, we have n′ = n − 8, m′ ≤ n − 11
and |T ′| ≤ (2n − 19)/4. Thus, T = T ′ ∪ {v, v1, v6, v7} is a transversal of HG of size at
most (2n−3)/4, contradicting Observation 1. Hence, v10 is adjacent to no vertex in N(v).

If v10 is adjacent to v5 or v8, say v5, then v5 and v10 have a common neighbor. In
Observation 2, taking V ′ = (V10 \ {v4}) ∪ {v}, we have n′ = n − 10, m′ ≤ n − 14 and
|T ′| ≤ (2n − 24)/4. Thus, T = T ′ ∪ {v1, v5, v6, v7, v8} is a transversal of HG of size at
most (2n− 4)/4, contradicting Observation 1. Hence, v10 is adjacent to neither v5 nor v8.
Let N(v10) = {v9, v11, v12}. Then, v11v12 is an edge.

Suppose there is an edge joining a vertex in {v2, v3} with a vertex in {v11, v12}. We
may assume v2v11 is an edge. Then v6v11 is an edge and in Observation 2, taking V ′ =
(V11 \{v1, v4, v5, v8})∪{v}, we have n′ = n−8, m′ ≤ n−11 and |T ′| ≤ (2n−19)/4. Thus,
T = T ′ ∪ {v, v3, v10, v11} is a transversal of HG of size at most (2n − 3)/4, contradicting
Observation 1. Hence, there is no edge joining {v2, v3} and {v11, v12}.

Suppose there is an edge joining a vertex in {v1, v4} with a vertex in {v11, v12}. We
may assume v1v11 is an edge. Then, v5v11 is an edge. But then in Observation 2, taking
V ′ = (V11\{v4, v5})∪{v}, we have n′ = n−10, m′ ≤ n−13 and |T ′| ≤ (2n−23)/4. Thus,
T = T ′∪{v1, v6, v7, v8, v11} is a transversal of HG of size at most (2n−3)/4, contradicting
Observation 1. Hence, neither v11 nor v12 is adjacent to a vertex in N(v). Thus, by
Observation 4, d(v11) = d(v12) = 3.

Suppose there is an edge joining a vertex in {v5, v8} with a vertex in {v11, v12}. We
may assume v5v11 is an edge. By Observation 12, d(v5) = 3. Hence, d(v1) = 4 and v1

and v5 have a common neighbor. If v8v12 is not an edge, then in Observation 2, taking
V ′ = (V11 \ {v4}) ∪ {v}, we have n′ = n − 11, m′ ≤ n − 16 and |T ′| ≤ (2n − 27)/4.
Thus, T = T ′ ∪ {v1, v5, v6, v7, v8, v11} is a transversal of HG of size at most (2n − 3)/4,
contradicting Observation 1. Hence, v8v12 is an edge. By Observation 12, d(v8) = 3.
Hence, d(v4) = 4 and v4 and v8 have a common neighbor. In Observation 2, taking
V ′ = (V11 \ {v1, v5, v8}) ∪ {v}, we have n′ = n − 9, m′ ≤ n − 14 and |T ′| ≤ (2n − 23)/4.
Thus, T = {v, v4, v6, v7, v11} is a transversal of HG of size at most (2n−3)/4, contradicting
Observation 1. Hence, there is no edge joining {v5, v8} and {v11, v12}.

Suppose v5v8 is an edge. As in Claim 5, we must have that v5 and v8 have a common
neighbor. Further, as shown with the v6 and v7, at least one of v5 and v8 has degree 4.
Hence, in Observation 2, taking V ′ = V9 ∪ {v, v11}, we have n′ = n− 11, m′ ≤ n− 16 and
|T ′| ≤ (2n − 27)/4. Thus, T = T ′ ∪ {v1, v5, v6, v7, v8, v11} is a transversal of HG of size at
most (2n − 3)/4, contradicting Observation 1. Hence, v5v8 is not an edge.

If v5 and v8 have no common neighbor, then in Observation 2, taking V ′ = (V9 \
{v4}) ∪ {v, v11}, we have n′ = n − 10, m′ ≤ n − 17 and |T ′| ≤ (2n − 27)/4. Thus, T =
T ′ ∪ {v1, v5, v6, v7, v8, v11} is a transversal of HG of size at most (2n − 3)/4, contradicting
Observation 1. Hence, v5 and v8 have a common neighbor. Such a common neighbor
is at distance at least 3 from both v6 and v7, and so, by Observation 5, has degree 3.
Hence, v5 and v8 have two common neighbor (of degree 3), say v13 and v14. But then in
Observation 2, taking V ′ = V8 ∪ {v13, v14}, we have n′ = n − 11, m′ ≤ n − 13 and |T ′| ≤
(2n−24)/4. Thus, T = T ′∪{v3, v5, v6, v7, v13} is a transversal of HG of size at most (2n−
4)/4, contradicting Observation 1. This completes the proof of Observation 15. 2
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By Observation 15, {v5, v6, v7, v8} is an independent set.

Observation 16 If every neighbor of v has degree 3, then G ∈ {F11, F12}.

Proof. By Observation 12, we have that d(vi) = 3 for i ∈ {5, 6, 7, 8}. By Observation 4,
it follows that v is therefore the only degree-4 vertex in G. Let N(v5) = {v1, v9, v10}.
Then, v9v10 ∈ E.

Suppose first that a vertex in {v5, v6} and a vertex in {v7, v8} have a common neighbor.
We may assume that v5 and v7 have a common neighbor. Thus, N(v7) = {v3, v9, v10}.
Suppose that v6 and v8 have no common neighbor. Let N(v6) = {v2, v11, v12} and N(v8) =
{v4, v13, v14}. Then, v11v12 ∈ E and v13v14 ∈ E. In Observation 2, taking V ′ = (V11 \
{v6, v8}) ∪ {v}, we have n′ = n − 10, m′ = n − 13 and |T ′| ≤ (2n − 23)/4. Thus,
T = T ′ ∪{v, v4, v5, v9, v11} is a transversal of HG of size at most (2n− 3)/4, contradicting
Observation 1. Hence, v6 and v8 have a common neighbor, and so G = F11.

Suppose secondly that v5 and v6, or v7 and v8, have a common neighbor. We may as-
sume that v5 and v6 have a common neighbor; that is, N(v6) = {v2, v9, v10}. Suppose that
v7 and v8 have no common neighbor. Let N(v7) = {v3, v11, v12} and N(v8) = {v4, v13, v14}.
Then, v11v12 ∈ E and v13v14 ∈ E. In Observation 2, taking V ′ = (V11 \ {v7, v8})∪{v}, we
have n′ = n − 10, m′ = n − 13 and |T ′| ≤ (2n − 23)/4. Thus, T = T ′ ∪ {v, v4, v5, v9, v11}
is a transversal of HG of size at most (2n − 3)/4, contradicting Observation 1. Hence, v7

and v8 have a common neighbor, and so G = F12.
Hence we may assume that no two vertices in {v5, v6, v7, v8} have a common neighbor,

for otherwise G ∈ {F11, F12}, as desired. Let N(v6) = {v2, v11, v12}, N(v7) = {v3, v13, v14},
and N(v8) = {v4, v15, v16}. Then, {v9v10, v11v12, v13v14, v15v16} ⊂ E.

Suppose there is an edge joining two triangles each of which contain a vertex from
{v5, v6, v7, v8}. We may assume that v10v11 ∈ E. In Observation 2, taking V ′ = (V6 \
{v4}) ∪ {v, v10, v11}, we have n′ = n − 8, m′ = n − 12 and |T ′| ≤ (2n − 20)/4. Thus,
T = T ′ ∪ {v, v3, v10, v11} is a transversal of HG of size at most (2n − 4)/4, contradicting
Observation 1. Hence there is no edge joining two triangles each of which contain a vertex
from {v5, v6, v7, v8}.

Suppose there is a vertex, v17 say, that is adjacent to two vertices that belong to
distinct triangles each of which contain a vertex from {v5, v6, v7, v8}. Up to symmetry,
there are two cases to consider. Suppose, first, that the vertex v17 satisfies N(v17) =
{v9, v10, v11}. In Observation 2, taking V ′ = {v, v1, v2, v5, v6, v9, v10, v11, v17}, we have
n′ = n − 9, m′ = n − 12 and |T ′| ≤ (2n − 21)/4. Thus, T = T ′ ∪ {v, v1, v11, v17} is
a transversal of HG of size at most (2n − 5)/4, contradicting Observation 1. Suppose,
second, that that the vertex v17 satisfies N(v17) = {v9, v10, v13}. In Observation 2, taking
V ′ = {v, v1, v3, v5, v7, v9, v10, v13, v17}, we have n′ = n − 9, m′ = n − 12 and |T ′| ≤
(2n−21)/4. Thus, T = T ′∪{v, v1, v13, v17} is a transversal of HG of size at most (2n−5)/4,
contradicting Observation 1.

Hence there is no vertex that is adjacent to two vertices that belong to distinct triangles
each of which contain a vertex from {v5, v6, v7, v8}. Thus in Observation 2, taking V ′ =
V4 ∪ {v9, v11, v13}, we have n′ = n − 8, m′ ≤ n − 15 and |T ′| ≤ (2n − 23)/4. Thus,
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T = T ′∪{v, v4, v9, v11, v13} is a transversal of HG of size at most (2n−3)/4, contradicting
Observation 1. This completes the proof of Observation 16. 2

By Observation 16, we may assume that at least one neighbor of v has degree 4.
We may assume d(v1) = 4. Let N(v1) = {v, v2, v5, v9}. Then, v5v9 is an edge. By
Observation 15, v9 is adjacent to no vertex in {v6, v7, v8}.

Observation 17 For i ∈ {1, 2, 3, 4}, if d(vi) = 4, then the two neighbors of vi in V \N [v]
have no common neighbor other than vi.

Proof. For notational convenience, consider the vertex v1. Suppose that v5 and v9 have
a common neighbor different from v1. Then, by Observation 12, d(v5) = d(v9) = 3. By
Observation 15, we may assume that such a common neighbor of v5 and v9 is adjacent to
no vertex in {v2, v3, v4}. Let v10 be the common neighbor of v5 and v9 different from v1.
Since d(v, v10) = 3, d(v10) = 3 by Observation 4.

If v6v10 is an edge, then in Observation 2, taking V ′ = V2 ∪ {v, v4, v5, v6, v9, v10}, we
have n′ = n − 8, m′ ≤ n − 11 and |T ′| ≤ (2n − 19)/4. Thus, T = T ′ ∪ {v, v4, v6, v10} is a
transversal of HG of size at most (2n − 3)/4, contradicting Observation 1. Hence, v6v10

is not an edge. If v10 is adjacent to v7 or to v8, say v7, then in Observation 2, taking
V ′ = V3∪{v, v5, v7, v9, v10}, we have n′ = n−8, m′ ≤ n−11 and |T ′| ≤ (2n−19)/4. Thus,
T = T ′ ∪ {v, v2, v7, v10} is a transversal of HG of size at most (2n − 3)/4, contradicting
Observation 1. Hence, v10 is not adjacent to any vertex in {v6, v7, v8}. Let N(v10) =
{v5, v9, v11}.

If v6v11 is an edge, then in Observation 2, taking V ′ = V2 ∪ {v, v5, v6, v9, v10, v11}, we
have n′ = n − 8, m′ ≤ n − 11 and |T ′| ≤ (2n − 19)/4. Thus, T = T ′ ∪ {v, v1, v6, v11} is a
transversal of HG of size at most (2n − 3)/4, contradicting Observation 1. Hence, v6v11

is not an edge. If v11 is adjacent to v7 or to v8, say v7, then in Observation 2, taking
V ′ = {v, v1, v3, v5, v7, v9, v10, v11}, we have n′ = n−8, m′ ≤ n−11 and |T ′| ≤ (2n−19)/4.
Thus, T = T ′∪{v, v1, v7, v11} is a transversal of HG of size at most (2n−3)/4, contradicting
Observation 1. Hence, v11 is not adjacent to any vertex in {v6, v7, v8}.

By Observation 4, d(v11) = 3. Let N(v11) = {v10, v12, v13}. Then, v12v13 is an edge. By
Observation 4, d(v12) = d(v13) = 3. In Observation 2, take V ′ = {v, v1, v5, v9, v10, v11, v12},
so we have n′ = n−7, m′ ≤ n−12 and |T ′| ≤ (2n−19)/4. Thus, T = T ′∪{v, v1, v11, v12}
is a transversal of HG of size at most (2n − 3)/4, contradicting Observation 1. 2

By Observation 17, the vertex v1 is the only common neighbor of v5 and v9. Every
neighbor of v3 or v4 different from v is at distance 3 from v1 and therefore has degree 3
by Observation 4. In particular, d(v7) = d(v8) = 3.

Observation 18 d(v3) = 4 or d(v4) = 4.

Proof. Suppose that d(v3) = d(v4) = 3. Let N(v7) = {v3, v10, v11}. Suppose v7 and
v8 have a common neighbor. Then, N(v8) = {v4, v10, v11}. In Observation 2, taking
V ′ = {v, v1, v3, v4, v7, v8, v10, v11}, we have n′ = n−8, m′ ≤ n−11 and |T ′| ≤ (2n−19)/4.
Thus, T = T ′∪{v, v1, v7, v10} is a transversal of HG of size at most (2n−3)/4, contradicting
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Observation 1. Hence, v7 and v8 have no common neighbor. Let N(v8) = {v4, v12, v13}.
Then, v10v11 is an edge and v12v13 is an edge.

Suppose there is an edge joining a vertex in {v10, v11} and a vertex in {v12, v13}. We
may assume v11v12 is an edge. In Observation 2, taking V ′ = {v, v1, v3, v4, v7, v8, v11, v12},
we have n′ = n− 8, m′ ≤ n− 13 and |T ′| ≤ (2n− 21)/4. Thus, T = T ′∪{v, v1, v11, v12} is
a transversal of HG of size at most (2n − 5)/4, contradicting Observation 1. Hence there
is no edge joining a vertex in {v10, v11} and a vertex in {v12, v13}.

Suppose that a vertex in {v10, v11} and a vertex in {v12, v13} have a common neighbor,
say v13. We may assume that N(v13) = {v10, v11, v12}. Then in Observation 2, taking
V ′ = {v, v3, v7, v10, v11, v13}, we have n′ = n−7, m′ ≤ n−12 and |T ′| ≤ (2n−19)/4. Thus,
T = T ′ ∪ {v, v1, v11, v13} is a transversal of HG of size at most (2n − 5)/4, contradicting
Observation 1. Hence a vertex in {v10, v11} and a vertex in {v12, v13} have no common
neighbor.

Suppose that there are two edges joining {v5, v9} and {v10, v11}. We may assume that
v5v10 and v9v11 are edges. Then in Observation 2, taking V ′ = {v, v1, v2, v3, v5, v7, v9, v10,
v11}, we have n′ = n−9, m′ ≤ n−11 and |T ′| ≤ (2n−20)/4. Thus, T = T ′∪{v, v2, v5, v10}
is a transversal of HG of size at most (2n−4)/4, contradicting Observation 1. Hence there
is at most one edge joining {v5, v9} and {v10, v11}. Similarly, there is at most one edge
joining {v5, v9} and {v12, v13}. We may therefore assume that there is no edge joining
{v5, v9} and {v10, v12}. Hence in Observation 2, taking V ′ = {v, v1, v3, v4, v10, v12}, we
have n′ = n − 6, m′ ≤ n − 13 and |T ′| ≤ (2n − 19)/4. Thus, T = T ′ ∪ {v, v1, v10, v12} is a
transversal of HG of size at most (2n − 4)/4, contradicting Observation 1. 2

By Observation 18, we may assume that v3 or v4, say v4, has degree 4. Let N(v4) =
{v, v3, v8, v10}. Then, v8v10 is an edge. Every vertex at distance 2 from v is at distance 3
from either v1 or v4 and therefore, by Observation 4, has degree 3. By Observation 17, v4 is
the only common neighbor of v8 and v10. By the claw-freeness of G, and by Observations 15
and 17, no two vertices at distance 2 from v have a common neighbor in V \ N(v).

Observation 19 d(v3) = 3.

Proof. Suppose that d(v3) = 4. Let N(v3) = {v, v4, v7, v11}. Then, v7v11 is an
edge. For i ∈ {7, 8, 10, 11}, let v′

i be the neighbor of vi at distance 3 from v. Hence,
N(v7) = {v3, v

′
7, v11} and N(v11) = {v3, v7, v

′
11}, while N(v8) = {v4, v

′
8, v10} and N(v10) =

{v4, v8, v
′
10}. Let W = {v′

7, v
′
8, v

′
10, v

′
11}.

We show that W is an independent set. Suppose that two vertices in W are adjacent.
We may assume that v′

7v
′
11 is an edge or v′

7v
′
8 is an edge. Suppose v′

7v
′
11 is an edge. Then in

Observation 2, taking V ′ = {v, v1, v3, v7, v
′
7, v11, v

′
11}, we have n′ = n− 7, m′ ≤ n− 12 and

|T ′| ≤ (2n−19)/4. Thus, T = T ′∪{v, v1, v7, v
′
7} is a transversal of HG of size at most (2n−

3)/4, contradicting Observation 1. Suppose v′
7v

′
8 is an edge. Let w be the common

neighbor of v′
7 and v′

8. Then in Observation 2, taking V ′ = {v, v3, v4, v5, v6, v7, v
′
7, v8, v

′
8, w},

we have n′ = n−10, m′ ≤ n−17 and |T ′| ≤ (2n−27)/4. Thus, T = T ′∪{v3, v4, v5, v6, v
′
7, w}

is a transversal of HG of size at most (2n − 3)/4, contradicting Observation 1. Thus, W
is an independent set.
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If no two vertices in W have a common neighbor, then in Observation 2, taking
V ′ = {v, v1, v3, v4} ∪ W , we have n′ = n − 8, m′ ≤ n − 19 and |T ′| ≤ (2n − 27)/4. Thus,
T = T ′ ∪ {v, v1} ∪ W is a transversal of HG of size at most (2n − 3)/4, contradicting
Observation 1. Hence, two vertices in W have a common neighbor.

Suppose v′
7 and v′

11 or v′
8 and v′

10, say v′
7 and v′

11, have a common neighbor. Let
N(v′

7) = {v7, v12, v13}. Then, N(v′
11) = {v11, v12, v13}. In Observation 2, taking V ′ =

{v, v3, v7, v
′
7, v11, v

′
11, v12, v13}, we have n′ = n − 8, m′ ≤ n − 11 and |T ′| ≤ (2n − 19)/4.

Thus, T = T ′∪{v, v3, v
′
7, v12} is a transversal of HG of size at most (2n−3)/4, contradicting

Observation 1. Hence, neither v′
7 and v′

11 nor v′
8 and v′

10 have a common neighbor. Hence
a vertex in {v′

7, v
′
11} and a vertex in {v′

8, v
′
10} have a common neighbor. We may assume

that v′
7 and v′

8 have a common neighbor. Let N(v′
7) = {v7, v12v13}. Then, N(v′

8) =
{v8, v12, v13}. In Observation 2, taking V ′ = {v3, v4, v7, v

′
7, v8, v

′
8, v12, v13}, we have n′ =

n− 8, m′ ≤ n− 11 and |T ′| ≤ (2n− 19)/4. Thus, T = T ′∪{v3, v4, v
′
7, v12} is a transversal

of HG of size at most (2n − 3)/4, contradicting Observation 1. 2

By Observation 19, d(v3) = 3. An identical argument (interchanging the roles of v3

and v4 with v1 and v2) shows that d(v2) = 3. Let N(v6) = {v2, v12, v13} and N(v7) =
{v3, v14, v15}. Then, v12v13 is an edge and v14v15 is an edge. An identical proof as the proof
of Observation 18 now produces a contradiction. This completes the proof of Theorem 9. 2
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