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Abstract

A simple, undirected 2-connected graph G of order n belongs to class O(n,ϕ),
ϕ ≥ 0, if σ2 = n − ϕ. It is well known (Ore’s theorem) that G is hamiltonian if
ϕ = 0, in which case the 2-connectedness hypothesis is implied. In this paper we
provide a method for studying this class of graphs. As an application we give a full
characterization of graphs G in O(n,ϕ), ϕ ≤ 3, in terms of their dual hamiltonian
closure.
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1 Introduction

We consider throughout only simple 2-connected graphs G = (V, E). We let α(G), ν(G),
ω(G) denote respectively the independence number, the matching number and the number
of components of the graph G. A graph G is 1-tough if |S| ≥ ω(G−S) is true for any subset

S ⊂ V with ω(G − S) > 1. For k ≤ α(G) we set σk = min
{∑

x∈S

d(x) | S is a stable set
}

.

We use the term stable to mean independent set. A graph G of order n belongs to class
O(n, ϕ), ϕ ≥ 0 if σ2 = n−ϕ. It is well known ([13]) that G is hamiltonian if G ∈ O(n, 0),
in which case the 2-connectedness hypothesis is implied. Jung ([8]) proved that a 1-tough
graph G ∈ O(n ≥ 11, 4) is hamiltonian. Indeed this is a strong assumption which is not
easy to verify since recognizing tough graphs is NP-Hard ([10]). Ignoring the hypothesis of
1-toughness but conserving the constraint on n, that is n ≥ 3ϕ− 1, we obtained in ([4]) a
characterization of graphs in O(n, ϕ ≤ 4). Without any constraint on n, a characterization
of graphs in O(n, ϕ ≤ 2) is given in ([2] and [9]). The same characterization was given by
Schiermeyer ([12]) in terms of the dual-closure of G.
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In this paper we go a step further than Shiermeyer by giving a complete map of graphs
in O(n, ϕ ≤ 3) with respect to the hamiltonian property. The dual closure ([1, 2, 5]) of
those graphs is completely determined. This is indeed useful since then finding a cycle in
G of maximum length becomes a polynomial problem.

2 Preliminary results

A vertex of degree n − 1 is a dominating vertex and Ω will denote the set of dominating
vertices. The circumference c(G) of G is the length of its longest cycle. For u ∈ V (G),
let NH(u) denote the set and dH(u) the number of neighbors of u in H, a subgraph of
G. If H = G we will write simply N(u) for NG(u) and d(u) for dG(u) respectively. For
convenience, we extend this notation as follows. Given a subset S ⊂ V , we define the
degree of a vertex x with respect to S as dS(x) to be the number of vertices of S adjacent
to x. For X ⊂ V , put N(X) = ∪u∈XN(u). If X, Y ⊂ V , let E(X, Y ) denote the set of
edges joining vertices of X to vertices of Y. As we need very often to refer to a presence
or not of an edge, we write xy to mean that xy ∈ E and xy to mean xy /∈ E For each
pair (a, b) of nonadjacent vertices we associate

Gab := G − N(a) ∪ N(b), γab := |N(a) ∪ N(b)| , λab := |N(a) ∩ N(b)|
Tab := V \ (N [a] ∪ N [b]) , tab := |Tab| , αab := 2 + tab = |V (Gab)|
δab := min {d(x) | x ∈ Tab} if Tab 6= ∅ and δab := δ(G) otherwise

αab = α(Gab), νab = ν(Gab), ω(Tab) = ω(G [Tab]).

In this paper there is a specially chosen pair (a, b) of vertices. To remain simple, we
omit the reference to a, b for all parameters defined above. Moreover we understand T
as the set, the graph induced by its vertices and its edge set. Our proofs are all based
on the concept of the hamiltonian closure ([11], [1], [2]). The two conditions of closure
developed in [1], [2] are both generalizations of Bondy-Chvàtal’s closure. To state the
condition under which our closure is based we define a binary variable εab associated with
(a, b).

Definition 2.1 Let εab ∈ {0, 1} be a binary variable, associated with a pair (a, b) of
nonadjacent vertices. We set εab = 0 if and only if

1. ∅ 6= T and all vertices of T have the same degree 1 + t. Moreover λab ≤ 1 if
N(T )\T ⊆ N(a) 4 N(b), (where 4 denotes the symmetric difference).

2. one of the following two local configurations holds

(a) T is a clique (possibly with one element), λab ≤ 2 and there exist u, v /∈ T such
that T ⊂ N(u) ∩ N(v).

(b) T is an independent set (with at least two elements), λab ≤ 1 + t and either
N(T ) ⊆ D or there exists a vertex u ∈ N(a) 4 N(b) such that |NT (u)| ≥
|T | − max (λab − 1, 0) . Moreover T is a clique in G2, the square of G.
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Lemma 2.2 (the main closure condition) Let G be a 2-connected graph and let (a, b)
be a pair of nonadjacent vertices satisfying the condition

αab ≤ max {λab + νab, δab + εab} (ncc)

Then c(G) = p if and only if c(G + ab) = p, p ≤ n.

The first condition is a relaxation of the condition αab ≤ max {λab, 2} given in [1].
Since by definition αab is the order of Gab, it follows that αab ≤ αab. As αab is not easy
to compute we developed many upper bounds of αab, computable in polynomial time
([1], [6]) . One of these upper bounds is precisely νab. It is known that for any graph H ,
α(H)+ν(H) ≤ n(H). We note that νab = ν (Gab) = ν (T ) since a, b are isolated vertices in
Gab, we see that αab − νab ≤ αab and hence αab ≤ max {λab, 2} implies αab ≤ λab + νab. We
note that αab ≤ λab + νab is stronger than Bondy-Chvàtal’s hamiltonian closure condition
([11]) since d(a) + d(b) ≥ n ⇔ αab ≤ λab. The second part of the condition (ncc) is a
relaxation of a strongest one given in [1], improved in ([5]) .The condition αab ≤ δab + εab,
especially with the addition of the term εab will prove to be a most useful tool in obtaining
the main properties of the dual closure of any graph G ∈ O(n, 3). The condition αab ≤
λab+νab is only used in very particular cases. Note that αab ≤ δab+εab ⇔ γab+δab+εab ≥ n
and αab ≤ λab + νab ⇔ d(a) + d(b) + νab ≥ n.

The 0-dual neighborhood closure nc∗0(G) (the 0−dual closure for short) is the graph
obtained from G by successively joining (a, b) satisfying the condition (ncc) until no such
pair remains. Throughout we denote nc∗0(G) by H . All closures based on the above
conditions are well defined. Moreover, it is shown in ([6], [5]) that it takes a polynomial
time to construct H and to exhibit a longest cycle in G whenever a longest cycle is known
in H.

As a direct consequence of Lemma 2.2 we have.

Corollary 2.3 Let G be a 2-connected graph. Then G is hamiltonian if and only if H is
hamiltonian.

3 Results

To state our results, we define first three nonhamiltonian graphs (H1
7 to H3

7 ) on the set
{a, b, d, u, v, x, y} of 7 vertices. For all the three graphs, d is dominating and au, bv, ux
are edges. We refer to H as H1

7 if vx, xy and uv. We refer to H as H2
7 by removing uv

from H1
7 . In H3

7 , uv and vy are edges. These three graphs are all in O(7, 3) and only H1
7 is

1-tough. Next we define a family Kϕ
n of nonhamiltonian graphs. A graph G of order n is

in Kϕ
n for ϕ ≥ 1 if its dual closure H satisfies the condition |Ω|+ 1 ≤ ω(H −Ω) ≤ |Ω|+ ϕ

and each component of H − Ω is any graph on maximum ϕ vertices.

Theorem 3.1 Let G ∈ O(n, ϕ), 0 ≤ ϕ ≤ 3, and let H := nc∗0(G). Then (i) G is hamil-
tonian if and only if either H = C7, in which case ϕ = 3 or H = Kn and (ii) G is
nonhamiltonian if and only if either ϕ = 3, n = 7 and H = H i

7, i = 1, 2, 3 or H ∈ Kϕ
n .
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Proof. Follows directely from Lemmas 5.1 to 5.5 in section 5.

Corollary 3.2 Let G ∈ O(n, ϕ), 0 ≤ ϕ ≤ 3. If n ≥ 3ϕ − 1 then G is hamiltonian if and
only if H = Kn and nonhamiltonian if and only if H ∈ Kϕ

n.

Corollary 3.3 Let G ∈ O(n, ϕ), 0 ≤ ϕ ≤ 3. Then H ∈ {Kn, C7, H
1
7} if G is 1-tough.

Corollary 3.4 Let G ∈ O(n, ϕ), 0 ≤ ϕ ≤ 3. If G is not hamiltonian then c(G) = c(H) ≥
n − ϕ. Moreover c(G) = c(H) = n − 1 if n ≥ 3(ϕ + 1).

4 General Lemmas

In this section we assume G ∈ O(n, ϕ), ϕ ≥ 0 and all neighborhood sets and degrees are
understood under H , unless otherwise stated. With each pair (a, b) we adopt the following
decomposition of V by setting A := N(a)\N(b), A+ := A∪ {a} ,B := N(b)\N(a), B+ :=
B∪{b} , D := N(a)∩N(b), T := Tab where t = |T | . Also we set Ti := {x ∈ T | dT (x) = i} ,
i ≥ 0. We point out that T 6= ∅ by (ncc) whenever H 6= Kn since H is 2-connected.
For an ordered pair (x, y) of nonadjacent vertices we set N(x, y) := N(x)\N(y) and
n(x, y) := |N(x, y)| . With this notation, we have A = N(a, b) and B = N(b, a). We shall
say that H 6= Kn is (a, b)-well-shaped if E(A ∪ B, T ) ∪ E(A, B) = ∅ and Ω = D.

Throughout, a, b are chosen as follows:

(i) ab and d(a) + d(b) = σ2 = n − ϕ,
(ii) subject to (i), λab is minimum.
(iii) subject to (i) and (ii) and if possible H is (a, b)-well-shaped.

Moreover we always assume d(a) ≤ d(b) ≤ d(x) for any x ∈ T. This choice implies
immediately.

Lemma 4.1 If H 6= Kn and ϕ ≥ 1 then

(L1) 2 + t = λab + ϕ.

(L2) ∀p, q ∈ V, pq ⇒ max {n(p, q), n(q, p)} + εpq < ϕ.

(L3) |A| ≤ |B| < ϕ − εab.

(L4) T = ∪ϕ−1
j=0 Tj. Furthermore either Tϕ−1 = ∅ or E(A ∪ B, T ) ∪ E(A, B) = ∅.

(L5) if u ∈ A then dA∪T (u) + εbu ≤ ϕ− 2 + d(a)− δbu. Similarly if v ∈ B then dB∪T (v) +
εav ≤ ϕ − 2 + d(b) − δav.

(L6) if A ∪ B = ∅ then xy = ∅ ⇒ dT (x) + dT (y) + νxy < ϕ for all x, y ∈ T
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Proof. (L1). By choice of a, b we have d(a) + d(b) = n − ϕ. This is equivalent to
2 + t = λab + ϕ.

(L2) If pq then γpq + δpq + εpq < n. Let us choose r ∈ Tpq such that d(r) = δpq.
This vertex exists since Tpq 6= ∅ by (ncc). Since clearly γpq = d(q) + n(p, q), we have
n(p, q)+ d(q)+ d(r)+ εpq < n. By hypothesis d(q)+ d(r) ≥ n−ϕ since qr. It follows that
(L2) holds. In particular if pq and n(p, q) = ϕ − 1 then εpq = 0.

(L3) This is a consequence of (L2) since B = N(b, a).

(L4) Clearly T = ∪t−1
j=0Tj . If Tj 6= ∅ for j ≥ ϕ then n(x, a) = |NT (x)| ≥ ϕ, a

contradiction to (L2). Suppose next vy for some (v, y) ∈ B × T and choose z ∈ Tϕ−1.
Clearly z 6= y for otherwise n(y, a) ≥ ϕ, a contradiction to (L2). By (L2) , εaz = 0 and
hence Taz must be a clique since bv ∈ Taz. But then by since vy. Thus E(B, T ) = ∅.
Similarly E(A, T ) = ∅. Next suppose vu for some (v, u) ∈ B × A. Again Taz is a clique
and vu ⇒ bu. Therefore E(A, B) = ∅.

(L5) Because ub, u ∈ A and by (ncc) we have αub > δub + εub. Obviously αub =
1 + |A| − dA(u) + t − dT (u) = 1 + d(a) − λab − dA(u) + t − dT (u). By (L1) we get
αub = 1 + d(a) + ϕ − 2 − (dA(u) + dT (u)) . On the other hand δub ≥ d(b) ≥ d(a).From
these inequalities we obtain dA(u) + dT (u) + εub ≤ ϕ− 2. Similarly dA(u) + dT (u) + εub ≤
ϕ − 2.

(L6) We observe that d(x)+d(y) = 2λab +dT (x)+dT (y). Then 2λab +dT (x)+dT (y)+
νab < n by (ncc) . On the other hand n = d(a) + d(b) + ϕ = 2λab + ϕ. Statement (L6)
follows easily.

5 Application to graphs in O(n, ϕ), ϕ ≤ 3

Throughout, we assume H := nc∗0(G) 6= Kn.

Lemma 5.1 If G ∈ O(n, 1) then H ∈ K1
n .

Proof. By hypothesis, d(a) + d(b) ≥ n − 1 or equivalently αab ≤ λab + 1. By (ncc)
αab > max {λab + νab, δab + εab} since ab. It follows that νab = εab = 0. Moreover T is
independent and d(x) = δab = λab = d(a) = d(b) holds for any x ∈ T. This means in
particular that A∪B = ∅.and ND(v) = D is true for each vertex v ∈ V \D. Furthermore
D must be a clique for if ef for some (e, f) ∈ D2 then αef ≤ |D| = λab ≤ λef = |V \D| ,
a contradiction to (ncc). Therefore Ω = D and ω(H − Ω) = |V \D| . Clearly |D| = n−1

2

and |V \D| = n+1
2

since d(a) + d(b) = n − 1 = 2λab. It follows that ω(H − Ω) = n+1
2

and
H ∈ K1

n.

Lemma 5.2 If G ∈ O(n, 2) then H ∈ K2
n .

Proof. Now νab ≤ 1. As a first step, we prove that ND(v) = D is true for each vertex
v ∈ V \D. Choose (x, e) ∈ T × D. If ex then n(e, x) ≥ |{a, b}| = 2, a contradiction to
(L2) . Moreover E(A ∪ B, T ) = ∅ for if there exists an edge ux with (u, x) ∈ A × T then
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n(u, b) ≥ 2, a contradiction to (L2) . Similarly E(A, B) = ∅ for if there exists uv for some
(u, v) ∈ A × B then n(u, x) ≥ 2. It follows that ND(u) = D is also true for each vertex
u ∈ A∪B since by the choice of a, b, d(u) ≥ d(a) if u ∈ A and d(u) ≥ d(b) if u ∈ B. As for
the proof of the above Lemma we get Ω = D. If νab = 0 then clearly H = (m+2)K1 +Km

with m = λab. If νab = 1 and t = 2 then (Kr ∪ Ks ∪ K2) + K2, 1 ≤ r ≤ s ≤ 2. If νab = 1
and t > 2 then ((m + 1)K1 ∪ K2) + Km with m ≥ 3. In all cases, one can easily check
that ch that H ∈ K2

n.

Lemma 5.3 If G ∈ O(n, 3) and λab = 0 then H = C7.

Proof. By (L1) we obtain t = 1. Assuming T = {x}, we get d(x) = 2 by (ncc) . It
follows that d(a) = d(b) = 2 by the choice of a, b. As d(a) + d(b) = 4 = n − 3, we have
n = 7. Set N(a) = {a1, a2} and N(b) = {b1, b2} . If N(x) = B then Tab2 = {b1} and
hence d(b1) = 2 by (ncc) . But now H − b2 is disconnected. With this contradiction, we
deduce that N(x) 6= B. Similarly N(x) 6= A. Assume then xa1 and xb1. Now Tab1 = {b2}
and hence d(b2) = 2 by (ncc) . Similarly d(a2) = 2. As H is 2-connected, we must have
NB(a2) 6= ∅ and NA(b2) 6= ∅. Suppose first a2b1 and a1b2. This would contradict (ncc)
since Ta1b1 = ∅. It remains to admit that a2b2, in which case H = C7, as claimed.

Lemma 5.4 If G ∈ O(n, 3) and λab = 1 then H = H i
7, i = 1, 2, 3.

Proof. By (L1) , t = 2 and we may assume T := {x, y} , d(y) ≤ d(x) and D := {d}.
Moreover T ⊆ T0 ∪ T1.

Claim 1. εab = 1

By contradiction, suppose εab = 0. Then d(x) = d(y) = 3, T is either a clique or a
stable and d(a) ≤ d(b) ≤ 3. If xy then by Definition 2.1(2.a), there exist r, s ∈ N(a)∪N(b)
and N(r) ∩ N(s) ⊃ {x, y} . Assuming r 6= d then r ∈ A ∪ B. It follows that dT (r) = 2, a
contradiction to (L5). Suppose next xy. In one hand we obviously have |NA∪B(x)| ≥ 2,
|NA∪B(y)| ≥ 2 and |NA∪B(x) ∩ NA∪B(y)| ≤ 1 by (L5) . As |A ∪ B| ≤ 2, we deduce that
|NA∪B(x)| = |NA∪B(y)| = 2, |A| = |B| = 2 and N(d) ⊃ {x, y} . Set A = {u, u′} and
B = {v, v′} . Only two configurations are possible : NA∪B(x) = {u, v} , NA∪B(y) = {u′, v′}
or NB(x) = B, NA(y) = A. For the first case Tav = {y, v′} and εav = 0 by (L2) since
n(v, a) = 2 = ϕ − 1. Since Tav is a clique and |N(Tav)\Tav| ≥ 3, we get a contradiction
to the definition of εav. For the second case we may assume uv since H is 2-connected.
We note that u′v for otherwise n(v, u′) = 3 since u′u by (L5) . Now Tav′ = {y, v} and
d(v) ≥ 4. By (ncc), av and we get the required contradiction for the proof of Claim 1. As
a consequence of this claim, we must have d(y) = 2. This in turn implies A = {u} and
B = {v} .

Claim 2. H = H i
7, i = 1, 2, 3

By the choice of a, b, d(y) = d(a) = d(b) = 2 ⇒ N(y)∩{u, d} 6= ∅ and N(y)∩{v, d} 6=
∅. We claim that yd for otherwise N(y) = {u, v} and N(x) = {d} since N(x) ∩ N(y) ∩
{u, v} = ∅ by (L5) . This is obviously a contradiction. Next we show that dx. If d(x) = 2,
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this is true by symmetry with y. Otherwise N(x) = {y, u, v} and hence dx since Tdx = ∅.
Moreover ud and vd, that is d ∈ Ω. To see this, suppose ud for instance. Then Tud = {v}
and hence d(v) = 2. But now we have λav = 0 and choosing (a, v) instead of (a, b) we get
a contradiction. Let us consider two cases.

Case 1 : xy.

Set F := {ux, ux, vx} . Since H − d must be connected, H must contain at least two
edges of F . If H contains all edges of F then H = H1

7 . This graph is 1-tough (in fact it is
the smallest 1-tough, non-hamiltonian graph). If H contains 2 edges of F then H = H2

7

(we have three isomorphic graphs).

Case 2 : xy.

Since H − d must be connected, we must have uv. Since N(x) ∩ N(y) {u, v} = ∅, we
may assume ux and vy. We have now the third nonhamiltonian graph H = H3

7 and the
proof is complete

Lemma 5.5 If G ∈ O(n, 3) and λab ≥ 2 then H ∈ K3
n.

Proof. By (L2), t ≥ 3 and we recall that νab ≤ 2. The proof is split into three claims.

Claim 1 : E(A ∪ B, T ) ∪ E(A, B) = ∅.

By contradiction suppose first A ∪ B 6= ∅ and E(A ∪ B, T ) 6= ∅. If εab = 0 then by
Definition 2.1 (2.b), dT (v) ≥ t − λab + 1. By (L1), dT (v) ≥ ϕ − 1 ≥ 2, a contradiction to
(L5) . With this contradiction, we assume εab = 1, in which case B = {v} and A ⊆ {u}
by (L3). Without loss of generality, assume vx for some (v, x) ∈ B × T. Consider now
Tav = A+ ∪ (Tab\ {x}) . As n(v, a) = 2,we deduce that εav = 0 by (L2) and consequently
Tav is either a clique or a stable. Clearly Tav cannot be a clique and hence it is a stable and
in particular A = ∅. Moreover d(a) = d(w) for any vertex of Tab\ {x} , a contradiction to
the choice of a, b since now δab = d(a) < d(b). We have just proved that E(A∪B, T ) = ∅.
Next suppose uv, (u, v) ∈ A × B. By (L4), T = T0 ∪ T1. Furthermore T0 = ∅ for if
x ∈ T0 then N(x) ⊆ D and hence d(x) < d(b). Therefore T = pK2 with p ≥ 2 since
t = λab + ϕ − 2 ≥ 3. As N(u, x) = {a, v} we have εux = 0 for any x ∈ T. This is a
contradiction since Tux is neither a clique nor a stable since it contains at least one edge
and the single vertex b.

Claim 2 : H is (a, b)-well-shaped.

By Claim 1, it suffices to prove that Ω = D. We first note, by (ncc) , that Ω = D if
NV \D(e) = V \D holds for any e ∈ D. Choose (e, x) ∈ D × T such that ex. If A ∪ B 6= ∅

then B = {v} and ND(v) = D since d(v) ≥ d(b) by the choice of a, b. Therefore N(e, x) ⊇
{a, b, v} , a contradiction to (L2). For the remaining we assume A∪B = ∅. Clearly T0 = ∅

since obviously x /∈ T0 for if there exists y ∈ T0 then necessarily xy and ND(y) = D and
hence n(e, y) ≥ 3, a contradiction to (L2). Therefore T = T1∪T2. Suppose first x ∈ T2. As
n(x, a) = 2 then εax = 0 and hence d(z) = d(b) for any vertex z ∈ Tax ∩ T. By the choice
of (a, b) we must have λaz = λab. So if z ∈ Tax ∩T then z ∈ T0. Since T0 = ∅ we conclude
that Tax = {b}. It follows that d(b) = 2 and t = ϕ = 3 by (L1). Therefore N [x] = T and
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Tex ⊆ {f}, where D = {e, f}. By (ncc), we have d(f) = 2. This is a contradiction since
H − e cannot be disconnected. Finally suppose T = T1. Now d(x) = d(b) since ex, while
λax < λab, a contradiction. The proof of Claim 2 is now complete.

Claim 3 : H ∈ K3
n.

We set m = λab and we recall that Ω = D, E(A ∪ B, T ) = E(A, B) = ∅. By (L4),
T ⊆ T0 ∪ T1 ∪ T2.

Case 1 : A ∪ B 6= ∅ and T2 6= ∅.

In this case we necessarily have T = T1∪T2. Choose a vertex z ∈ T2. By (L2) , applied
to (a, z) and (b, z) we get εaz = εbz = 0. It follows that, for instance Taz ⊃ B+ must be
either a clique or a stable.

If Taz is a clique then necessarily Taz = B+ and hence t = 3 and λab = 2 by (L1). It
is not diffficult to check that H = (Kr ∪ Ks ∪ M3) + K2, 1 ≤ r ≤ s ≤ 3 where r = |A+| ,
s = |B+| and M3 ∈ {P3, K3} . If s = 3 thenM3 = K3 by the choice of a, b. For this sub-case
we have H ∈ K3

n, as claimed.

Case 2 : A ∪ B 6= ∅ and T2 = ∅.

In this case we necessarily have T = T1. Set T = pK2. Thus νab = p and by (ncc),
2t = s < 3 for otherwise ab. It follows that t = 4 since t is even and greater than 3.
Therefore H = (Kr ∪ Ks ∪ 2K2) + K3, 1 ≤ r ≤ s ≤ 2, ie H ∈ K3

n.

Case 3 : A ∪ B = ∅.

By (L6) we have xy = ∅ ⇒ dT (x) + dT (y) + νxy ≤ 2 (∗). By (L4) , T = T2 ∪ T1 ∪ T0.
Suppose first T2 6= ∅ and let z ∈ T2. By (∗), we necessarily have T = N [z] ∪ T0, that
is T = M3 ∪ (m − 2) K1 where M3 ∈ {P3, K3} (recall that t = λab + 1 = m + 1). Thus
H = (mK1 ∪ M3) + Km, m ≥ 3, that is H ∈ K3

n.
Next suppose T2 = ∅ but T1 6= ∅. Set T = pK2 ∪ qK1. Clearly p ≤ 2 by (∗). If p = 2

and T0 = ∅ then H = (Kr ∪ Ks ∪ 2K2) + K3, r = s = 1. If p = 2 and T0 6= ∅ then
H = ((m − 1)K1 ∪ 2K2) + Km, m ≥ 4. If p = 1 and T0 = ∅ then we have ϕ = 2.Finally,
if p = 1 and T0 6= ∅ then H = ((m + 2)K1 ∪ K2) + Km, m ≥ 3.

Finally, suppose T = T0. In this case H = (2 + t)K1 + Km, m = λab ≥ 2. By (L1),
2 + t = m + 3. Therefore H = (m + 3)K1 + Km. In all cases H ∈ K3

n.
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