Relaxations of Ore’s condition on cycles

Ahmed Ainouche
CEREGMIA-GRIMAAG
UAG-Campus de Schoelcher
B.P. 7209
97275 Schoelcher Cedex
Martinique (FRANCE)
a.ainouche@martinique.univ-ag.fr

Submitted: Jun 14, 2004; Accepted: Jun 14, 2006; Published: Jul 28, 2006

Abstract

A simple, undirected 2-connected graph G of order n belongs to class O(n,p),
¢ >0, if o9 = n — ¢. It is well known (Ore’s theorem) that G is hamiltonian if
¢ = 0, in which case the 2-connectedness hypothesis is implied. In this paper we
provide a method for studying this class of graphs. As an application we give a full
characterization of graphs G in O(n,p), ¢ < 3, in terms of their dual hamiltonian
closure.

Keywords: Hamiltonian Cycle, Dual Closure.

1 Introduction

We consider throughout only simple 2-connected graphs G = (V, E). We let o(G), v(G),
w(G) denote respectively the independence number, the matching number and the number
of components of the graph G. A graph G is 1-tough if |S| > w(G'—S) is true for any subset

S C V with w(G — 8) > 1. For k < a(G) we set 0 = min {Zd(m) | Sis a stable set}.

z€S
We use the term stable to mean independent set. A graph G of order n belongs to class

O(n,p), p > 0if 09 = n— . It is well known ([13]) that G is hamiltonian if G € O(n, 0),
in which case the 2-connectedness hypothesis is implied. Jung ([8]) proved that a 1-tough
graph G € O(n > 11,4) is hamiltonian. Indeed this is a strong assumption which is not
easy to verify since recognizing tough graphs is NP-Hard ([10]). Ignoring the hypothesis of
1-toughness but conserving the constraint on n, that is n > 3¢ — 1, we obtained in ([4]) a
characterization of graphs in O(n, ¢ < 4). Without any constraint on n, a characterization
of graphs in O(n, ¢ < 2) is given in ([2] and [9]). The same characterization was given by
Schiermeyer ([12]) in terms of the dual-closure of G.
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In this paper we go a step further than Shiermeyer by giving a complete map of graphs
in O(n,p < 3) with respect to the hamiltonian property. The dual closure ([1, 2, 5]) of
those graphs is completely determined. This is indeed useful since then finding a cycle in
G of maximum length becomes a polynomial problem.

2 Preliminary results

A vertex of degree n — 1 is a dominating vertex and ) will denote the set of dominating
vertices. The circumference ¢(G) of G is the length of its longest cycle. For u € V(G),
let Ny (u) denote the set and dy(u) the number of neighbors of u in H, a subgraph of
G. If H = G we will write simply N(u) for Ng(u) and d(u) for de(u) respectively. For
convenience, we extend this notation as follows. Given a subset S C V, we define the
degree of a vertex x with respect to S as dg(z) to be the number of vertices of S adjacent
to xz. For X C V, put N(X) = UpuexN(u). If X,Y C V, let E(X,Y) denote the set of
edges joining vertices of X to vertices of Y. As we need very often to refer to a presence
or not of an edge, we write zy to mean that xy € F and Ty to mean zy ¢ E For each
pair (a,b) of nonadjacent vertices we associate

Gap =G — N(a)U () Yab = [N(a) UND)[, Aap :=[N(a) N N(D)]
Top :=V\(N[a] UN[B]), tap :=[Tas|, Qap =2+ tap = |[V(Ga)|
dap ;= min{d(x) | x € Ty} if T,y # @ and 64 := I(G) otherwise

Qgp = Q(Gab)u Vap = V(Gab)u W(Tab) W(G [Tab])'

In this paper there is a specially chosen pair (a,b) of vertices. To remain simple, we
omit the reference to a,b for all parameters defined above. Moreover we understand T’
as the set, the graph induced by its vertices and its edge set. Our proofs are all based
on the concept of the hamiltonian closure ([11], [1], [2]). The two conditions of closure
developed in [1], [2] are both generalizations of Bondy-Chvatal’s closure. To state the

condition under which our closure is based we define a binary variable €, associated with
(a,b).

Definition 2.1 Let ¢4 € {0,1} be a binary variable, associated with a pair (a,b) of
nonadjacent vertices. We set e = 0 if and only if

1. @ # T and all vertices of T have the same degree 1 + t. Moreover Ay < 1 if
N(T)\T € N(a) A N(b), (where A denotes the symmetric difference).

2. one of the following two local configurations holds

(a) T is a clique (possibly with one element), A, < 2 and there exist u,v ¢ T such
that 7' C N(u) N N(v).

(b) T is an independent set (with at least two elements), Ay, < 1+ t and either
N(T) € D or there exists a vertex u € N(a) A N(b) such that |Np(u)| >
|T| — max (Agp — 1,0) . Moreover T is a clique in G?, the square of G.
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Lemma 2.2 (the main closure condition) Let G be a 2-connected graph and let (a,b)
be a pair of nonadjacent vertices satisfying the condition

a0Lb S max {)\ab + Vap, 5ab + 8ab} (HCC)
Then ¢(G) = p if and only if ¢(G + ab) = p, p < n.

The first condition is a relaxation of the condition ., < max{Au,2} given in [1].
Since by definition @y is the order of G, it follows that oy, < Q. AS ayyp is not easy
to compute we developed many upper bounds of a,,, computable in polynomial time
([1],[6]) . One of these upper bounds is precisely vg. It is known that for any graph H,
a(H)+v(H) < n(H). We note that v, = v (Ge) = v (T) since a, b are isolated vertices in
Gap, We see that @y, — vy < g and hence g, < max { Ay, 2} implies @op < Agp + Vap. We
note that @y, < Ay + vy is stronger than Bondy-Chvatal’s hamiltonian closure condition
([11]) since d(a) + d(b) > n < @wp < Aw. The second part of the condition (ncc) is a
relaxation of a strongest one given in [1], improved in ([5]) .The condition @up < dap + Eap,
especially with the addition of the term e, will prove to be a most useful tool in obtaining
the main properties of the dual closure of any graph G € O(n,3). The condition @, <
Aab+Vap 18 only used in very particular cases. Note that @y < dgp+Eap < Yap+0ap+Eap > 1
and @gp < Aap + Vap < d(a) + d(D) + vap > n.

The 0-dual neighborhood closure nci(G) (the 0—dual closure for short) is the graph
obtained from G by successively joining (a, b) satisfying the condition (nce) until no such
pair remains. Throughout we denote nci(G) by H. All closures based on the above
conditions are well defined. Moreover, it is shown in ([6], [5]) that it takes a polynomial
time to construct H and to exhibit a longest cycle in G whenever a longest cycle is known
in H.

As a direct consequence of Lemma 2.2 we have.

Corollary 2.3 Let G be a 2-connected graph. Then G is hamiltonian if and only if H is
hamiltonian.

3 Results

To state our results, we define first three nonhamiltonian graphs (H} to H2) on the set
{a,b,d,u,v,x,y} of 7 vertices. For all the three graphs, d is dominating and au, bv, ux
are edges. We refer to H as Hj if vz, zy and uv. We refer to H as H? by removing uv
from H}. In H3, uv and vy are edges. These three graphs are all in O(7,3) and only Hj is
1-tough. Next we define a family ¥ of nonhamiltonian graphs. A graph G of order n is
in ¢ for p > 1 if its dual closure H satisfies the condition || +1 < w(H —Q) <|Q|+¢
and each component of H — () is any graph on maximum ¢ vertices.

Theorem 3.1 Let G € O(n,¢), 0 < ¢ < 3, and let H := nci(G). Then (i) G is hamil-
tonian if and only if either H = C%, in which case ¢ = 3 or H = K,, and (ii) G is
nonhamiltonian if and only if either o =3, n =7 and H=Hi, i=1,2,3 or H € K¢.
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Proof. Follows directely from Lemmas 5.1 to 5.5 in section 5. m

Corollary 3.2 Let G € O(n,p), 0 < p <3. If n > 3p — 1 then G is hamiltonian if and
only if H = K,, and nonhamiltonian if and only if H € K?.

Corollary 3.3 Let G € O(n,p), 0 < ¢ < 3. Then H € {K,,,C7, H}} if G is 1-tough.

Corollary 3.4 Let G € O(n,p), 0 < ¢ < 3. If G is not hamiltonian then ¢(G) = ¢(H) >
n — . Moreover ¢(G) =c(H) =n—11ifn > 3(¢+1).

4 General Lemmas

In this section we assume G € O(n, ), ¢ > 0 and all neighborhood sets and degrees are
understood under H, unless otherwise stated. With each pair (a, b) we adopt the following
decomposition of V by setting A := N(a)\N(b), AT := AU{a},B := N(b)\N(a), Bt :=
BU{b}, D := N(a)NN(b), T := T,, where t = |T'|. Alsowe set T; := {x € T | dp(z) =i},
i > 0. We point out that T" # @ by (ncc) whenever H # K, since H is 2-connected.
For an ordered pair (z,y) of nonadjacent vertices we set N(z,y) := N(z)\N(y) and
n(z,y) := |N(z,y)|. With this notation, we have A = N(a,b) and B = N(b,a). We shall
say that H # K, is (a,b)-well-shaped if E(AU B, T)U E(A,B) =@ and Q = D.

Throughout, a, b are chosen as follows:

(i) ab and d(a) + d(b) = g9 = n — ¢,

(ii) subject to (i), Ay is minimum.

(iii) subject to (i) and (ii) and if possible H is (a, b)-well-shaped.

Moreover we always assume d(a) < d(b) < d(z) for any x € T. This choice implies
immediately.

Lemma 4.1 If H # K, and ¢ > 1 then

L1) 241 = Xgp + .

(L1)

(£2) Vp,q € V, pg = max {n(p, q),n(¢,p)} + €pg < ¢

(L3) [A[ < [B| < ¢ —ca.

(L4) T = U“",OlT Furthermore either T,y = @ or E(AUB,T)U E(A,B) =
(L5)

L5 zfu € A then daur(u) +ep, < 0 —2+d(a) — Oy, Similarly if v € B then dpur(v) +
v <o —24d(b) — da.

(L6) if AUB =@ then Ty = @ = dp(x) + dp(y) + vey < ¢ forallz,y € T

THE ELECTRONIC JOURNAL OF COMBINATORICS 13 (2006), #R60 4



Proof. (L1). By choice of a,b we have d(a) + d(b) = n — ¢. This is equivalent to
241 = Aap + .

(L2) If pg then ~,, + 0py + €5y < . Let us choose r € T, such that d(r) = 0.
This vertex exists since T,, # @ by (ncc). Since clearly v,, = d(¢) + n(p,q), we have
n(p, q) + d(q) + d(r) + €, < n. By hypothesis d(q) + d(r) > n — ¢ since gr. It follows that
(L2) holds. In particular if pg and n(p,q) = ¢ — 1 then ¢,, = 0.

(L3) This is a consequence of (L2) since B = N(b, a).

(L4) Clearly T = U;;%)Tj. If T; # @ for j > ¢ then n(z,a) = |Nr(z)| > ¢, a
contradiction to (L2). Suppose next vy for some (v,y) € B x T and choose z € T,,_;.
Clearly z # y for otherwise n(y,a) > ¢, a contradiction to (L2). By (L2), g,, = 0 and
hence T,, must be a clique since bv € T,,. But then by since vy. Thus E(B,T) = @.
Similarly E(A,T) = @. Next suppose vu for some (v,u) € B x A. Again T,, is a clique
and vu = bu. Therefore E(A, B) = @.

(L5) Because ub, u € A and by (ncc) we have @y, > 6 + €up. Obviously @y, =
14+ |A| —da(u) +t —dp(u) = 1+ d(a) — Ay — da(u) +t — dr(u). By (L1) we get
aw = 1+d(a) + ¢ —2— (da(u) +dr(u)). On the other hand 6., > d(b) > d(a).From
these inequalities we obtain d4(u) + dr(u) + euw < ¢ — 2. Similarly da(u) 4+ dp(u) + ey <
p—2.

(L6) We observe that d(z) +d(y) = 2Ae +dr(z) +dr(y). Then 2Xg +dp(z) +dr(y) +
Vapb < 1 by (ncc). On the other hand n = d(a) + d(b) + ¢ = 2Aa + . Statement (L6)
follows easily. m

5 Application to graphs in O(n, ), p <3
Throughout, we assume H := nci(G) # K,.
Lemma 5.1 IfG € O(n,1) then H € K} .

Proof. By hypothesis, d(a) + d(b) > n — 1 or equivalently @, < A; + 1. By (ncc)
Aoy > max {Aap + Vap, Oap + €ap} since ab. It follows that vy, = 4 = 0. Moreover T is
independent and d(z) = du = Aapy = d(a) = d(b) holds for any x € T. This means in
particular that AU B = @.and Np(v) = D is true for each vertex v € V\D. Furthermore
D must be a clique for if ef for some (e, f) € D? then @y < |D| = Aap < Aoy = |V\D|,
a contradiction to (ncc). Therefore Q = D and w(H — Q) = [V\D]. Clearly |D| = 5%
and |[V\D| = ® since d(a) + d(b) = n — 1 = 2\, It follows that w(H — Q) = 2 and
HeK!. =

Lemma 5.2 If G € O(n,2) then H € K2 .
Proof. Now v, < 1. As a first step, we prove that Np(v) = D is true for each vertex

v € V\D. Choose (z,e) € T x D. If ex then n(e,x) > |{a,b}| = 2, a contradiction to
(L2). Moreover E(AU B,T) = & for if there exists an edge ux with (u,z) € A x T then
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n(u,b) > 2, a contradiction to (L2). Similarly E(A, B) = @ for if there exists uv for some
(u,v) € A x B then n(u,z) > 2. It follows that Np(u) = D is also true for each vertex
u € AU B since by the choice of a,b, d(u) > d(a) if u € A and d(u) > d(b) if u € B. As for
the proof of the above Lemma we get Q = D. If v,, = 0 then clearly H = (m+2)K; + K,
with m = Agp. f vy = 1 and ¢ = 2 then (K, UK U Ks) + Ky, 1 <r <s<2. Ify, =1
and t > 2 then ((m +1)K; U K3) + K, with m > 3. In all cases, one can easily check
that ch that H € 2. m

Lemma 5.3 If G € O(n,3) and Ay, = 0 then H = C5.

Proof. By (L1) we obtain t = 1. Assuming T' = {z}, we get d(x) = 2 by (ncc). It
follows that d(a) = d(b) = 2 by the choice of a,b. As d(a) + d(b) = 4 = n — 3, we have
n = 7. Set N(a) = {a1,a2} and N(b) = {bl,bg}. If N(x) = B then T, = {b} and
hence d(b;) = 2 by (nce) . But now H — by is disconnected. With this contradiction, we
deduce that N(x) # B. Similarly N(z) # A. Assume then xza; and xb;. Now Ty, = {bo}
and hence d(by) = 2 by (ncc). Similarly d(as) = 2. As H is 2-connected, we must have
Np(ay) # @ and N4(by) # @. Suppose first asb; and a;by. This would contradict (nce)
since T},p, = &. It remains to admit that asby, in which case H = Cr, as claimed. =

Lemma 5.4 If G € O(n,3) and Ay = 1 then H = H i =1,2,3.

Proof. By (L1), t = 2 and we may assume 7" := {x,y}, d(y) < d(z) and D := {d}.
Moreover T' C Ty U Tj.

Claim 1. e =1

By contradiction, suppose £, = 0. Then d(z) = d(y) = 3, T is either a clique or a
stable and d(a) < d(b) < 3. If xy then by Definition 2.1(2.a), there exist r, s € N(a)UN (b)
and N(r) N N(s) D {z,y}. Assuming r # d then r € AU B. It follows that dr(r) = 2, a
contradiction to (L5). Suppose next Zy. In one hand we obviously have |N4up(z)| > 2,
INaup(y)| > 2 and |Naup(x) N Naup(y)| < 1 by (L5). As |[AU B| < 2, we deduce that
INavs(z)| = |Nauvs(y)| = 2, |A| = |B| = 2 and N(d) D {z,y}. Set A = {u,u'} and
B = {v,v'} . Only two configurations are possible : Ny p(x) = {u,v}, Naup(y) = {v/,v'}
or Ng(z) = B, N4(y) = A. For the first case T,, = {y,v'} and &,, = 0 by (L2) since
n(v,a) = 2 = ¢ — 1. Since T, is a clique and |N(T,,)\To| > 3, we get a contradiction
to the definition of £,,. For the second case we may assume uv since H is 2-connected.
We note that «'v for otherwise n(v,u’) = 3 since w'u by (L5). Now T,, = {y,v} and
d(v) > 4. By (ncc), av and we get the required contradiction for the proof of Claim 1. As
a consequence of this claim, we must have d(y) = 2. This in turn implies A = {u} and

B = {v}.

Claim 2. H=H i=1,2,3

By the choice of a, b, d(y) = d(a) = d(b) = 2 = N(y)N{u,d} # @ and N(y)N{v,d} #
@. We claim that yd for otherwise N(y) = {u,v} and N(x) = {d} since N(z) N N(y) N
{u,v} = @ by (L5) . This is obviously a contradiction. Next we show that dz. If d(z) = 2

Y
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this is true by symmetry with y. Otherwise N(x) = {y, u,v} and hence dx since Ty, = @.
Moreover ud and vd, that is d € Q. To see this, suppose ud for instance. Then T4 = {v}
and hence d(v) = 2. But now we have \,, = 0 and choosing (a,v) instead of (a,b) we get
a contradiction. Let us consider two cases.

Case 1: zy.

Set F':= {ux,ux,vz}. Since H — d must be connected, H must contain at least two
edges of F. If H contains all edges of F then H = H2. This graph is 1-tough (in fact it is
the smallest 1-tough, non-hamiltonian graph). If H contains 2 edges of F' then H = H?
(we have three isomorphic graphs).

Case 2: 7.

Since H — d must be connected, we must have uv. Since N(z) N N(y) {u,v} = &, we
may assume uz and vy. We have now the third nonhamiltonian graph H = H2 and the
proof is complete m

Lemma 5.5 If G € O(n,3) and Ay, > 2 then H € K3.

Proof. By (L2), t > 3 and we recall that v,, < 2. The proof is split into three claims.
Claim 1: E(AUB,T)UE(A,B) =@.

By contradiction suppose first AU B # @ and E(AU B,T) # &. If €4, = 0 then by
Definition 2.1 (2.b), dr(v) >t — Ay + 1. By (L1), dr(v) > ¢ — 1 > 2, a contradiction to
(L5) . With this contradiction, we assume &4, = 1, in which case B = {v} and A C {u}
by (L3). Without loss of generality, assume vz for some (v,z) € B x T. Consider now
Tow = AT U (Tp\ {z}) . As n(v,a) = 2,we deduce that &,, = 0 by (L2) and consequently
T, is either a clique or a stable. Clearly T,, cannot be a clique and hence it is a stable and
in particular A = @&. Moreover d(a) = d(w) for any vertex of T,;\ {x}, a contradiction to
the choice of a, b since now d,, = d(a) < d(b). We have just proved that E(AUB,T) = .
Next suppose uv, (u,v) € A x B. By (L4), T = Ty UT;. Furthermore Ty = @ for if
x € Ty then N(z) € D and hence d(x) < d(b). Therefore T' = pK, with p > 2 since
t=Ap+¢—22>3 As N(u,xz) = {a,v} we have ¢,, = 0 for any x € T. This is a
contradiction since Ty, is neither a clique nor a stable since it contains at least one edge
and the single vertex b.

Claim 2: H is (a,b)-well-shaped.

By Claim 1, it suffices to prove that 2 = D. We first note, by (ncc), that Q = D if
Ny\p(e) = V\D holds for any e € D. Choose (e,z) € D x T such that ez. If AUB # @
then B = {v} and Np(v) = D since d(v) > d(b) by the choice of a,b. Therefore N(e,z) D
{a,b,v}, a contradiction to (L2). For the remaining we assume AUB = &. Clearly Ty = @
since obviously = ¢ Ty for if there exists y € T then necessarily Ty and Np(y) = D and
hence n(e,y) > 3, a contradiction to (L2). Therefore T' = T} UT5. Suppose first = € Ty. As
n(z,a) = 2 then e,, = 0 and hence d(z) = d(b) for any vertex z € T,, NT. By the choice
of (a,b) we must have \,, = A\gp. Soif z € T,,, NT then z € Tj. Since Ty = & we conclude
that T, = {b}. It follows that d(b) = 2 and ¢t = ¢ = 3 by (L1). Therefore N [z] =T and
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Tew € {f}, where D = {e, f}. By (ncc), we have d(f) = 2. This is a contradiction since
H — e cannot be disconnected. Finally suppose T'= T}. Now d(z) = d(b) since ex, while
Aaz < Aap, a contradiction. The proof of Claim 2 is now complete.

Claim 3: H € 3.

We set m = Ay and we recall that Q = D, E(AU B,T) = E(A,B) = @. By (L4),
T CToUT, UTs.

Case 1: AUB # @ and T;, # @.

In this case we necessarily have T' = T7 UT,. Choose a vertex z € Ty. By (L2), applied
to (a,2) and (b, z) we get £,, = &, = 0. It follows that, for instance T, D B* must be
either a clique or a stable.

If T, is a clique then necessarily T,, = BT and hence t = 3 and A\, = 2 by (L1). Tt
is not diffficult to check that H = (K, U KU M;) + Ky, 1 <r < s <3 where r = |AY],
s = |BT|and M3 € {Ps, K3} .If s = 3 then M3 = K3 by the choice of a, b. For this sub-case
we have H € K3, as claimed.

Case 2: AUB # @ and T, = @.

In this case we necessarily have T" = Tj. Set T' = pK,. Thus vy, = p and by (ncc),
2t = s < 3 for otherwise ab. It follows that ¢ = 4 since ¢ is even and greater than 3.
Therefore H = (K, U K, U2K,) + K3, 1 <r <s<2 ie HEK>.

Case 3: AUB = @.

By (L6) we have 7y = @ = dp(x) + dr(y) + vay < 2 (x). By (L4), T =T, UTy UTy.
Suppose first T, # @ and let z € T,. By (%), we necessarily have T' = N [z] U Tj, that
is T = M3 U (m — 2) K; where My € {P3, K3} (recall that t = \j, + 1 = m + 1). Thus
H = (mK,UDM;)+ K,,, m >3, that is H € k3.

Next suppose Ty, = @ but T} # &. Set T' = pKy U ¢K;. Clearly p < 2 by (x). If p =2
and Ty = @ then H = (K, UK, U2K5) + K3, r = s = 1. If p =2 and T; # @ then
H=(m-1)K U2K)+ K,,, m > 4. If p=1 and Ty = @ then we have ¢ = 2.Finally,
if p=1and Ty # @ then H = (m +2)K; U Ks) + K,,,, m > 3.

Finally, suppose T' = Tp. In this case H = (2 + t)K; + K,,, m = Ay > 2. By (L1),
2+t =m+ 3. Therefore H = (m + 3)K; + K,,. In all cases H € . =
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