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Abstract

Combinatorial classes T that are recursively defined using combinations of the
standard multiset, sequence, directed cycle and cycle constructions, and their restric-
tions, have generating series T(z) with a positive radius of convergence; for most of
these a simple test can be used to quickly show that the form of the asymptotics is
the same as that for the class of rooted trees: Cρ−nn−3/2 , where ρ is the radius of
convergence of T.

∗We are greatly indebted to the referee for bringing up important questions, especially regarding the
role of Set, that led us to thoroughly rework the paper. The second and third authors would like to thank
NSERC for support of this research.
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1 Introduction

The class of rooted trees, perhaps with additional structure as in the planar case, is unique
among the well studied classes of structures. It is so easy to find endless possibilities for
defining interesting subclasses as the fixpoint of a class construction, where the construc-
tions used are combinations of a few standard constructions like sequence, multiset and
add-a-root. This fortunate situation is based on a simple reconstruction property: remov-
ing the root from a tree gives a collection of trees (called a forest); and it is trivial to
reconstruct the original tree from the forest (by adding a root).

Since we will be frequently referring to rooted trees, and rarely to free (i.e., unrooted)
trees, from now on we will assume, unless the context says otherwise, that the word ‘tree’
means ‘rooted tree’.

1.1 Cayley’s fundamental equation for trees

Cayley [5] initiated the tree investigations1 in 1857 when he presented the well known
infinite product representation2

T(z) = z
∏

j≥1

(
1 − zj

)−t(j)
.

Cayley used this to calculate t(n) for 1 ≤ n ≤ 13 . More than a decade later ([7], [8], [10])
he used this method to give recursion procedures for finding the coefficients of generating
functions for the chemical diagrams of certain families of compounds.

1.2 Pólya’s analysis of the generating series for trees

Following on Cayley’s work and further contributions by chemists, Pólya published his
classic 1937 paper3 that presents: (1) his group-theoretic approach to enumeration, and (2)
the primary analytic technique to establish the asymptotics of recursively defined classes
of trees. Let us review the latter as it has provided the paradigm for all subsequent
investigations into generating series defined by recursion equations.

Let T(z) be the generating series for the class of all unlabelled trees. Pólya first
converts Cayley’s equation to the form

T(z) = z · exp
( ∑

m≥1

T(zm)/m
)
.

1This was in the context of an algorithm for expanding partial differential operators. Trees play an
important role in the modern theory of differential equations and integration—see for example Butcher
[3].

2This representation uses t(n) to count the number of trees on n vertices. Cayley actually used t(n)
to count the number of trees with n edges, so his formula was

T(z) = z
∏

j≥1

(
1 − zj

)−t(j−1)
.

3Republished in book form in [26].
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From this he quickly deduces that: the radius of convergence ρ of T(z) is in (0, 1) and
T(ρ) < ∞. He defines the bivariate function

E(z, w) := zew · exp
( ∑

m≥2

T(zm)/m
)
,

giving the recursion equation T = E
(
z,T

)
. Since E(z, w) is holomorphic in a neighbor-

hood of T he can invoke the Implicit Function Theorem to show that a necessary condition
for z to be a dominant singularity, that is a singularity on the circle of convergence, of T
is

Ew

(
z,T(z)

)
= 1.

From this Pólya deduces that T has a unique dominant singularity, namely z = ρ. Next,
since Ez

(
ρ,T(ρ)

)
, Eww

(
ρ,T(ρ)

)
6= 0, the Weierstraß Preparation Theorem shows that ρ

is a square-root type singularity. Applying well known results derived from the Cauchy
Integral Theorem

t(n) =
1

2πi

∫

C

T(z)

zn+1
dz (1)

one has the famous asymptotics

(?)(?)(?) t(n) ∼ Cρ−nn−3/2

which occur so frequently in the study of recursively defined classes.

1.3 Subsequent developments

Bender ([1], 1974) proposed a general version of the Pólya result, but Canfield ([4], 1983)
found a flaw in the proof, and proposed a more restricted version. Harary, Robinson and
Schwenk ([17], 1975) gave a 20 step guideline on how to carry out a Pólya style analysis
of a recursion equation. Meir and Moon ([21], 1989) made some further proposals on
how to modify Bender’s approach; in particular it was found that the hypothesis that
the coefficients of E be nonnegative was highly desirable, and covered a great number of
important cases. This nonnegativity condition has continued to find favor, being used in
Odlyzko’s survey paper [23] and in the forthcoming book [15] of Flajolet and Sedgewick.
Odlyzko’s version seems to be a current standard—here it is (with minor corrections due
to Flajolet and Sedgewick [15]).

Theorem 1 (Odlyzko [23], Theorem 10.6). Suppose

E(z, w) =
∑

i,j≥0

eijz
iwj with e00 = 0, e01 < 1, (∀i, j) eij ≥ 0 (2)

T(z) =
∑

i≥1

tiz
i with (∀i) ti ≥ 0 (3)

are such that
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(a) T(z) is analytic at x = 0

(b) T(z) = E
(
z,T(z)

)

(c) E(z, w) is nonlinear in w

(d) there are positive integers i, j, k with i < j < k such that

ti, tj, tk > 0

gcd(j − i, k − i) = 1.

Suppose furthermore that there exist δ, r, s > 0 such that

(e) E(z, w) is analytic in |z| < r + δ and |w| < s + δ

(f) E(r, s) = s

(g) Ew(r, s) = 1

(h) Ez(r, s) 6= 0 and Eww(r, s) 6= 0.

Then r is the radius of convergence of T, T(r) = s, and as n → ∞

tn ∼
√

rEz(r, s)

2πEww(r, s)
· rnn−3/2.

Remark 2. As with Pólya’s original result, the asymptotics in these more general the-
orems follow from information gathered on the location and nature of the dominant sin-
gularities of T. It has become popular to require that the solution T have a unique
dominant singularity—to guarantee this happens the above theorem has the hypothesis
(d). One can achieve this with a weaker hypothesis, namely one only needs to require

(d′) gcd
(
{j − i : i < j and ti, tj > 0}

)
= 1.

Actually, given the other hypotheses of Theorem 1, the condition (d′) is necessary and
sufficient that T have a unique dominant singularity.

The generalization of Pólya’s result that we find most convenient is given in Theo-
rem 28. We will also adopt the condition that E have nonnegative coefficients, but point
out that under this hypothesis the location of the dominant singularities is quite easy to
determine. Consequently the unique singularity condition is not needed to determine the
asymptotics.

For further remarks on previous variations and generalizations of the work of Pólya
see § 7. The condition that the E have nonnegative coefficients forces us to omit the
Set operator from our list of standard combinatorial operators. There are a number of
complications in trying to extend the results of this paper to recursion equations w =
G(z, w) where G has mixed signs appearing with its coefficients, including the problem
of locating the dominant singularities of the solution. The situation with mixed signs is
discussed in § 6.
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1.4 Goal of this paper

Aside from the proof details that show we do not need to require that the solution T have
a unique dominant singularity, this paper is not about finding a better way of generalizing
Pólya’s theorem on trees. Rather the paper is concerned with the ubiquity of the form
(?)(?)(?) of asymptotics that Pólya found for the recursively defined class of trees.4

The goal of this paper is to exhibit a very large class of natural and easily recognizable
operators Θ for which we can guarantee that a solution w = T(z) to the recursion equation
w = Θ(w) has coefficients that satisfy (?)(?)(?). By ‘easily recognizable’ we mean that you
only have to look at the expression describing Θ—no further analysis is needed. This
contrasts with the existing literature where one is expected to carry out some calculations
to determine if the solution T will have certain properties. For example, in Odlyzko’s
version, Theorem 1, there is a great deal of work to be done, starting with checking that
the solution T is analytic at z = 0.

In the formal specification theory for combinatorial classes (see Flajolet and Sedgewick
[15]) one starts with the binary operations of disjoint union and disjoint sum and adds
unary constructions that transform a collection of objects (like trees) into a collection
of objects (like forests). Such constructions are admissible if the generating series of the
output class of the construction is completely determined by the generating series of the
input class.

We want to show that a recursive specification using almost any combination of these
constructions, and others that we will introduce, yield classes whose generating series
have coefficients that obey the asymptotics (?)(?)(?) of Pólya. It is indeed a universal law. The
goal of this paper is to provide truly practical criteria (Theorem 75) to verify that many,
if not most, of the common nonlinear recursion equations lead to (?)(?)(?). Here is a contrived
example to which this theorem applies:

w = z + zMSet
(
Seq

( ∑

n∈Odd

6nwn
)) ∑

n∈Even

(2n + 1)
(
DCyclePrimes(w)

)n
. (4)

An easy application of Theorem 75 (see § 4.29) tells us this particular recursion equation
has a recursively defined solution T(z) with a positive radius of convergence, and the
asymptotics for the coefficients tn have the form (?)(?)(?).

The results of this paper apply to any combinatorial situation described by a recursion
equation of the type studied here. We put our focus on classes of trees because they are
by far the most popular setting for such equations.

4The motivation for our work came when a colleague, upon seeing the asymptotics of Pólya for the
first time, said “Surely the form (?)(?)(?) hardly ever occurs! (when finding the asymptotics for the solution of
an equation w = Θ(w) that recursively defines a class of trees)”. A quick examination of the literature,
a few examples, and we were convinced that quite the opposite held, that almost any reasonable class of
trees defined by a recursive equation that is nonlinear in w would lead to an asymptotic law of Pólya’s
form (?)(?)(?).
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1.5 First definitions

We start with our basic notation for number systems, power series and open discs.

Definition 3.

(a) R is the set of reals; R≥0 is the set of nonnegative reals.

(b) P is the set of positive integers. N is the set of nonnegative integers.

(c) R≥0[[z]] is the set of power series in z with nonnegative coefficients.

(d) ρA is the radius (of convergence) of the power series A .

(e) For A ∈ R≥0[[z]] we write A =
∑

n a(n)zn or A =
∑

n anzn .

(f) For r > 0 and z0 ∈ C the open disc of radius r about z0 is Dr(z0) := {z : |z−z0| < r}

1.6 Selecting the domain

We want to select a suitable collection of power series to work with when determining
solutions w = T of recursion equations w = Φ(w). The intended application is that T be
a generating series for some collection of combinatorial objects. Since generating series
have nonnegative coefficients we naturally focus on series in R≥0[[z]].

There is one restriction that seems most desirable, namely to consider as generating
functions only series whose constant term is 0. A generating series T has the coefficient
t(n) of zn counting (in some fashion) objects of size n. It has become popular when
working with combinatorial systems to admit a constant coefficient when it makes a result
look simpler, for example with permutations we write A(z) = exp

(
Q(z)

)
, where A(z) is

the exponential generating series for permutations, and Q(z) the exponential generating
series for cycles. Q(z) = log

(
1/(1−z)

)
will have a constant term 0, but A(z) = 1/(1−z)

will have the constant term 1. Some authors like to introduce an ‘ideal’ object of size 0
to go along with this constant term.

There is a problem with this convention if one wants to look at compositions of op-
erators. For example, suppose you wanted to look at sequences of permutations. The
natural way to write the generating series would be to apply the sequence operator Seq to
1/(1− z) above, giving

∑
1/(1− z)n. Unfortunately this “series” has constant coefficient

= ∞, so we do not have an analytical function. The culprit is the constant 1 in A(z). If
we drop the 1, so that we are counting only ‘genuine’ permutations, the generating series
for permutations is z/(1− z); applying Seq to this gives z/(1−2z), an analytical function
with radius of convergence 1/2.

Consequently in this paper we return to the older convention of having the constant
term be 0, so that we are only counting ‘genuine’ objects.

Definition 4. For A ∈ R[[z]] we write A D 0 to say that all coefficients ai of A are
nonnegative. Likewise for B ∈ R[[z, w]] we write B D 0 to say all coefficients bij are
nonnegative. Let
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(a) DOM[z] := {A ∈ R≥0[[z]] : A(0) = 0}, the set of power series A D 0 with constant
term 0; and let

(b) DOM[z, w] := {E ∈ R≥0[[z, w]] : E(0, 0) = 0}, the set of power series E D 0 with
constant term 0 . Members of this class are called elementary power series.5

When working with a member E ∈ DOM[z, w] it will be convenient to use various
series formats for writing E, namely

E(z, w) =
∑

ij

eijz
iwj

E(z, w) =
∑

j

Ej(z)wj

E(z, w) =
∑

j

( ∑

i

eijz
i
)
wj.

This is permissible from a function-theoretic viewpoint since all coefficients eij are non-
negative; for any given z, w ≥ 0 the three formats converge to the same value (possibly
infinity).

An immediate advantage of working with series having nonnegative coefficients is that
the series is defined (possibly infinite) at its radius of convergence.

Lemma 5. For T ∈ DOM[z] one has T(ρT) ∈ [0,∞]. Suppose T(ρT) ∈ (0,∞). Then
ρT < ∞ ; in particular T is not a polynomial. If furthermore T has integer coefficients
then ρT < 1.

2 The theoretical foundations

We want to show that the series T that are recursively defined as solutions to functional
equations w = G(z, w) are such that with remarkably frequency the asymptotics of the
coefficients tn are given by (?)(?)(?). Our main results deal with the case that G(z, w) is
holomorphic in a neighborhood of (0, 0), and the expansion

∑
gijz

iwj is such that all co-
efficients gij are nonnegative. This covers most of the equations arising from combinations
of the popular combinatorial operators like Sequence, MultiSet and Cycle.

The referee noted that we had omitted one popular construction, namely Set, and the
various restrictions SetM of Set, and asked that we explain this omission. Although the
equation w = z+zSet(w) has been successfully analyzed in [17], there are difficulties when
one wishes to form composite operators involving Set. These difficulties arise from the
fact that the resulting equation w = G(z, w) has G with coefficients having mixed signs.
A general discussion of the mixed signs case is given in § 6.1 and a particular discussion
of the Set operator in § 6.2. Since the issue of mixed signs is so important we introduce
the following abbreviations.

5We use the name elementary since a recursion equation of the form w = E(z, w) is in the proper form
to employ the tools of analysis that are presented in the next section.
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Definition 6. A bivariate series E(z, w) and the associated functional equation w =
E(z, w) are nonnegative if the coefficients of E are nonnegative. A bivariate series G(z, w)
and the associated functional equation w = G(z, w) have mixed signs if some coefficients
gij are positive and some are negative.

To be able to locate the difficulties when working with mixed signs, and to set the stage
for further research on this topic, we have put together an essentially complete outline
of the steps we use to prove that a solution T to a functional equation w = E(z, w)
satisfies the Pólya asymptotics (?)(?)(?), starting with the bedrock results of analysis such as
the Weierstraß Preparation Theorem and the Cauchy Integral Formula. Although this
background material has often been cited in work on recursive equations, it has never
been written down in a single unified comprehensive exposition. Our treatment of this
background material goes beyond the existing literature to include a precise analysis of
the nonnegative recursion equations whose solutions have multiple dominant singularities.

2.1 A method to prove (?)(?)(?)

Given E ∈ DOM[z, w] and T ∈ DOM[z] such that T = E(z,T), we use the following
steps to show that the coefficients tn satisfy (?)(?)(?).

(a) Show: T has radius of convergence ρ := ρT > 0.

(b) Show: T(ρ) < ∞.

(c) Show: ρ < ∞.

(d) Let: T(z) = zdV(zq) where V(0) 6= 0 and gcd
{
n : v(n) 6= 0

}
= 1.

(e) Let: ω = exp(2πi/q).

(f) Observe: T(ωz) = ωdT(z), for |z| < ρ.

(g) Show: The set of dominant singularities of T is {z : zq = ρq}.

(h) Show: T satisfies a quadratic equation, say

Q0(z) + Q1(z)T(z) + T(z)2 = 0

for |z| < ρ and sufficiently near ρ, where Q0(z),Q1(z) are analytic at ρ.

(i) Let: D(z) = Q1(z)2 − 4Q0(z), the discriminant of the equation in (g).

(j) Show: D′(ρ) 6= 0 in order to conclude that ρ is a branch point of order 2, that is,
for |z| < ρ and sufficiently near ρ one has T(z) = A(ρ − z) + B(ρ − z)

√
ρ − z,

where A and B are analytic at 0, and B(0) < 0.

(k) Design: A contour that is invariant under multiplication by ω to be used in the
Cauchy Integral Formula to calculate t(n).
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(l) Show: The full contour integral for t(n) reduces to evaluating the portion lying
between the angles −π/q and π/q.

(m) Optional: One has a Darboux expansion for the asymptotics of t(n).

Given that E has nonnegative coefficients, items (a)–(f) can be easily established by
imposing modest conditions on E (see Theorem 28). For (g) the method is to show that
one has a functional equation F

(
z,T(z)

)
= 0 holding for |z| ≤ ρ and sufficiently near

ρ, that F(z, w) is holomorphic in a neighborhood of
(
ρ,T(ρ)

)
, and that F

(
ρ,T(ρ)

)
=

Fw

(
ρ,T(ρ)

)
= 0, but Fww

(
ρ,T(ρ)

)
6= 0. These hypotheses allow one to apply the

Weierstraß Preparation Theorem to obtain a quadratic equation for T(z).

Theorem 7 (Weierstraß Preparation Theorem). Suppose F(z, w) is a function of
two complex variables and (z0, w0) is a point in C 2 such that:

(a) F(z, w) is holomorphic in a neighborhood of (z0, w0)

(b) F(z0, w0) =
∂F

∂w
(z0, w0) = · · · =

∂k−1F

∂wk−1
(z0, w0) = 0

(c)
∂kF

∂wk
(z0, w0) 6= 0.

Then in a neighborhood of (z0, w0) one has F(z, w) = P(z, w)R(z, w), a product of two
holomorphic functions P(z, w) and R(z, w) where

(i) R(z, w) 6= 0 in this neighborhood,

(ii) P(z, w) is a ‘monic polynomial of degree k’ in w, that is P(z, w) = Q0(z)+Q1(z)w+
· · ·+ Qk−1(z)wk−1 + wk, and the Qi(z) are analytic in a neighborhood of z0.

Proof. An excellent reference is Markushevich [19], Section 16, p. 105, where one finds a
leisurely and complete proof of the Weierstraß Preparation Theorem.

There are two specializations of this result that we will be particularly interested in:
k = 1 gives the Implicit Function Theorem, the best known corollary of the Weierstraß
Preparation Theorem; and k = 2 gives a quadratic equation for T(z).

2.2 k = 1: The implicit function theorem

Corollary 8 (k=1: Implicit Function Theorem). Suppose F(z, w) is a function of
two complex variables and (z0, w0) is a point in C 2 such that:

(a) F(z, w) is holomorphic in a neighborhood of (z0, w0)

(b) F(z0, w0) = 0

(c)
∂F

∂w
(z0, w0) 6= 0.
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Then there is an ε > 0 and a function A(z) such that for z ∈ Dε(z0),

(i) A(z) is analytic in Dε(z0) ,

(ii) F
(
z,A(z)

)
= 0 for z ∈ Dε(z0) ,

(iii) for all (z, w) ∈ Dε(z0) × Dε(w0), if F(z, w) = 0 then w = A(z).

Proof. From Theorem 7 there is an ε > 0 and a factorization of F(z, w) = L(z, w)R(z, w),
valid in Dε(z0) × Dε(w0), such that R(z, w) 6= 0 for (z, w) ∈ Dε(z0) × Dε(w0), and
L(z, w) = L0(z) + w, with L0(z) analytic in Dε(z0).

Thus A(z) = −L0(z) is such that L
(
z,A(z)

)
= 0 on Dε(z0); so F

(
z,A(z)

)
= 0 on

Dε(z0). Furthermore, if F(z, w) = 0 with (z, w) ∈ Dε(z0)×Dε(w0), then L(z, w) = 0, so
w = A(z).

2.3 k = 2: The quadratic functional equation

The fact that ρ is an order 2 branch point comes out of the k = 2 case in the Weierstraß
Preparation Theorem.

Corollary 9 (k = 2). Suppose F(z, w) is a function of two complex variables and (z0, w0)
is a point in C 2 such that:

(a) F(z, w) is holomorphic in a neighborhood of (z0, w0)

(b) F(z0, w0) =
∂F

∂w
(z0, w0) = 0

(c)
∂2F

∂w2
(z0, w0) 6= 0.

Then in a neighborhood of (z0, w0) one has F(z, w) = Q(z, w)R(z, w), a product of two
holomorphic functions Q(z, w) and R(z, w) where

(i) R(z, w) 6= 0 in this neighborhood,

(ii) Q(z, w) is a ‘monic quadratic polynomial’ in w, that is Q(z, w) = Q0(z)+Q1(z)w+
w2, where Q0 and Q1 are analytic in a neighborhood of z0.

2.4 Analyzing the quadratic factor Q(z, w)

Simple calculations are known (see [25]) for finding all the partial derivatives of Q and R
at

(
z0, w0

)
in terms of the partial derivatives of F at the same point. From this we can

obtain important information about the coefficients of the discriminant D(z) of Q(z, w).

Lemma 10. Given the hypotheses (a)-(c) of Corollary 9 let Q(z, w) and R(z, w) be as
described in (i)-(ii) of that corollary. Then
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(i) Q(z0, w0) = Qw(z0, w0) = 0

(ii) R(z0, w0) = Fww(z0, w0)/2.

Let D(z) = Q1(z)2 − 4Q0(z), the discriminant of Q(z, w).
Then

(iii) D(z0) = 0

(iv) D′(z0) = −8Fz(z0, w0)
/
Fww(z0, w0).

Proof. For (i) use Corollary (9) (b), the fact that R(z0, w0) 6= 0, and

F(z0, w0) = Q(z0, w0)R(z0, w0)

Fw(z0, w0) = Qw(z0, w0)R(z0, w0) + Q(z0, w0)Rw(z0, w0)

= Qw(z0, w0)R(z0, w0).

For (ii), since Q and Qw vanish and Qww evaluates to 2 at (z0, w0),

Fww(z0, w0) = 2R(z0, w0).

For (iii) we have from (i)

0 = Q0(z0) + Q1(z0)w0 + w0
2

0 = Q1(z0) + 2w0

and thus

Q1(z0) = −2w0 (5)

Q0(z0) = w0
2. (6)

From (5) and (6) we have

D(z0) = Q1(z0)
2 − 4Q0(z0) = 4w0

2 − 4w0
2 = 0,

which is claim (iii).
For claim (iv) start with

Fz(z0, w0) = Qz(z0, w0)R(z0, w0)

=
(
Q′

0(z0) + w0Q
′
1(z0)

)
R(z0, w0).

From the definition of D(z) and (5)

D′(z0) = 2Q1(z0)Q
′
1(z0) − 4Q′

0(z0)

= −4
(
Q′

0(z0) + w0Q
′
1(z0)

)
,

so
−4Fz(z0, w0) = D′(z0)R(z0, w0).

Now use (ii) to finish the derivation of (iv).
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2.5 A square-root continuation of T(z) when z is near ρ

Let us combine the above information into a proposition about a solution to a functional
equation.

Proposition 11. Suppose T ∈ DOM[z] is such that

(a) ρ := ρT ∈ (0,∞)

(b) T(ρ) < ∞

and F(z, w) is a function of two complex variables such that:

(c) there is an ε > 0 such that F
(
z,T(z)

)
= 0 for |z| < ρ and |z − ρ| < ε

(d) F(z, w) is holomorphic in a neighborhood of
(
ρ,T(ρ)

)

(e) F
(
ρ,T(ρ)

)
=

∂F

∂w

(
ρ,T(ρ)

)
= 0

(f)
∂F

∂z

(
ρ,T(ρ)

)
· ∂2F

∂w2

(
ρ,T(ρ)

)
> 0.

Then there are functions A(z),B(z) analytic at 0 such that

T(z) = A(ρ − z) + B(ρ − z)
√

ρ − z

for |z| < ρ and near ρ (see Figure 1), and

B(0) = −
√

2Fz

(
ρ,T(ρ)

)

Fww

(
ρ,T(ρ)

) < 0.

ρ

Figure 1: T(z) = A(ρ − z) + B(ρ − z)
√

ρ − z in the shaded region

Proof. Items (d)–(f) give the the hypotheses of Corollary 9 with (z0, w0) =
(
ρ,T(ρ)

)
. Let

Q0(z), Q1(z) and D(z) = Q1(z)2 − 4Q0(z) be as in Corollary 9. From conclusion (iv) of
Lemma 10 we have

D′(ρ) = −8
Fz

(
ρ,T(ρ)

)

Fww

(
ρ,T(ρ)

) < 0. (7)
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From (c) and Corollary 9(i)

Q0(z) + Q1(z)T(z) + T(z)2 = 0

holds in a neighborhood of z = ρ intersected with Dρ(0) (as pictured in Figure 1), so in
this region

T(z) = −1

2
Q1(z) +

1

2

√
D(z)

for a suitable branch of the square root. Expanding D(z) about ρ gives

D(z) =
∑

k≥1

dk(ρ − z)k (8)

since D(ρ) = 0 by (iii) of Lemma 10; and d1 = −D′(ρ) > 0 by (7). Consequently

T(z) = −1

2
Q1(z)

︸ ︷︷ ︸
A(ρ − z)

− 1

2

√
d1

√
1 +

∑

k≥2

dk

d1

(ρ − z)k−1

︸ ︷︷ ︸
B(ρ − z)

· √ρ − z (9)

holds for |z| < ρ and near ρ. The negative sign of the second term is due to choosing the
branch of the square root which is consistent with the choice of branch implicit in Lemma
13 when α = 1/2, given that the t(n)’s are nonnegative.

Thus we have functions A(z),B(z) analytic in a neighborhood of 0 with B(0) 6= 0
such that

T(z) = A(ρ − z) + B(ρ − z)
√

ρ − z

for |z| < ρ and near ρ. From (7), (8) and (9)

B(0) = −1

2

√
d1 = −1

2

√
−D′(ρ) = −

√
2Fz

(
ρ,T(ρ)

)

Fww

(
ρ,T(ρ)

) < 0.

Now we turn to recursion equations w = E(z, w). So far in our discussion of the role of
the Weierstraß Preparation Theorem we have not made any reference to the signs of the
coefficients in the recursion equation. The following proposition establishes a square-root
singularity at ρ, and the proof uses the fact that all coefficients of E are nonnegative. If we
did not make this assumption then items (13) and (14) below might fail to hold. If (14)
is false then Fz

(
ρ,T(ρ)

)
may be 0, in which case (?)(?)(?) fails. See section 2.9 for a further

discussion of this issue.

Corollary 12. Suppose T ∈ DOM[z] and E ∈ DOM[z, w] are such that

(a) ρ := ρT ∈ (0,∞)

(b) T(ρ) < ∞
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(c) T(z) = E
(
z,T(z)

)
holds as an identity between formal power series,

(d) E(z, w) is not linear in w,

(e) Ez 6= 0

(f) (∃ε > 0)
(
E

(
ρ + ε,T(ρ) + ε

)
< ∞

)
.

Then there are functions A(z),B(z) analytic at 0 such that

T(z) = A(ρ − z) + B(ρ − z)
√

ρ − z

for |z| < ρ and near ρ (see Figure 1), and

B(0) = −
√

2Ez

(
ρ,T(ρ)

)

Eww

(
ρ,T(ρ)

) < 0.

Proof. By (f) we can choose ε > 0 such that E is holomorphic in

U = Dρ+ε(0) × DT(ρ)+ε(0),

an open polydisc neighborhood of the graph of T. Let

F(z, w) := w − E(z, w). (10)

Then F is holomorphic in U, and one readily sees that

F
(
z,T(z)

)
= T(z) − E

(
z,T(z)

)
= 0 for |z| ≤ ρ (11)

Fw(z, w) = 1 − Ew(z, w) (12)

Fww

(
ρ,T(ρ)

)
= −Eww

(
ρ,T(ρ)

)
< 0 by (d) and E D 0 (13)

Fz

(
ρ,T(ρ)

)
= −Ez

(
ρ,T(ρ)

)
< 0 by (e) and E D 0. (14)

By Pringsheim’s Theorem ρ is a singularity of T. Thus Fw

(
ρ,T(ρ)

)
= 0 since one cannot

use the Implicit Function Theorem to analytically continue T at ρ.
We have satisfied the hypotheses of Proposition 11—use (13) and (14) to obtain the

formula for B(0).

2.6 Linear recursion equations

In a linear recursion equation

w = A0(z) + A1(z)w

one has

w =
A0(z)

1 − A1(z)
. (15)
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From this we see that the collection of solutions to linear equations covers an enormous
range. For example, in the case

w = A0(z) + zw,

any T(z) ∈ DOM[z] with nondecreasing eventually positive coefficients is a solution to the
above linear equation (which satisfies A0(z)+ zw D 0) if we choose A0(z) := (1− z)T(z).

When one moves to a Θ(w) that is nonlinear in w, the range of solutions seems to
be greatly constricted. In particular with remarkable frequency one encounters solutions
T(z) whose coefficients are asymptotic to Cρ−nn−3/2.

2.7 Binomial coefficients

The asymptotics for the coefficients in the binomial expansion of (ρ−z)α are the ultimate
basis for the universal law (?)(?)(?). Of course if α ∈ N then (ρ − z)α is just a polynomial and
the coefficients are eventually 0.

Lemma 13 (See Wilf [29], p. 179). For α ∈ R \ N and ρ ∈ (0,∞)

[zn] (ρ − z)α = (−1)n

(
α

n

)
ρα−n ∼ ρα

Γ(−α)
ρ−nn−α−1.

2.8 The Flajolet and Odlyzko singularity analysis

In [14] Flajolet and Odlyzko develop transfer theorems via singularity analysis for func-
tions S(z) that have a unique dominant singularity. The goal is to develop a catalog of
translations, or transfers, that say: if S(z) behaves like such and such near the singularity
ρ then the coefficients s(n) have such and such asymptotic behaviour.

Their work is based on applying the Cauchy Integral Formula to an analytic contin-
uation of S(z) beyond its circle of convergence. This leads to their basic notion of a
Delta neighborhood ∆ of ρ, that is, a closed disc which is somewhat larger than the disc
of radius ρ, but with an open pie shaped wedge cut out at the point z = ρ (see Fig.
2). We are particularly interested in their transfer theorem that directly generalizes the
binomial asymptotics given in Lemma 13.

Proposition 14 ([14], Corollary 2). Let ρ ∈ (0,∞) and suppose S is analytic in ∆\{ρ}
where ∆ is a Delta neighborhood of ρ. If α /∈ N and

S(z) ∼ K
(
ρ − z

)α
(16)

as z → ρ in ∆, then

s(n) ∼ [zn] K
(
ρ − z

)α
= (−1)nK

(
α

n

)
ρα−n ∼ Kρα

Γ(−α)
· ρ−nn−α−1.

Let us apply this to the square-root singularities that we are working with to see that
one ends up with the asymptotics satisfying (?)(?)(?).
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ρ0 ρ+η

Delta region for a single
singularity

The corresponding
contour shape

Figure 2: A Delta region and associated contour

Corollary 15. Suppose S ∈ DOM[z] has radius of convergence ρ ∈ (0,∞), and ρ is the
only dominant singularity of S. Furthermore suppose A and B are analytic at 0 with
B(0) < 0, A(0) > 0 and

S(z) = A(ρ − z) + B(ρ − z)
√

ρ − z (17)

for z in some neighborhood of ρ, and |z| < ρ.
Then

s(n) ∼ [zn]B(0)
√

ρ − z ∼ −B(0)
√

ρ

2
√

π
· ρ−nn−3/2.

Proof. One can find a Delta neighborhood ∆ of ρ (as in Fig. 2) such that S has an analytic
continuation to ∆ \ {ρ}; and for z ∈ ∆ and near ρ one has (17) holding. Consequently

S(z) − A(0) ∼ B(0)
√

ρ − z

as z → ρ in ∆. This means we can apply Proposition 14 to obtain

s(n) ∼ B(0)
√

ρ

Γ(−1/2)
· ρ−nn−3/2.

2.9 On the condition B(0) < 0

In the previous corollary suppose that B(0) = 0 but B 6= 0. Let bk be the first nonzero
coefficient of B. The asymptotics for s(n) are

s(n) ∼ bk[z
n]

(
ρ − z

)k+ 1

2 ,

giving a law of the form Cρ−nn−k− 3

2 . We do not know of an example of S defined by a
nonlinear functional equation that gives rise to such a solution with k > 0, that is, with
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the exponent of n being −5/2, or −7/2, etc. Meir and Moon (p. 83 of [21], 1989) give
the example

w = (1/6)ew
∑

n≥1

zn/n2

where the solution w = T has coefficient asymptotics given by tn ∼ C/n.

2.10 Handling multiple dominant singularities

We want to generalize Proposition 14 to cover the case of several dominant singularities
equally spaced around the circle of convergence and with the function S enjoying a certain
kind of symmetry.

Proposition 16. Given q ∈ P and ρ ∈ (0,∞) let

ω := e2πi/q

Uq,ρ := {ωjρ : j = 0, 1, . . . , q − 1}.

Suppose ∆ is a generalized Delta-neighborhood of ρ with wedges removed at the points in
Uq,ρ (see Fig. 3 for q = 3), suppose S is continuous on ∆ and analytic in ∆ \ Uq,ρ, and

ρ0 ρ+η

contour shape
The correspondingA Delta region for

3 singularities

Figure 3: Multiple dominant singularities

suppose d is a nonnegative integer such that S
(
ωz

)
= ωdS(z) for z ∈ ∆.

If S(z) ∼ K(ρ − z)α as z → ρ in ∆ and α /∈ N then

s(n) ∼ qKρα

Γ(−α)
· ρ−nn−α−1 if n ≡ d mod q,

s(n) = 0 otherwise.

Proof. Given ε > 0 choose the contour C to follow the boundary of ∆ except for a radius
ε circular detour around each singularity ωjρ (see Fig. 3). Then

s(n) =
1

2πi

∫

C

S(z)

zn+1
dz.
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C0

C1

C2

Figure 4: The congruent contour segments Cj

Subdivide C into q congruent pieces C0, . . . , Cq−1 with Cj centered around ωjρ, choosing
as the dividing points on C the bisecting points between successive singularities (see Fig.
4 for q = 3). Then Cj = ωjC0. Let sj(n) be the portion of the integral for s(n) taken over
Cj, that is:

sj(n) =
1

2πi

∫

Cj

S(z)

zn+1
dz.

Then from S(ωz) = ωdS(z) and Cj = ωjC0 we have

sj(n) =
1

2πi

∫

Cj

S(z)

zn+1
dz

=
1

2πi

∫

C0

ωdjS(z)

(ωjz)n+1
ωjdz

= ωj(d−n) 1

2πi

∫

C0

S(z)

zn+1
dz

= ωj(d−n)s0(n),

so

s(n) =

q−1∑

j=0

sj(n)

=
( q−1∑

j=0

ωj(d−n)
)
s0(n)

=

{
qs0(n) if n ≡ d mod q

0 otherwise.

We have reduced the integral calculation to the integral over C0, and this proceeds exactly
as in [14] in the unique singularity case described in Proposition 14.

Let us apply this result to the case of S(z) having multiple dominant singularities,
equally spaced on the circle of convergence, with a square-root singularity at ρ.
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Corollary 17. Given q ∈ P and ρ ∈ (0,∞) let

ω := e2πi/q

Uq,ρ := {ωjρ : j = 0, 1, . . . , q − 1}.

Suppose S ∈ DOM[z] has radius of convergence ρ ∈ (0,∞), Uq,ρ is the set of dominant
singularities of S, and S(ωz) = ωdS(z) for |z| < ρ and for some d ∈ N.

Furthermore suppose A and B are analytic at 0 with B(0) < 0, A(0) > 0 and

S(z) = A(ρ − z) + B(ρ − z)
√

ρ − z (18)

for z in some neighborhood of ρ, and |z| < ρ. Then

s(n) ∼ qB(0)
√

ρ

Γ(−1/2)
· ρ−nn−3/2 for n ≡ d mod q. (19)

Otherwise s(n) = 0.

Proof. Since the set of dominant singularities Uq,ρ is finite one can find a generalized Delta
neighborhood ∆ of ρ (as in Fig. 3) such that S has a continuous extension to ∆ which
is an analytic continuation to ∆ \ Uq,ρ; and for z ∈ ∆ and near ρ one has (18) holding.
Consequently

S(z) − A(0) ∼ B(0)
√

ρ − z

as z → ρ in ∆. This means we can apply Proposition 16 to obtain (19).

2.11 Darboux’s expansion

In 1878 Darboux [12] published a procedure for expressing the asymptotics of the coeffi-
cients s(n) of a power series S with algebraic dominant singularities. Let us focus first on
the case that S has a single dominant singularity, namely z = ρ, and it is of square-root
type, say

S(z) = A(ρ − z) + B(ρ − z)
√

ρ − z

for |z| < ρ and sufficiently close to ρ, where A and B are analytic at 0 and B(0) < 0.
From Proposition 14 we know that

s(n) =
(
1 + o(1)

)
b(0)[zn]

√
ρ − z.

Rewriting the expression for S(z) as

S(z) =

∞∑

j=0

(
aj(ρ − z)j + bj(ρ − z)j+ 1

2

)

we can see that the mth derivative of S ‘blows up’ as z approaches ρ because the mth
derivative of the terms on the right with j < m involve terms with ρ − z to a negative
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power. However for j ≥ m the terms on the right have mth derivatives that behave nicely
near ρ. By shifting the troublesome terms to the left side of the equation, giving

Sm(z) := S(z) −
∑

j<m

(
aj(ρ − z)j + bj(ρ − z)j+ 1

2

)

=
∑

j≥m

(
aj(ρ − z)j + bj(ρ − z)j+ 1

2

)
,

one can see by looking at the right side that the mth derivative S
(m)
m (z) of Sm(z) has a

square-root singularity at ρ provided some bj 6= 0 for j ≥ m. Indeed S
(m)
m (z) is very much

like S(z), being analytic for |z| ≤ ρ provided z 6= ρ. If bm 6= 0 we can apply Proposition
14 to obtain (for suitable Cm)

[zn]S(m)
m (z) ∼ Cmρ−nn− 3

2

and thus
[zn]Sm(z) ∼ Cmρ−nn−m− 3

2 .

This tells us that

s(n) =
∑

j<m

[zn]
(
aj(ρ − z)j + bj(ρ − z)j+ 1

2

)
+

(
1 + o(1)

)
Cmρ−nn−m− 3

2 .

For n ≥ m the part with the aj drops out, so we have the Darboux expansion

s(n) =
∑

j<m

[zn]
(
bj(ρ − z)j+ 1

2

)
+

(
1 + o(1)

)
Cmρ−nn−m− 3

2 .

The case of multiple dominant singularities is handled as previously. Here is the result
for the general exponent α.

Proposition 18 (Multi Singularity Darboux Expansion). Given q ∈ P let

ω := e2πi/q

Uq,ρ := {ωjρ : j = 0, 1, . . . , q − 1}.

Suppose we have a generalized Delta-neighborhood ∆ with wedges removed at the points
in Uq,ρ (see Fig. 3) and S is analytic in ∆ \Uq,ρ. Furthermore suppose d is a nonnegative
integer such that S

(
ωz

)
= ωdS(z) for |z| < ρ.

If
S(z) = A(ρ − z) + B(ρ − z)(ρ − z)α

for |z| < ρ and in a neighborhood of ρ, and α /∈ N, then given m ∈ N with bm 6= 0 there
is a Cm 6= 0 such that for n ≡ d mod q

s(n) = q
∑

j<m

[zn]
(
bj(ρ − z)j+ 1

2

)
+

(
1 + o(1)

)
Cmρ−nn−α−(m+1).
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2.12 An alternative approach: reduction to the aperiodic case

In the literature one finds references to the option of using the aperiodic reduction V of
T, that is, using T(z) = zdV(zq) where V(0) 6= 0 and gcd{n : v(n) 6= 0} = 1. V has
a unique dominant singularity at ρV = ρT

q, so the hope would be that one could use a
well known result like Theorem 1 to prove that (?)(?)(?) holds for v(n). Then t(nq + d) = v(n)
gives the asymptotics for the coefficients of T.

One can indeed make the transition from T = E(z,T) to a functional equation V =
H(z,V), but it is not clear if the property that E is holomorphic at the endpoint of the
graph of T implies H is holomorphic at the endpoint of the graph of V. Instead of the
property

(∃ε > 0)
(
E

(
ρ + ε,T(ρ) + ε

)
< ∞

)

of E used previously, a stronger version seems to be needed, namely:

(∀y > 0)
[
E

(
ρ, y

)
< ∞ ⇒ (∃ε > 0)

(
E

(
ρ + ε, y + ε

)
< ∞

)]
.

We chose the singularity analysis because it sufficed to require the weaker condition
that E be holomorphic at

(
ρ,T(ρ)

)
, and because the expression for the constant term in

the asymptotics was far simpler that what we obtained through the use of V = H(z,V).
Furthermore, in any attempt to extend the analysis of the asymptotics to other cases of
recursion of equations one would like to have the ultimate foundations of the Weierstraß
Preparation Theorem and the Cauchy Integral Theorem to fall back on.

3 The Dominant Singularities of T(z)

The recursion equations w = E(z, w) we consider will be such that the solution w = T
has a radius of convergence ρ in (0,∞) and finitely many dominant singularities, that
is finitely many singularities on the circle of convergence. In such cases the primary
technique to find the asymptotics for the coefficients t(n) is to apply Cauchy’s Integral
Theorem (1). Experience suggests that properly designed contours C will concentrate the
value of the integral (1) on small portions of the contour near the dominant singularities
of T—consequently great value is placed on locating the dominant singularities of T.

Definition 19. For T ∈ DOM[z] with radius ρ ∈ (0,∞) let DomSing(T) be the set of
dominant singularities of T, that is, the set of singularities on the circle of convergence
of T.

3.1 The spectrum of a power series

Definition 20. For A ∈ DOM[z] let the spectrum Spec(A) of A be the set of n such that
the nth coefficient a(n) is not zero.6 It will be convenient to denote Spec(A) simply by A,

6In the 1950s the logician Scholz defined the spectrum of a first-order sentence ϕ to be the set of sizes
of the finite models of ϕ. For example if ϕ is an axiom for fields, then the spectrum would be the set
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so we have
A = Spec(A) = {n : a(n) 6= 0}.

In our analysis of the dominant singularities of T it will be most convenient to have a
simple calculus to work with the spectra of power series.

3.2 An algebra of sets

The spectrum of a power series from DOM[z] is a subset of positive integers; the calculus
we use has certain operations on the subsets of the nonnegative integers.

Definition 21. For I, J ⊆ N and j, m ∈ N let

I + J :=
{
i + j : i ∈ I, j ∈ J

}

I − j :=
{
i − j : i ∈ I,

}
where j ≤ min(I)

m · J := {m · j : j ∈ J} for m ≥ 1

0 � J := {0}
m � J := J + · · ·+ J︸ ︷︷ ︸

m−times

for m ≥ 1

I � J :=
⋃

i∈I

i � J

m|J ⇔
(
∀j ∈ J

)
(m|j).

3.3 The periodicity constants

Periodicity plays an important role in determining the dominant singularities. For ex-
ample the generating series T(z) of planar (0,2)-binary trees, that is, planar trees where
each node has 0 or 2 successors, is defined by

T(z) = z + zT(z)2.

It is clear that all such trees have odd size, so one has

T(z) =

∞∑

j=0

t(2j + 1)z2j+1 = z

∞∑

j=0

t(2j + 1)(z2)j.

This says we can write T(z) in the form

T(z) = zV(z2).

of powers of primes. There are many papers on this topic: a famous open problem due to Asser asks if
the collection of spectra of first-order sentences is closed under complementation. This turns out to be
equivalent to an open question in complexity theory. The recent paper [13] of Fischer and Makowsky has
an excellent bibliography of 62 items on the subject of spectra.

For our purposes, if A(z) is a generating series for a class A of combinatorial objects then the set of
sizes of the objects in A is precisely Spec(A).
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From such considerations one finds that T(z) has exactly two dominant singularities, ρ
and −ρ. (The general result is given in Lemma 26.)

Lemma 22. For A ∈ DOM[z] let

p := gcd A d := min A q := gcd(A − d).

Then there are U(z) and V(z) in R≥0[[z]] such that

(a) A(z) = U
(
zp

)
with gcd(U) = 1

(b) A(z) = zdV
(
zq

)
with V(0) 6= 0 and gcd(V ) = 1.

Proof. (Straightforward.)

Definition 23. With the notation of Lemma 22, U(zp) is the purely periodic form of

A(z); and zdV
(
zq

)
is the shift periodic form of A(z).

The next lemma is quite important—it says that the q equally spaced points on the
circle of convergence are all dominant singularities of T. Our main results depend heavily
on the fact that the equations we consider are such that these are the only dominant
singularities of T.

Lemma 24. Let T ∈ DOM[z] have radius of convergence ρ ∈ (0,∞) and the shift periodic
form zdV(zq). Then

{z : zq = ρq} ⊆ DomSing(T).

Proof. Suppose z0
q = ρq and suppose S(z) is an analytic continuation of T(z) into a

neighborhood Dε(z0) of z0. Let ω := z0/ρ. Then ωq = 1. The function S0(z) := S(ωz)/ωd

is an analytic function on Dε(ρ). For z ∈ Dε(ρ) ∩ Dρ(0) we have

ωz ∈ Dε(z0) ∩ Dρ(0),

so
S0(z) = S(ωz)/ωd = T(ωz)/ωd = T(z).

This means S0(z) is an analytic continuation of T(z) at z = ρ, contradicting Pringsheim’s
Theorem that ρ is a dominant singularity.

3.4 Determining the shift periodic parameters from E

Lemma 25. Suppose T(z) = E
(
z,T(z)

)
is a formal recursion that defines T ∈ DOM[z],

where E ∈ DOM[z, w]. Let the shift periodic form of T(z) be zdV(zq). Then

d = min(T ) = min(E0)

q = gcd(T − d) = gcd
⋃

n≥0

(
En + (n − 1)d

)
.
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Proof. Since T is recursively defined by

T(z) =
∑

n≥0

En(z)T(z)n

one has the first nonzero coefficient of T being the first nonzero coefficient of E0, and thus
d = min(T ) = min(E0). It is easy to see that we also have q = gcd(T − d).

Next apply the spectrum operator to the above functional equation to obtain the set
equation

T =
⋃

n≥0

En + n � T,

and thus
T − d =

⋃

n≥0

(
En + (n − 1)d + n � (T − d)

)
.

Since q = gcd(T − d) it follows that q|r := gcd
( ⋃

n En + (n − 1)d
)
.

To show that r|q, and hence that r = q, note that

w =
⋃

n≥0

(
En + (n − 1)d + n � w

)

is a recursion equation whose unique solution is w = T − d. Furthermore we can find the
solution w by iteratively applying the set operator

Θ(w) :=
⋃

n≥0

(
En + (n − 1)d + n � w

)

to Ø, that is,
T − d = lim

n→∞
Θn(Ø).

Clearly r |Ø, and a simple induction shows that for every n we have r
∣∣ Θn(Ø). Thus

r | (T − d), so r | q, giving r = q. This finishes the proof that q is the gcd of the set⋃
n

(
En + (n − 1)d

)
.

3.5 Determination of the dominant singularities

The following lemma completely determines the dominant singularities of T.

Lemma 26. Suppose

(a) T ∈ DOM[z] has radius of convergence ρ ∈ (0,∞) with T(ρ) < ∞, and

(b) T(z) = E
(
z,T(z)

)
, where E ∈ DOM[z, w] is nonlinear in w and holomorphic on

(the graph of) T.
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Let the shift periodic form of T(z) be zdV(zq). Then

DomSing(T) = {z : zq = ρq}.

Proof. By the usual application of the implicit function theorem, if z is a dominant
singularity of T then

Ew

(
z,T(z)

)
= 1. (20)

As ρ is a dominant singularity we can replace (20) by

Ew

(
z,T(z)

)
= Ew

(
ρ,T(ρ)

)
. (21)

Let U(zp) be the purely periodic form of Ew

(
z,T(z)

)
. As the coefficients of Ew are

nonnegative it follows that (21) implies

DomSing(T) ⊆ {z : zp = ρp}.

We know from Lemma 24 that

{z : zq = ρq} ⊆ DomSing(T),

consequently q|p.
To show that p ≤ q first note that if m ∈ N then

gcd(m + T )
∣∣ q.

For if r = gcd(m+T ) then for any n ∈ T we have r|(m+n) and r|(m+d). Consequently
r|(n − d), so r|(T − d), and thus r|q.

Since
U(zp) = Ew

(
z,T(z)

)
=

∑

n≥1

En(z)nT(z)n−1,

applying the spectrum operator gives

Spec
(
U(zp)

)
=

⋃

n≥1

En + (n − 1) � T.

Choose n ≥ 2 such that En 6= Ø and choose a ∈ En. Then

Spec
(
U(zp)

)
⊇ En + (n − 1) � T

⊇
(
a + (n − 2)d

)
+ T,

so taking the gcd of both sides gives

p = gcd Spec
(
U(zp)

)

≤ gcd
((

a + (n − 2)d
)

+ T
) ∣∣∣ q.

With p = q it follows that we have proved the dominant singularities are as claimed.
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3.6 Solutions that converge at the radius of convergence

The equations w = Θ(w) that we are pursuing will have a solution T that converges at
the finite and positive radius of convergence ρT.

Definition 27. Let

DOM?[z] := {T ∈ DOM[z] : ρT ∈ (0,∞), T(ρT) < ∞}.

3.7 A basic theorem

The next theorem summarizes what we need from the preceding discussions to show that
T = E(z,T) leads to (?)(?)(?) holding for the coefficients tn of T.

Theorem 28. Suppose T ∈ DOM[z] and E ∈ DOM[z, w] are such that

(a) T(z) = E
(
z,T(z)

)
holds as an identity between formal power series

(b) T ∈ DOM?[z]

(c) E(z, w) is nonlinear in w

(d) Ez 6= 0

(e) (∃ε > 0)
(
E

(
ρ + ε,T(ρ) + ε

)
< ∞

)
.

Then

t(n) ∼ q

√
ρEz

(
ρ,T(ρ)

)

2πEww

(
ρ,T(ρ)

)ρ−nn−3/2 for n ≡ d mod q.

Otherwise t(n) = 0. Thus (?)(?)(?) holds on {n : t(n) > 0}.

Proof. By Corollary 12, Corollary 17 and Lemma 26.

4 Recursion Equations using Operators

Throughout the theoretical section, § 2, we only considered recursive equations based on
elementary operators E(z, w). Now we want to expand beyond these to include recursions
that are based on popular combinatorial constructions used with classes of unlabelled
structures. As an umbrella concept to create these various recursions we introduce the
notion of operators Θ.

Actually if one is only interested in working with classes of labelled structures then it
seems that the recursive equations based on elementary power series are all that one needs.
However, when working with classes of unlabelled structures, the natural way of writing
down an equation corresponding to a recursive specification is in terms of combinatorial
operators like MSet and Seq. The resulting equation w = Θ(w), if properly designed, will
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have a unique solution T(z) whose coefficients are recursively defined, and this solution
will likely be needed to construct the translation of w = Θ(w) to an elementary recursion
w = E(z, w), a translation that is needed in order to apply the theoretical machinery
of § 2.

4.1 Operators

The mappings on generating series corresponding to combinatorial constructions are called
operators. But we want to go beyond the obvious and include complex combinations of
elementary and combinatorial operators. For this purpose we introduce a very general
definition of an operator.

Definition 29. An operator is a mapping Θ : DOM[z] → DOM[z] .

Note that operators Θ act on DOM[z] , the set of formal power series with nonnegative
coefficients and constant term 0. As mentioned before, the constraint that the constant
terms of the power series be 0 makes for an elegant theory because compositions of oper-
ators are always defined.

A primary concern, as in the original work of Pólya, is to be able to handle combi-
natorial operators Θ that, when acting on T(z), introduce terms like T(z2),T(z3) etc.
For such operators it is natural to use power series T(z) with integer coefficients as one
is usually working in the context of ordinary generating functions. In such cases one has
ρ ≤ 1 for the radius of convergence of T, provided T is not a polynomial.

Definition 30. An integral operator is a mapping Θ : IDOM[z] → IDOM[z] , where

IDOM[z] :=
{
A ∈ N[[z]] : A(0) = 0

}
, the set of power series with nonnegative integer

coefficients and constant term zero.

Remark 31. Many of the lemmas, etc, that follow have both a version for general opera-
tors and a version for integral operators. We will usually just state and prove the general
version, leaving the completely parallel integral version as a routine exercise.

4.2 The arithmetical operations on operators

The operations of addition, multiplication, positive scalar multiplication and composition
are defined on the set of operators in the natural manner:

Definition 32.

(Θ1 + Θ2)(T) := Θ1(T) + Θ2(T)

(Θ1 · Θ2)(T) := Θ1(T) · Θ2(T)

(c · Θ)(T) := c · Θ(T)

(Θ1 ◦ Θ2)(T) := Θ1

(
Θ2(T)

)
,

where the operations on the right side are the operations of formal power series. A set of
operators is closed if it is closed under the four arithmetical operations.
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Note that when working with integral operators the scalars should be positive integers.
The operation of addition corresponds to the construction disjoint union and the operation
of product to the construction disjoint sum, for both the unlabelled and the labelled case.
Clearly the set of all [integral] operators is closed.

4.3 Elementary operators

In a most natural way we can think of elementary power series E(z, w) as operators.

Definition 33. Given E(z, w) ∈ DOM[z, w] let the associated elementary operator be
given by

E : T 7→ E(z,T) for T ∈ DOM.

Two particular kinds of elementary operators are as follows.

Definition 34. Let A ∈ DOM[z].

(a) The constant operator ΘA is given by ΘA : T 7→ A for T ∈ DOM[z], and

(b) the simple operator A(w) maps T ∈ DOM[z] to the power series that is the formal
expansion of ∑

n≥1

an

( ∑

j≥1

tjz
j
)n

.

4.4 Open elementary operators

Definition 35. Given a, b > 0, an elementary operator E(z, w) is open at (a, b) if

(∃ε > 0)
(
E(a + ε, b + ε) < ∞

)
.

E is open if it is open at any a, b > 0 for which E(a, b) < ∞.

Eventually we will be wanting an elementary operator to be open at
(
ρ,T(ρ)

)
in order

to invoke the Weierstraß Preparation Theorem.

Lemma 36. Suppose A ∈ DOM[z] and a, b > 0.
The constant operator ΘA

(a) is open at (a, b) iff a < ρA;

(b) it is open iff ρA > 0 ⇒ A(ρA) = ∞.

The simple operator ΘA

(c) is open at (a, b) iff b < ρA;

(d) it is open iff ρA > 0 ⇒ A(ρA) = ∞.
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Proof. ΘA is open at (a, b) iff for some ε > 0 we have A(a + ε) < ∞. This is clearly
equivalent to a < ρA.

Thus ρA > 0 and A(ρA) < ∞ imply ΘA is not open at (ρA, b) for any b > 0, hence it
is not open. Conversely if ΘA is not open then ρA > 0 and A(a) < ∞ for some a, b > 0,
but A(a + ε) = ∞ for any ε > 0. This implies a = ρA.

The proof for the simple operator A(w) is similar.

4.5 Operational closure of the set of open E

Lemma 37. Let a, b > 0.

(a) The set of elementary operators open at (a, b) is closed under the arithmetical oper-
ations of scalar multiplication, addition and multiplication. If E2 is open at (a, b)
and E1 is open at

(
a,E2(a, b)

)
then E1

(
z,E2(z, w)

)
is open at (a, b).

(b) The set of open elementary operators is closed.

Proof. Let c > 0 and let E,E1,E2 be elementary operators open at (a, b). Then

(∃ε > 0)E
(
a + ε, b + ε

)
< ∞ ⇒ (∃ε > 0) (cE)

(
a + ε, b + ε

)
< ∞

(∃ε1 > 0)E1

(
a + ε1, b + ε1

)
< ∞ and (∃ε2 > 0)E2

(
a + ε2, b + ε2

)
< ∞

⇒ (∃ε > 0)Ei

(
a + ε, b + ε

)
< ∞ for i = 1, 2

⇒ (∃ε > 0)
(
E1 + E2

)
(a + ε, b + ε) < ∞

(∃ε1 > 0)E1

(
a + ε1, b + ε1

)
< ∞ and (∃ε2 > 0)E2

(
a + ε2, b + ε2

)
< ∞

⇒ (∃ε > 0)Ei

(
a + ε, b + ε

)
< ∞ for i = 1, 2

⇒ (∃ε > 0)
(
E1E2

)
(a + ε, b + ε) < ∞.

Now suppose E2 is open at (a, b) and E1 is open at
(
a,E1(a, b)

)
. Then

(∃ε2 > 0)E2

(
a + ε2, b + ε2

)
< ∞ and (∃ε1 > 0)E1

(
a + ε1,E2(a, b) + ε1

)
< ∞

⇒ (∃ε > 0)E1

(
a + ε,E2(a + ε, b + ε) + ε

)
< ∞.

This completes the proof for (a). Part (b) is proved similarly.

The base operators that we will use as a starting point are the elementary operators
E and all possible restrictions ΘM of the standard operators Θ of combinatorics discussed
below. More complex operators called composite operators will be fabricated from these
base operators by using the familiar arithmetical operations of addition, multiplication,
scalar multiplication and composition discussed in § 4.2.

4.6 The standard operators on DOM[z]

Following the lead of Flajolet and Sedgewick [15] we adopt as our standard operators
MSet (multiset), Cycle (undirected cycle), DCycle (directed cycle) and Seq (sequence),
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corresponding to the constructions by the same names.7 These operators have well known
analytic expressions, for example,

unlabelled multiset operator 1 + MSet(T) = exp
( ∑

j≥1 T(zj)/j
)

labelled multiset operator M̂Set(T) =
∑

j≥1 T(z)j/j! = eT(z) − 1

4.7 Restrictions of standard operators

Let M ⊆ P . (We will always assume M is nonempty.) The M-restriction of a standard
construction ∆ applied to a class of trees means that one only takes those forests in ∆(T )
where the number of trees is in M . Thus MSet{2,3}(T ) takes all multisets of two or three
trees from T .

The Pólya cycle index polynomials Z(H, z1, . . . , zm) are very convenient for expressing
such operators; such a polynomial is connected with a permutation group H acting on an
m-element set (see Harary and Palmer [16], p. 35). For σ ∈ H let σj be the number of
j-cycles in a decomposition of σ into disjoint cycles. Then

Z(H, z1, . . . , zm) :=
1

|H|
∑

σ∈H

m∏

j=1

zj
σj .

The only groups we consider are the following:

(a) Sm is the symmetric group on m elements,

(b) Dm the dihedral group of order 2m,

(c) Cm the cyclic group of order m, and

(d) Idm the one-element identity group on m elements.

The M-restrictions of the standard operators are each of the form ∆M :=
∑

m∈M
∆m

where ∆ ∈ {MSet, DCycle, Cycle, Seq} and ∆m is given by:

operator unlabelled case operator labelled case

MSetm(T) Z
(
Sm,T(z), . . . ,T(zm)

)
M̂Setm(T) (1/m!)T(z)m

Cyclem(T) Z
(
Dm,T(z), . . . ,T(zm)

)
Ĉyclem(T) (1/2m)T(z)m

DCyclem(T) Z
(
Cm,T(z), . . . ,T(zm)

)
D̂Cyclem(T) (1/m)T(z)m

Seqm(T) Z
(
Idm,T(z), . . . ,T(zm)

)
Ŝeqm(T) T(z)m

Note that the labelled version of ∆m is just the first term of the cycle index polynomial
for the unlabelled version, and the sequence operators are the same in both cases. We
write simply MSet for MSetM if M is P, etc.

7Flajolet and Sedgewick also include Set as a standard operator, but we will not do so since, as
mentioned in the second paragraph of § 2, for a given T, the series G(z, w) associated with Set(T) may
very well not be elementary. For a discussion of mixed sign equations see § 6.
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In the labelled case the standard operators (with restrictions) are simple operators,
whereas in the unlabelled case only ∆{1} and the Seq

M
are simple. The other standard

operators in the unlabelled case are not elementary because of the presence of terms T(zj)
with j > 1 when M 6= {1}.

4.8 Examples of recursion equations

Table 1 gives the recursion equations for the generating series of several well-known classes
of trees.

Recursion Equation Class of Rooted Trees

w = z + zw chains
w = z + zSeq(w) planar
w = mz + mzSeq(w) m-flagged planar8

w = zew labelled
w = z + zMSet(w) unlabelled
w = z + zMSet{2,3}(w) unlabelled (0,2,3)-

w = z + zSeq2(w) unlabelled binary planar
w = z + zMSet2(w) unlabelled binary
w = z + zw2 labelled binary
w = z + z

(
w + MSet2(w)

)
unlabelled unary-binary

w = z + zMSetr(w) unlabelled r-regular

Table 1: Familiar examples of recursion equations

4.9 Key properties of operators

Now we give a listing of the various properties of abstract operators that are needed to
prove a universal law for recursion equations. The first question to be addressed is “Which
properties does Θ need in order to guarantee that w = Θ(w) has a solution?”

4.10 Retro operators

There is a simple natural property of an operator Θ that guarantees an equation w = Θ(w)
has a unique solution that is determined by a recursive computation of the coefficients,
namely Θ calculates, given T, the nth coefficient of Θ(T) solely on the basis of the values
of t(1), . . . , t(n − 1).

Definition 38. An operator Θ is retro if there is a sequence σ of functions such that for
B = Θ(A) one has bn = σn(a1, . . . , an−1) , where σ1 is a constant .

8m-flagged means one can attach any subset of m given flags to each vertex. This is just a colorful
way of saying that the tree structures are augmented with m-unary predicates U1, . . . , Um , and each can
hold on any subset of a tree independently of where the others hold.

the electronic journal of combinatorics 13 (2006), #R63 31



There is a strong temptation to call such Θ recursion operators since they will be used
to recursively define generating series. But without the context of a recursion equation
there is nothing recursive about bn being a function of a1, . . . , an−1 .

Lemma 39. A retro operator Θ has a unique fixpoint in DOM[z], that is, there is a
unique power series T ∈ DOM[z] such that T = Θ(T) . We can obtain T by an iterative
application of Θ to the constant power series 0:

T = lim
n→∞

Θn(0) .

If Θ is an integral retro operator then T ∈ IDOM[z].

Proof. Let σ be the sequence of functions that witness the fact that Θ is retro. If T =
Θ(T) then

t(1) = σ1

t(n) = σn

(
t(1), . . . , t(n − 1)

)
for n > 1.

Thus there is at most one possible fixpoint T of Θ; and these two equations show how to
recursively find such a T.

A simple argument shows that Θn+k(0) agrees with Θn(0) on the first n coefficients,
for all k ≥ 0 . Thus limn→∞ Θn(0) is a fixpoint, and hence the fixpoint . If Θ is also
integral then each stage Θn(0) ∈ IDOM[z], so T ∈ IDOM[z].

Thus if Θ is a retro operator then the functional equation w = Θ(w) has a unique
solution T(z). Although the end goal is to have an equation w = Θ(w) with Θ a retro
operator, for the intermediate stages it is often more desirable to work with weakly retro
operators.

Definition 40. An operator Θ is weakly retro if there is a sequence σ of functions such
that for B = Θ(A) one has bn = σn(a1, . . . , an) .

Lemma 41.

(a) The set of retro operators is closed.

(b) The set of weakly retro operators is closed and includes all elementary operators and
all restrictions of standard operators.

(c) If Θ is a weakly retro operator then zΘ and wΘ are both retro operators.

Proof. For (a), given retro operators Θ, Θ1, Θ2, a positive constant c and a power series
T D 0, we have

[zn] (cΘ)(T) = c
(
[zn] Θ(T)

)

[zn] (Θ1 + Θ2)(T) = [zn] Θ1(T) + [zn] Θ2(T)
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[zn] (Θ1Θ2)(T) =
n−1∑

j=1

[zj] Θ1(T)[zn−j]Θ2(T)

[zn] (Θ1 ◦ Θ2)(T) = σn

(
[z1]Θ2(T), . . . , [zn] Θ2(T)

)
,

where σ is the sequence of functions that witness the fact that Θ1 is a retro operator.
In each case it is clear that the value of the right side depends only on the first n − 1
coefficients of T. Thus the set of retro operators is closed.

For (b) use the same proof as in (a), after changing the initial operators to weakly
retro operators, to show that the set of weakly retro operators is closed.

For an elementary operator E(z, w) and power series T D 0 we have, after writing
E(z, w) as

∑
i≥0 Ei(z)wi,

[zn]E
(
z,T(z)

)
= [zn]

∑

j≥0

Ej(z)T(z)j

=
∑

j≥0

n∑

i=0

eij

[
zn−i

]
T(z)j.

The last expression clearly depends only on the first n coefficients of T(z). Thus all
elementary operators are weakly retro operators.

Let Z(H, z1, . . . , zm) be a cycle index polynomial. Then for T ∈ DOM[z] one has

[zn]T(zj) =

{
0 if j does not divide n

t(n/j) if j|n.

Thus the operator that maps T(z) to T(zj) is a weakly retro operator. The set of weakly
retro operators is closed, so the operator mapping T to Z

(
H,T(z), . . . ,T(zm)

)
is weakly

retro. Now every restriction ∆M of a standard operator is a (possibly infinite) sum of such
instances of cycle index polynomials; thus they are also weakly retro.

For (c) note that

[zn]
(
zΘ(T)

)
= [zn−1] Θ(T)

[zn]
(
TΘ(T)

)
=

n−1∑

j=1

tj[z
n−j] Θ(T),

and in both cases the right side depends only on t1, . . . , tn−1.

Lemma 42.

(a) An elementary operator E(z, w) =
∑

ij eijz
iwj is retro iff e01 = 0.

(b) A restriction ∆M of a standard operator ∆ is retro iff 1 /∈ M.
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Proof. For (a) let T ∈ DOM[z]. Then

[zn]E
(
z,T(z)

)
=

∑

j≥0

n∑

i=0

eij

[
zn−i

]
T(z)j,

which does not depend on t(n) iff e01 = 0.
For (b) one only has to look at the definition of the Pólya cycle index polynomials.

The property of being retro for an elementary E(z, w) is very closely related to the
necessary and sufficient conditions for an equation w = E(z, w) to give a recursive defi-
nition of a function T ∈ DOM[z] that is not 0. To see this rewrite the equation in the
form

(1 − e01)w =
(
e10z + e20z

2 + · · ·
)

+
(
e11z + · · ·

)
w + · · · .

(We know that e00 = 0 as E is elementary.) So the first restriction needed on E is that
e01 < 1.

Suppose this condition on e01 holds. Dividing through by 1 − e01 gives an equivalent
equation with no occurrence of the linear term z0w1 on the right hand side, thus leading
to the use of e01 = 0 rather than the apparently weaker condition e01 < 1.

To guarantee a nonzero solution we also need that E0(z) 6= 0, and by the recursive
construction these conditions suffice.

Now that we have a condition, being retro, to guarantee that w = Θ(w) is a recursion
equation with a unique solution w = T, the next goal is to find simple conditions on Θ
that ensure this solution will have the desired asymptotics.

4.11 Dominance between power series

It is useful to have a notation to indicate that the coefficients of one series dominate those
of another.

Definition 43. For power series A,B ∈ DOM[z] we say B dominates A , written A E

B , if aj ≤ bj for all j.
Likewise for power series G,H ∈ DOM[z, w] we say H dominates G , written G E H ,

if gij ≤ hij for all i, j.

Lemma 44. The dominance relation E is a partial ordering on DOM[z] preserved by the
arithmetical operations: for T1,T2,T ∈ DOM[z] and a constant c > 0, if T1 E T2 then

c ·T1 E c · T2

T1 + T E T2 + T

T1 · T E T2 · T
T1 ◦ T E T2 ◦ T

T ◦ T1 E T ◦ T2.

Proof. Straightforward.
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4.12 The dominance relation on the set of operators

Definition 45.

(a) For operators Θ1, Θ2 we say Θ2 dominates Θ1 , symbolically Θ1 v Θ2 , if for any
T ∈ DOM[z] one has Θ1(T) E Θ2(T) .

(b) For integral operators Θ1, Θ2 we say Θ2 dominates Θ1 , symbolically Θ1 vI Θ2 , if
for any T ∈ IDOM[z] one has Θ1(T) E Θ2(T) .

As usual we continue our discussion mentioning only the general operators when the
integral case is exactly parallel. It is straightforward to check that the dominance relation
v is a partial ordering on the set of operators which is preserved by addition, multiplica-
tion and positive scalar multiplication. Composition on the right also preserves v , that
is, for operators Θ1 vΘ2 and Θ,

Θ1 ◦ Θ v Θ2 ◦ Θ.

However composition on the left requires an additional property, monotonicity.
The bivariate E in DOM[z, w] play a dual role, on the one hand simply as power series,

and on the other as operators. Each has a notion of dominance, and they are related.

Lemma 46. For E,F ∈ DOM[z, w] we have

E E F ⇒ EvF.

Proof. Suppose E E F and let T ∈ DOM[z]. Then

[zn]E(z,T) =
∑

eij[z
n−i]T(z)j ≤

∑
fij[z

n−i]T(z)j = [zn]F(z,T),

so E(z,T) E F(z,T). As T was arbitrary, EvF.

4.13 Monotone operators

Definition 47. An operator Θ is monotone if it preserves E , that is, A E B implies
Θ(A) E Θ(B) for A,B ∈ DOM[z] .

Lemma 48. If Θ1 vΘ2 and Θ is monotone then

Θ ◦ Θ1 v Θ ◦ Θ2.

Proof. Straightforward.

Lemma 49. The set of monotone operators is closed and includes all elementary operators
and all restrictions of the standard operators.

Proof. Straightforward.
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4.14 Bounded series

Definition 50. For R > 0 let AR(z) :=
∑

n≥1 Rn zn. A series T ∈ DOM[z] is bounded
if T E AR for some R > 0.

An easy application of the Cauchy-Hadamard Theorem shows that T is bounded iff
it is analytic at 0.

The following basic facts about the series AR(z) show that the collection of bounded
series is closed under the arithmetical operations, a well known fact. Of more interest will
be the application of this to the collection of bounded operators in Section 4.17.

Lemma 51. For c, R, R1, R2 > 0

R1 ≤ R2 ⇒ AR1
E AR2

cAR E A(c+1)R

AR1
+ AR2

E AR1+R2

AR1
AR2

E AR1+R2

AR1
◦ AR2

E A2(1+R1+R2)2 .

Proof. The details are quite straightforward—we give the proofs for the last two items.

(
AR1

AR2

)
(z) =

( ∑

j≥1

R1
jzj

)
·

( ∑

j≥1

R2
jzj

)

=
∑

n≥1

∑

i+j=n
i,j≥1

(
Ri

1z
i
)
·
(
Rj

2z
j
)

=
∑

n≥1

( ∑

i+j=n
i,j≥1

R1
iR2

j
)
zn

E
∑

n≥1

(R1 + R2)
nzn = AR1+R2

(z).

For composition, letting R0 = 1 + R1 + R2:

(
AR1

◦ AR2

)
(z) E

(
AR0

◦ AR0

)
(z) =

∑

i≥1

R0
i
( ∑

j≥1

R0
jzj

)i

=
∑

i≥1

( ∑

j≥1

R0
1+jzj

)i

E
∑

i≥1

( ∑

j≥1

(R0
2z)j

)i

E
∑

n≥1

(2R0
2z)n = A2R0

2(z).
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4.15 Bounded operators

The main tool for showing that the solution w = T to w = Θ(w) has a positive radius of
convergence, which is essential to employing the methods of analysis, is to show that Θ
is bounded.

Definition 52. For R > 0 define the simple operator AR by

AR(w) =
∑

j≥1

Rj wj.

An operator Θ is bounded if
(
∃R > 0

)(
Θ(w)vAR(z + w)

)
, that is,

(
∃R > 0

) (
∀T ∈ DOM

) (
Θ(T) E AR(z + T)

)
.

Of course we will want to use integer values of R when working with integral operators.

4.16 When is an elementary operator bounded?

The properties weakly retro and monotone investigated earlier hold for all elementary
operators. This is certainly not the case with the bounded property. In this subsection
we give a simple univariate test for being bounded.

As mentioned before, any E ∈ DOM[z, w] plays a dual role in this paper, one as a
bivariate power series and the other as an elementary operator. Each of these roles has
its own definition as to what bounded means, namely:

E E AR(z + w) ⇔
(
∀i, j ≥ 1

) (
eij ≤ [zi wj]AR(z + w)

)

EvAR(z + w) ⇔
(
∀T ∈ DOM[z]

) (
E(z,T) E AR(z + T)

)
.

The two definitions are equivalent.

Lemma 53. Let E be an elementary operator.

(a) E(z, w) is bounded as an operator iff E(z, z) is bounded as a power series. Indeed

E(z, w)vAR(z + w) ⇒ E(z, z) E A2R(z) for R > 0

E(z, z) E AR(z) ⇒ E(z, w)vAR(z + w) for R > 1.

(b) The equivalence of bivariate bounded and operator bounded follows from

E(z, w) E AR(z + w) ⇒ E(z, w)vAR(z + w) for R > 0

E(z, w)vAR(z + w) ⇒ E(z, w) E A2R(z + w) for R > 1.
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Proof. For (a) suppose R > 0 and E(z, w)vAR(z + w). Since z ∈ DOM[z], we have

E(z, z) E
∑

j≥1

Rj(2z)j = A2R(z),

so E(z, z) is a bounded power series.
Conversely, suppose R > 1 and E(z, z) E AR(z). Then

E(z, z) E
∑

j≥1

Rjzj,

so for n ≥ 1
[zj]E(z, z) ≤ Rj.

Then from E(z, w) =
∑

ei,jz
iwj we have ei,j ≤ Ri+j, so

E(z, w) E
∑

i,j≥1

Ri+jziwj

E
∑

i,j≥1

Ri+j

(
i + j

i

)
ziwj

= AR(z + w).

Applying Lemma 46 gives E(z, w)vAR(z + w).
For (b) the first claim is just Lemma 46. For the second claim suppose R > 1 and

E(z, w)vAR(z + w). From the first part of (a) we have E(z, z) E A2R(z) and then from
the second part E(z, w)vA2R(z + w).

Corollary 54. Given A ∈ DOM[z], the constant operator ΘA as well as the simple
operator A(w) are bounded iff ρA > 0.

4.17 Bounded operators form a closed set

Lemma 55. The set of bounded operators is closed.

Proof. Let Θ, Θ1, Θ2 be bounded operators as witnessed by the following:
Θ(w)vAR(z + w), Θ1(w)vAR1

(z + w) and Θ2(w)vAR2
(z + w). With c > 0 we have

from Lemma 51

(
cΘ

)
(w) v cAR(z + w) v A(1+c)R(z + w)(

Θ1 + Θ2

)
(w) v AR1

(z + w) + AR2
(z + w) v AR1+R2

(z + w)(
Θ1Θ2

)
(w) v AR1

(z + w)AR2
(z + w) v AR1+R2

(z + w)(
Θ1 ◦ Θ2

)
(w) v AR1

(z + w) ◦ AR2
(z + w) v A2(1+R1+R2)2(z + w).
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Lemma 56. All restrictions of standard operators are bounded operators.

Proof. Let ∆ be a standard operator. Then for any M ⊆ P we have ∆M v∆, so it suffices
to show the standard operators are bounded. But this is evident from the well known
fact that

MSet(w) v Cycle(w) v DCycle(w)

v Seq(w) =
∑

n≥1

wn = A1(w) v A1(z + w).

So the choice of R is R = 1.

4.18 When dominance of operators gives dominance of fixpoints

This is part of proving that the solution w = T to w = Θ(w) has a positive radius of
convergence.

Lemma 57. Let Ti satisfy the recursion equation Ti = Θi(Ti) for i = 1, 2 . If the Θi

are retro operators, Θ1 v Θ2, and Θ1 or Θ2 is monotone then T1 E T2 .

Proof. Since each Θi(w) is a retro operator, by Lemma 39 we have

Ti = lim
n→∞

Θi
n(0) .

Let us use induction to show
Θ1

n(0) E Θ2
n(0)

holds for n ≥ 1 . For n = 1 this follows from the assumption that Θ2 dominates Θ1. So
suppose it holds for n. Then

Θ1
n+1(0) E Θ1

(
Θ2

n(0)
)

E Θ2
n+1(0) if Θ1 is monotone

Θ1
n+1(0) E Θ2

(
Θ1

n(0)
)

E Θ2
n+1(0) if Θ2 is monotone.

Thus T1 E T2 .

4.19 The nonzero radius lemma

To apply complex analysis methods to a solution T of a recursion equation we need T to
be analytic at 0.

Lemma 58. Let Θ be a retro operator with Θ(w) v AR(z + w). Then

Θ(w) v AR(z + w) − Rw.
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Proof. Since Θ is retro there is a sequence σn of functions such that for T ∈ DOM[z],

[zn] Θ(T) = σn

(
t1, . . . , tn−1

)
.

Let
Φ(w) :=

∑

n≥2

Rn(z + w)n,

which is easily seen to be a retro operator. Choose σ̂n such that for T ∈ DOM[z]

[zn] Φ(T) = σ̂n

(
t1, . . . , tn−1

)
.

Then, since AR(z + w) = R(z + w) + Φ(w), from the dominance of Θ(w) by AR(z + w)
we have, for any ti ≥ 0 and n ≥ 2,

σn

(
t1, . . . , tn−1

)
≤ Rtn + σ̂n

(
t1, . . . , tn−1

)
.

As the left side does not depend on tn we can put tn = 0 to deduce

σn

(
t1, . . . , tn−1

)
≤ σ̂n

(
t1, . . . , tn−1

)
,

which gives the desired conclusion.

Lemma 59. Let Θ be a bounded retro operator. Then w = Θ(w) has a unique solution
w = T, and ρT > 0.

Proof. By Lemma 39 we know there is a unique solution T. Choose R > 1 such that
Θ(w) v AR(z + w). From Lemma 58 we can change this to

Θ(w) v AR(z + w) − Rw. (22)

The right side is a monotone retro operator, so Lemma 57 says that the fixpoint S of
AR(z + w) − Rw dominates the fixpoint T of Θ(w). Let

S = AR(z + S) − RS.

To show ρT > 0 it suffices to show ρS > 0. We would like to sum the geometric series
AR

(
z + S(z)

)
; however since we do not yet know that S is analytic at z = 0 we perform

an equivalent maneuver by multiplying both sides of equation (22) by 1 − Rz − RS to
obtain the quadratic equation

(
R + R2

)
S2 +

(
R2z + Rz − 1

)
S + Rz = 0.

The discriminant of this equation is

D(z) =
(
R2z + Rz − 1

)2 − 4
(
R + R2

)
Rz.

Since D(0) = 1 is positive it follows that
√

D(z) is analytic in a neighborhood of z = 0.
Consequently S(z) has a nonzero radius of convergence.

the electronic journal of combinatorics 13 (2006), #R63 40



4.20 The set of composite operators

The sets OE and OI of operators that we eventually will exhibit as “guaranteed to give
the universal law” will be subsets of the following composite operators.

Definition 60. The composite operators are those obtained from the base operators,
namely

(a) the elementary operators E(z, w) and

(b) the M-restrictions of the standard operators: MSetM, Cycle
M
, DCycle

M
and Seq

M
,

using the variables z, w, scalar multiplication by positive reals, and the binary operations
addition (+), multiplication (·) and composition (◦).

Lemma 61. The set of composite operators is closed under the arithmetical operations
and all composite operators Θ are monotone and weakly retro.

Proof. The closure property is immediate from the definition of the set of composite
operators, the monotone property is from Lemma 49, and the weakly retro property is
from Lemma 41 (b).

An expression like z + zSeq(w) that describes how a composite operator is constructed
is called a term. Terms can be visualized as trees, for example the term just described
and the term in (4) have the trees shown in Figure 5. (A small empty box in the figure
shows where the argument below the box is to be inserted.) Composite operators are, like

.
Seq

+

z

z

w

Σ (2  +1).n n
n even

Σn odd .(6        )
n

DCycle primes

.
.+

Seq

MSet

z

z

w

(    )

w

Figure 5: Two examples of term trees

their counterparts called term functions in universal algebra and logic, valued for the fact
that one has the possibility to (1) define functions on the class by induction on terms,
and (2) one can prove facts about the class by induction on terms.

Perhaps the simplest explanation of why we like the composite operators Θ so much
is: we have a routine procedure to convert the equation w = Θ(w) into an equation
w = E(z, w) where E is elementary. This is the next topic.
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4.21 Representing a composite operator Θ at T

In order to apply analysis to the solution w = T of a recursion equation w = Θ(w) we
want to put the equation into the form w = E(z, w) with E analytic on T. The next
definition describes a natural candidate for E in the case that Θ is composite.

Definition 62. Given a base operator Θ and a T ∈ DOM[z] define an elementary operator
EΘ,T as follows:

(a) EE,T = E for E an elementary operator.

(b) For Θ = MSetM let EΘ,T =
∑

m∈M
Z

(
Sm, w,T(z2), . . . ,T(zm)

)
.

(c) For Θ = DCycle
M

let EΘ,T =
∑

m∈M
Z

(
Cm, w,T(z2), . . . ,T(zm)

)
.

(d) For Θ = Cycle
M

let EΘ,T =
∑

m∈M
Z

(
Dm, w,T(z2), . . . ,T(zm)

)
.

(e) For Θ = Seq
M

let EΘ,T =
∑

m∈M
wm.

Extend this to all composite operators using the obvious inductive definition:

EcΘ,T := cEΘ,T

EΘ1+Θ2,T := EΘ1,T + EΘ2,T

EΘ1Θ2,T := EΘ1,TEΘ2,T

EΘ1 ◦Θ2,T := EΘ1,Θ2(T)
(
z,EΘ2,T

)
.

The definition is somewhat redundant as the Seq
M

operators are included in the ele-
mentary operators.

Lemma 63. For Θ a composite operator and T ∈ DOM[z] we have

Θ(T) = EΘ,T(z,T).

We will simply say that EΘ,T represents Θ at T.

Proof. By induction on terms.

4.22 Defining linearity for composite operators

Definition 64. Let Θ be a composite operator. We say Θ is linear (in w) if the elementary
operator EΘ,z representing Θ at z is linear in w. Otherwise we say Θ is nonlinear (in w).

Lemma 65. Let Θ be a composite operator. Then the elementary operator EΘ,T(z, w)
representing Θ at T is either linear in w for all T ∈ DOM[z], or it is nonlinear in w for
all T ∈ DOM[z].

Proof. Use induction on terms.
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4.23 When T belongs to DOM?[z]

Proposition 66. Let Θ be a bounded nonlinear retro composite operator. Then there is
a unique solution w = T to w = Θ(w), and T ∈ DOM?[z], that is, ρT ∈ (0,∞) and
T(ρT) < ∞.

Proof. From Lemma 59 we know that w = Θ(w) has a unique solution T ∈ DOM[z],
and ρ := ρT > 0. Let E(z, w) be the elementary operator representing Θ at T. Then
T = E(z,T). As Θ is nonlinear there is a positive coefficient eij of E with j ≥ 2. Clearly

T(x) ≥ eijx
iT(x)j for x ≥ 0.

Divide through by T(x)2 and take the limsup of both sides as x approaches ρ− to see that
T(ρ) < ∞, and thus ρ < ∞. This shows T ∈ DOM?[z].

4.24 Composite operators that are open for T

Many examples of elementary operators enjoy the open property, but (restrictions of) the
standard operators rarely do: only the various Seq

M
and ∆{1} for ∆ any of the standard

operators.
For the standard operators other than Seq, and hence for most of the composite

operators, it is very important that we use the concept of ‘open at T’ when setting up for
the Weierstraß Preparation Theorem.

Definition 67. Let T ∈ DOM?[z]. A composite operator Θ is open for T iff EΘ,T is

open at
(
ρ,T(ρ)

)
.

The next lemma determines when the base operators are open for a given T ∈
DOM?[z].

Lemma 68. Suppose T ∈ DOM?[z] and let ρ ∈ (0,∞) be its radius of convergence. Then
the following hold:

(a) An elementary operator E is open for T iff it is open at
(
ρ,T(ρ)

)
.

(b) A constant operator ΘA(w) is open for T iff ρ < ρA.

(c) A simple operator A(w) is open for T iff T(ρ) < ρA.

(d) Seq
M

is open for T iff M is finite or T(ρ) < 1.

(e) MSetM is open for T iff M = {1} or ρ < 1.

(f) DCycle
M
, or Cycle

M
, is open for T iff M = {1} or (M is finite and ρ < 1) or (M is

infinite and ρ,T(ρ) < 1).
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Proof. For (a) note that an open operator represents itself at T. For (b) and (c) use
Lemma 36. For (d) note that Seq

M
(w) is the simple operator A(w) :=

∑
m∈M

wm, so (c)
applies.

For (e) let E := EΘ,T where Θ := MSetM. Then

E(z, w) :=
∑

m∈M

Z
(
Sm, w,T(z2), . . . ,T(zm)

)
.

If M = {1} then E(z, w) = w and (c) applies. So suppose M 6= {1}. The term T(z2)
appears in E(z, w), and this diverges at ρ+ε if ρ ≥ 1. Thus ρ < 1 is a necessary condition
for E to be open for T.

So suppose ρ < 1. The representative for MSet dominates the representative of any
MSetM. Thus for any x ∈ (0,

√
ρ) and y > 0:

E(x, y) ≤ ey exp
( ∑

m≥2

T
(
xm

)/
m

)
< ∞.

Since one can find ε > 0 such that the right hand side is finite at
(
ρ + ε,T(ρ) + ε

)
, it

follows that MSetM is open for T when ρ < 1.

For (f) let E := EΘ,T where Θ := DCycle
M

. Then

E(z, w) :=
∑

m∈M

Z
(
Cm, w,T(z2), . . . ,T(zm)

)

=
∑

m∈M

1

m
wm

︸ ︷︷ ︸
A(w)

+
∑

k≥2

ϕ(k)

k

∑

jk∈M

1

j
T(zk)j

︸ ︷︷ ︸
B(z)

.

If M = {1} then, as before, there are no further restrictions needed as E(z, w) := w.
So now suppose M 6= {1}. The presence of some T(zk) with k ≥ 2 in the expression
for E(z, w) shows, as in (e), that a necessary condition is ρ < 1. This condition implies
ρB ≥ √

ρ.
If M is finite then ρA = ∞, and ρB ≥ √

ρ, consequently E is open at
(
ρ,T(ρ)

)
.

If M is infinite then ρA = 1. Suppose E is open at
(
ρ,T(ρ)

)
. Then A

(
T(ρ) + ε

)

converges for some ε > 0, so T(ρ) < 1. The conditions ρ,T(ρ) < 1 are easily seen to be
sufficient in this case.

For the Cycle
M

case let E := EΘ,T where Θ := Cycle
M

.

Cycle
M

(
T(z)

)
=

1

2
DCycle

M

(
T(z)

)

+
1

4

∑

m∈M

{
2T(z)T(z2)(m−1)/2 if m is odd

T(z)2T(z2)(m−2)/2 + T(z2)m/2 if m is even.

Thus

E(z, w) :=
∑

m∈M

Z
(
Dm, w,T(z2), . . . ,T(zm)

)
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=
1

2

∑

m∈M

1

m
wm +

1

2

∑

k≥2

ϕ(k)

k

∑

jk∈M

1

j
T(zk)j

+
1

4

∑

m∈M

{
2wT(z2)(m−2)/2 if m is odd

w2T(z2)(m−1)/2 + T(z2)m/2 if m is even

and we can use the same arguments as for DCycle .

4.25 Closure of the composite operators that are open for T ∈
DOM?[z]

Lemma 69. Suppose T ∈ DOM?[z]. Then the following hold:

(a) The set of composite operators that are open for T is closed under addition, scalar
multiplication and multiplication.

(b) Given composite operators Θ1, Θ2 with Θ2 open for T and Θ1 open for T1 := Θ2(T),
the composition Θ1 ◦ Θ2 is open for T.

Proof. Just apply Lemma 37.

4.26 Closure of the composite integral operators that are open

for T ∈ IDOM?[z]

Definition 70. IDOM?[z] = IDOM[z] ∩ DOM?[z].

Lemma 71. Suppose T ∈ IDOM?[z]. Then the following hold:

(a) The set of integral composite operators that are open for T is closed under addition,
positive integer scalar multiplication and multiplication.

(b) Given integral composite operators Θ1, Θ2 with Θ2 open for T and Θ1 open for
T1 := Θ2(T), the composition Θ1 ◦ Θ2 is integral and open for T.

Proof. This is just a repeat of the previous proof, noting that at each stage we are dealing
with integral operators acting on IDOM[z].

4.27 A special set of operators called O
This is the penultimate step in describing the promised collection of recursion equations.

Definition 72. Let O be the set of operators that can be constructed from

(a) the bounded and open elementary operators E(z, w) and

(b) the M-restrictions of the standard operators: MSetM, Cycle
M
, DCycle

M
and Seq

M
,

where in the case of the cycle constructions we require the set M to be either finite
or to satisfy

∑
m∈M

1/m = ∞,
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using the variables z, w, scalar multiplication by positive reals, and the binary operations
addition (+), multiplication (·) and composition (◦).

Within O let OE be the set of bounded and open elementary operators; and let OI be
the closure under the arithmetical operations of the bounded and open integral elementary
operators along with the standard operators listed in (b).

Clearly O is a subset of the composite operators.

Lemma 73.

(a) Every Θ ∈ O is a bounded monotone and weakly retro operator.

(b) Each of the sets O,OE,OI is closed under the arithmetical operations.

Proof. For (a) we know from our assumption on the elementary operators in O and Lemma
56 that the base operators in O are bounded—then Lemma 55 shows that all members
of O are bounded. All members of O are monotone and weakly retro by Lemma 61.
Regarding (b), use Lemma 37 (b) for OE, and Definition 72 for the other two sets.

Lemma 74. Let Θ ∈ OI . If T ∈ IDOM∗[z] and Θ(T)(ρT) < ∞ then Θ is open for T.

Proof. Since T ∈ IDOM? we must have ρ := ρT < 1. Let

O? := {Θ ∈ OI : Θ(T)(ρ) < ∞}.

An induction proof will show that for Θ ∈ O? we have Θ open for T. The elementary base
operators of O? are given to be open, hence they are open for T. The restrictions of the
standard operators in O? are covered by parts (d)–(f) of Lemma 68, with one exception.
We need to verify in certain DCycle and Cycle cases that T(ρ) < 1. In these cases one has
M infinite, and then we must have T(ρ) < 1 in order for Θ(T) to converge at z = ρ since∑

m∈M
1/m = ∞.

For the induction step simply apply Lemma 71.

4.28 The Main Theorem

The following is our main theorem, exhibiting many Θ for which w = Θ(w) is a recursion
equation whose solution satisfies the universal law. Several examples follow the proof.

Theorem 75. Let Θ1 be a nonlinear retro member of OE, respectively OI , and let A(z) ∈
DOM[z], respectively A(z) ∈ IDOM[z], be such that A(ρA) = ∞. Then there is a unique
T ∈ DOM[z], respectively T ∈ IDOM[z], such that T = A(z) + Θ1(T). The coefficients
of T satisfy the universal law (?)(?)(?) in the form

t(n) ∼ q

√
ρEz

(
ρ,T(ρ)

)

2πEww

(
ρ,T(ρ)

) · ρ−nn−3/2 for n ≡ d mod q.

Otherwise t(n) = 0. Thus (?)(?)(?) holds on {n : t(n) > 0}. The constants d, q are from the
shift periodic form T(z) = zdV(zq).
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Proof. Let Θ(w) = A(z) + Θ1(w), by Lemma 73 a member of OE, respectively OI . By
Proposition 66 there is a unique solution w = T to w = A(z) + Θ(w) and T ∈ DOM?[z].
Let E1(z, w) = EΘ,T. Then the elementary representative E of A(z) + Θ(w) is given by

E(z, w) := A(z) + E1(z, w).

We will verify the hypotheses (a)–(e) of Theorem 28.
T = E(z,T) by Lemma 63; this is 28 (a). The fact that T ∈ DOM?[z] is 28 (b).

By Lemma 65 we get 28 (c). Since A(0) = 0 and A 6= 0 it follows that Az 6= 0. As
E(z, 0) = A(z) it follows that Ez 6= 0. This is 28 (d).

To show Θ is open for T we note that in the case of the operators coming from OE

they are given to be open elementary operators; and for the case they are coming from
OI use Lemma 74. This gives 28 (e).

4.29 Applications of the main theorem

One readily checks that all the recursion equations given in Table 1 satisfy the hypotheses
of Theorem 75. One can easily produce more complicated examples such as

w = 3z3 + z4Cycle(w) + w2DCycle(w) + MSet2(w).

Such simple cases barely scratch the surface of the possible applications of Theorem
75. Let us turn to the more dramatic example given early in (4), namely:

w = z + zMSet
(
Seq

( ∑

n∈Odd

6nwn
)) ∑

n∈Even

(2n + 1)
(
DCyclePrimes(w)

)n
.

We will analyze this from ‘the inside out’, naming the operators encountered as we work
up the term tree. First we give names to the nodes of the term tree:

Φ1 :=
∑

n∈Odd
6nwn Φ2 := DCyclePrimes(w) Φ3 := Seq

(
Φ1

)

Φ4 := MSet
(
Φ3

)
Φ5 :=

∑
n∈Even

(2n + 1)wn Φ6 := Φ5(Φ4)
A(z) := z Θ1 := zΦ4Φ6 .

Now we argue that each of these operators is in OI :

(a) Φ1 is an elementary (actually simple) integral operator with radius of convergence
1/6. Thus it is bounded. Since it diverges at its radius of convergence, it is open.
Thus Φ1 ∈ OI .

(b) Φ2 is a restriction of DCycle to the set of prime numbers; since
∑

m∈Primes
1/m = ∞

we have Φ2 ∈ OI .

(c) Φ3 is in OI as it is a composition of two operators in OI .

(d) Φ4 is in OI as it is a composition of two operators in OI .
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(e) Φ5 is an elementary (actually simple) integral operator with radius of convergence
1/2. Thus it is bounded. Since it diverges at its radius of convergence, it is open.
Thus Φ5 ∈ OI .

(f) Φ6 is in OI as it is a composition of two operators in OI .

(g) Θ1 is in OI as it is a product of two operators in OI .

(h) Θ1 is a nonlinear retro operator in OI .

Thus we have an equation w = A(z)+Θ1(w) that satisfies the hypotheses of Theorem
75; consequently the solution w = T(z) has coefficients satisfying the universal law.

4.30 Recursion specifications for planar trees

When working with either labelled trees or planar trees the recursion equations are ele-
mentary. Here is a popular example that we will examine in detail.

Example 76 (Planar Binary Trees). The defining equation is

w = z + zw2.

This simple equation can be handled directly since it is a quadratic, giving the solution

T(z) =
1 −

√
1 − 4z2

2z
.

Clearly ρ = 1/2 and for n ≥ 1 we have t(2n) = 0, and Lemma 13 gives

t(2n − 1) = (−1)n 4n

2

(
1/2

n

)
∼ 4n

2
· n−3/2

2
√

π
=

1√
π

4n−1n−3/2.

For illustrative purposes let us examine this in light of the results in this paper. Note
that

E(z, w) := z + zw2

is in the desired form A(z) + Θ1(w) with A(ρA) = ∞ and Θ1 a bounded retro nonlinear
(elementary) operator.

The constants d, q of the shift periodic form are given by:

(a) d = 1 as E0(z) = z implies E0 = {1}.

(b) q = 2 as E0 = {1}, E2 = {1}, and otherwise Ej = Ø; thus
⋃

En + (n − 1)d =
(E0 − 1) ∪ (E2 + 1) = {0, 2}, so q = gcd{0, 2} = 2.
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Thus t(n) > 0 implies n ≡ 1 mod 2, that is, n is an odd number. For the constant in the
asymptotics we have

Ez(z, w) = 1 + w2

Eww(z, w) = 2z.

In this case we know ρ = 1/2 and T(ρ) = 1 (from solving the quadratic equation), so

Ez

(
ρ,T(ρ)

)
= 2

Eww

(
ρ,T(ρ)

)
= 1.

Thus

t(n) ∼ q

√
ρEz

(
ρ,T(ρ)

)

2πEww

(
ρ,T(ρ)

) · ρ−nn−3/2

= 2

√
1

2π
· 2nn−3/2

=

√
2

π
· 2nn−3/2 for n ≡ 1 mod 2.

4.31 On the need for integral operators

Since the standard operators, and their restrictions, are defined on DOM[z] it would be
most welcome if one could unify the treatment so that the main theorem was simply a
theorem about operators on DOM[z] instead of having one part for elementary operators
on DOM[z], and another part for integral operators acting on IDOM[z]. However the
following example indicates that one has to exercise some caution when working with
standard operators that mention T(xj) for some j ≥ 2.

Let
Θ(w) :=

z

2

(
1 + MSet2(w)

)
.

This is 1/2 the operator one uses to define (0,2)-trees. This operator is clearly in O and
of the form A(z) + Θ1(w); however it is not in either OE or OI , as required by the main
theorem.

Θ is clearly retro and monotone. Usual arguments show that w = Θ(w) has a unique
solution w = T which is in DOM?, and we have

T(ρ) =
1

2
ρ +

1

4
ρT(ρ)2 +

1

4
ρT(ρ2). (23)

Since Θ(T) involves T(z2) it follows that ρ ≤ 1 (for otherwise T(ρ2) diverges).
Suppose ρ < 1. Following Pólya let us write the equation for T as w = E(z, w) where

E(z, w) :=
1

2
z +

1

4
zw2 +

1

4
zT(z2).
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Then the usual condition for the singularity ρ is 1 = Ew(ρ,T(ρ)), that is

1 =
1

4
(2ρT(ρ)) =

ρT(ρ)

2
, (24)

so ρT(ρ) = 2.
Putting T(ρ) = 2/ρ into equation (23) gives

2

ρ
=

1

2
ρ +

1

ρ
+

1

4
ρT(ρ2),

so
4 = 2ρ2 + ρ2T(ρ2).

Since T(ρ2) < T(ρ) = 2/ρ we have

4 < 2ρ2 + 2ρ,

a contradiction as ρ < 1.
Thus ρ = 1, and we cannot apply the method of Pólya since E(z, w) is not holomorphic

at
(
1,T(1)

)
.

5 Algorithmic Aspects

5.1 An algorithm for nonlinear

Given a term Φ(z, w) that describes a composite operator Θ there is a simple algorithm to
determine if Θ is nonlinear. Let us use the abbreviation ∆ for the various standard unary
operators and their restrictions as well as the elementary operators E(z, w) . We can
assume that any occurrence of a M-restriction of a standard operator ∆ in Φ is such that
M 6= {1} since if M = {1} then ∆M is just the identity operator. Given an occurrence
of a ∆ in Φ let T∆ be the full subtree of Φ rooted at the occurrence of ∆ .
An algorithm to determine if a composite Θ is nonlinear

• First we can assume that constant operators ΘA are only located at the leaves of
the tree.

• If there exists a ∆ in the tree of Φ such that a leaf w is below ∆ , where ∆ is either a
restriction of a standard operator or a nonlinear elementary B, then Θ is nonlinear.

• If there exists a node labelled with multiplication in the tree such that each of the
two branching nodes have a w on or below them then Θ is nonlinear.

• Otherwise Θ is linear in w.

Proof of the correctness of the Algorithm. (A routine induction argument on terms.)
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6 Equations w = G
(
z, w

)
with mixed sign coefficients

6.1 Problems with mixed sign coefficients

We would like to include the possibility of mixed sign coefficients in a recursion equation
w = G(z, w). The following table shows the key steps we used to prove (?)(?)(?) holds in the
nonnegative case, and the situation if we try the same steps in the mixed sign case.

G ∈ R≥0[[z, w]] G ∈ R[[z, w]]
Nonnegative G Mixed Signs G

Property Reason Reason
(∃!T) (T = G(z,T) g01 = 0 g01 = 0
ρ > 0 G is bounded G is abs. bounded
ρ < ∞ G is nonlinear in w (?)
T(ρ) < ∞ G is nonlinear in w (?)
G holomorphic in nbhd of T G(ρ + ε,T(ρ) + ε) < ∞ (?)
Gww

(
ρ,T(ρ)

)
6= 0 G is nonlinear in w (?)

Gz

(
ρ,T(ρ)

)
6= 0 G0(z) 6= 0 (?)

DomSing = {z : zq = ρq} SpecGw

(
z,T(z)

)
is nice (?)

As indicated in this table, many of the techniques that we used for the case of a
nonnegative equation do not carry over to the mixed case.

(a) To show that a unique solution w = T exists in the mixed sign case we can use
the retro property, precisely as with the nonnegative case. The condition for G ∈
R[[z, w]] to be retro is that g01 = 0.

(b) To show ρ > 0 in the nonnegative case we used the existence of an R > 0 such that
E(z,T) E AR

(
z + T

)
. In the mixed sign case we could require that G(z,T) be

absolutely dominated by AR

(
z + T

)
.

(c) To show ρ < ∞ and T(ρ) < ∞ we used the nonlinearity of E(z, w) in w. Then
T = E(z,T) implies T(x) ≥ eijx

iT(x)j for some eij > 0 with j ≥ 2. This conclusion
does not follow in the mixed sign case.

(d) After proving that T ∈ DOM?[z], to be able to invoke the theoretical machinery of
§ 2 we required that E be open at

(
ρ,T(ρ)

)
, that is,

(
∃ε > 0

) (
E

(
ρ + ε,T(ρ) + ε

)
< ∞

)
.

This shows E is holomorphic on a neighborhood of T. In the mixed sign case there
seems to be no such easy condition unless we know that

∑
ij |gij|ρiT(ρ)j < ∞.

(e) In the nonnegative case, if E is nonlinear in w then Eww does not vanish, and hence
it cannot be 0 when evaluated at

(
ρ,T(ρ)

)
. With the mixed signs case, proving

Gww

(
ρ,T(ρ)

)
6= 0 requires a fresh analysis.
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(f) A similar discussion applies to showing Gz

(
ρ,T(ρ)

)
6= 0.

(g) Finally there is the issue of locating the dominant singularities. The one condition we
have to work with is that the dominant singularities must satisfy Gw

(
z,T(z)

)
= 1.

In the nonnegative case we were able to use the analysis of the spectrum of Ew:

Spec
(
Ew

(
z,T(z)

))
=

⋃

n

En + (n − 1) � T.

This tied in with an expression for the spectrum of E
(
z,T(z)

)
. However for the

mixed case we only have

Spec
(
Ew

(
z,T(z)

))
⊆

⋃

n

En + (n − 1) � T.

In certain mixed sign equations one has a promising property, namely

Gw

(
z,T(z)

)
∈ DOM[z].

This happens with the equation for identity trees. In such a case put Gw

(
z,T(z)

)

in its pure periodic form U(zp). Then the necessary condition on the dominant
singularities z becomes simply

zp = ρp.

If one can prove p = q, as we did with elementary recursions, then the dominant
singularities are as simple as one could hope for.

There is clearly considerable work to be done to develop a theory of solutions to mixed
sign recursion equations.

6.2 The operator Set

The above considerations led us to omit the popular Set operator from our list of standard
combinatorial operators. In the equation w = z + zSet(w) for the class of identity trees
(that is, trees with only one automorphism), one can readily show that the only dominant
singularity of the solution T is ρ. But if we look at more complex equations, like

w = z + z3 + z5 + zSet
(
Set(w)MSet(w)

)
,

the difficulties of determining the locations of the dominant singularities appear substan-
tial.

Example 77. Consider the restrictions of the Set operator

SetM(T) =
∑

m∈M

Setm(T), where

Setm(T) = Z
(
Sm,T(z),−T(z2), . . . , (−1)m+1T(zm)

)
.
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Thus in particular

Set2(T) =
1

2

(
T(z)2 − T(z2)

)
.

The recursion equation
w = z + Set2(w)

exhibits different behavior than what has been seen so far since the solution is T(z) = z,
which is not a proper infinite series. The solution certainly does not have coefficients
satisfying the universal law, nor does it have a finite radius of convergence that played
such an important role.

We can modify this equation slightly to obtain a more interesting solution, namely let

Θ(w) = z + z2 + Set2(w).

Then Θ is integral retro, and the unique solution w = T to w = Θ(w) is

T(z) = z + z2 + z3 + z4 + 2z5 + 3z6 + 6z7 + 11z8 + · · ·

with t(n) ≥ 1 for n ≥ 1. Consequently we have the radius of convergence

ρ := ρT ∈ [0, 1]. (25)

We will give a detailed proof that T has coefficients satisfying the universal law, to hint
at the added difficulties that might occur in trying to add Set to our standard operators.

Let

Θ1(w) = z + z2 +
1

2
w2

a bounded open nonlinear retro elementary operator, hence an operator in OE to which
the Main Theorem applies. For A ∈ IDOM note that Θ(A) E Θ1(A), so we can use the
monotonicity of Θ1 to argue that Θn(0) E Θ1

n(0) for all n ≥ 1. Thus T is dominated by
the solution S to w = Θ1(w). At this point we know that ρT ≥ ρS > 0.

Since ρ ∈ (0, 1] we have T(x2) < T(x) for x ∈ (0, ρ). Thus for x ∈ (0, ρ)

T(x) > x + x2 +
1

2

(
T(x)2 − T(x)

)
,

or
3

2
T(x) > x + x2 +

1

2
T(x)2.

Thus T(x) cannot approach ∞ as x → ρ−. Consequently T(ρ) < ∞, and then we must
also have ρ < 1. By defining

G(z, w) := z + z2 +
1

2

(
w2 − T(z2)

)

=
1

2
w2 + z +

1

2
z2 − 1

2
z4 − 1

2
z6 − · · · ,

we have the recursion equation w = G(z, w) satisfied by w = T, and G(z, w) has mixed
signs of coefficients.
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As ρ < 1 we know that G(z, w) is holomorphic in a neighborhood of the graph of T,
so a necessary condition for z to be a dominant singularity is that Gw

(
z,T(z)

)
= 1, that

is T(z) = 1. Since T is aperiodic, this tells us we have a unique dominant singularity,
namely z = ρ, and we have T(ρ) = 1.

Differentiating the equation

T(z) = z + z2 +
1

2
T(z)2 − 1

2
T(z2)

gives
T′(z) = 1 + 2z + T(z)T′(z) − zT′(z2)

or equivalently

(
1 − T(z)

)
T′(z) = (1 + 2z) − zT′(z2) for |z| < ρ.

Since ρ < 1 we know that

lim
z→ρ
|z|<ρ

(
(1 + 2z) − zT′(z2)

)
= (1 + 2ρ) − ρT′(ρ2).

Let λ be this limiting value. Consequently

lim
z→ρ
|z|<ρ

(
1 − T(z)

)
T′(z) = λ. (26)

By considering the limit along the real axis, as x → ρ−, we see that λ ≥ 0, so

(1 + 2ρ) − ρT′(ρ2) = λ ≥ 0.

Let

F(z, w) := w −
(
z + z2 +

1

2
w2 − 1

2
T(z2)

)
.

Then
Fz(z, w) = −

(
1 + 2z − zT′(z2)

)
= zT′(z2) − (1 + 2z),

so
Fz

(
ρ,T(ρ)

)
= ρT′(ρ2) − (1 + 2ρ) = −λ.

If λ > 0 then Fz

(
ρ,T(ρ)

)
< 0; and since Fww = −2 we have

Fz

(
ρ,T(ρ)

)
Fww

(
ρ,T(ρ)

)
> 0.

This means we have all the hypotheses needed to apply Proposition 11 to get the square
root asymptotics which lead to the universal law for T.

To conclude that we indeed have the universal law we will show that λ > 0. Let
α ∈ [ρ, 1]. Then for x ∈ (0, ρ) we have T(x2) ≤ αT(x), and thus for x ∈ (0, ρ)

T(x) > x + x2 +
1

2

(
T(x)2 − αT(x)

)
.
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Let

U(x) = x + x2 +
1

2

(
U(x)2 − αU(x)

)
.

Then

U(x) =
1

2

(
(2 + α) −

√
(2 + α)2 − 8(x + x2)

)

ρU = −1

2
+

1

4

√
4 + 2(2 + α)2.

Now for x ∈ I := (0, min(ρ, ρU))

(2 + α)T(x) − T(x)2 > (2 + α)U(x) − U(x)2

so
U(x)2 − T(x)2 > (2 + α)

(
U(x) − T(x)

)
.

Thus U(x) 6= T(x) for x ∈ I. If U(x) > T(x) on I then

U(x) + T(x) > 2 + α for x ∈ I.

But this is impossible since on I we have

U(x) < U(ρU) = 1 + α/2

T(x) < T(ρ) = 1.

Thus we have
U(x) < T(x) on I.

If ρU ≤ ρ then U(ρU ) ≤ T(ρU), which is also impossible. Thus

ρ < ρU.

Now define a function f on [ρ, 1] that maps α ∈ [ρ, 1] to ρU as given in the preceding
lines, that is:

f(α) = (−1/2) + (1/4)
√

4 + 2(2 + α)2.

Then α ∈ [ρ, 1] implies f(α) ∈ (ρ, 1]. Calculation gives f 3(1) = 0.536 . . ., so

ρ < 0.54

Since ρS =
(√

3 − 1
)
/2 = 0.366 . . . we have ρ2 < ρS, and then

T′(ρ2) < S′(ρ2),

so
−λ = ρT′(ρ2) − (1 + 2ρ) < ρS′(ρ2) − (1 + 2ρ) < 0

since xS′(x2)− (1+2x) < 0 for x ∈ (0, 0.55). This proves λ > 0, and hence the universal
law holds for the coefficients of T.

This example shows that the generating function T∗ for the class of identity (0,1,2)-
trees satisfies the universal law. We have T∗ defined by the equation w = z+z∗Set{1,2}(w),
and it turns out that t∗n = tn+1. (We discovered this connection with T∗ when looking for
the first few coefficients of T in the On-Line Encyclopedia of Integer Sequences.)
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Example 78. In the 20 Steps paper of Harary, Robinson and Schwenk [17] the asymp-
totics for the class of identity trees (those with no nontrivial automorphism) was success-
fully analyzed by first showing that the associated recursion equation

w = z + zSet(w)

has a unique solution w = T ∈ DOM?[z]. Then

G(z, w) := z + zew · exp
( ∑

m≥2

(−1)m+1T(zm)/m
)

is holomorphic in a neighborhood of the graph of T. One has

z + Gw(z, w) = G(z, w),

so the necessary condition Gw

(
z,T(z)

)
= 1 for a dominant singularity is just the condition

T(z) = 1+z. ρ is the only solution of this equation on the circle of convergence as T−z D 0
and is aperiodic. Consequently the only dominant singularity is z = ρ.

The equation for identity trees is of mixed signs. From

T(z) = z
∏

j≥1

(
1 + zj

)tj (27)

we can calculate the first few values of t(n) for identity trees:9

t(1) t(2) t(3) t(4) t(5) t(6) t(7) t(8) t(9) t(10)
1 1 1 2 3 6 12 25 52 113

Returning to the definition of G we have

G(z, w) = z + zew
∑

n≥0

( ∑

m≥2

(−1)m+1
(
t(1)zm + t(2)z2m + · · · )

/
m

)n/
n!

= z + zew
∑

n≥0

(
−

(
z2 + z4 + · · · )

/
2 +

(
z3 + z6 + · · · )

/
3

−
(
z4 + z8 + · · · )

/
4
)n/

n!

= z + zew
∑

n≥0

(
− z2/2 + z3/3 − 3z4/4 + · · ·

)n/
n!

= z + zew
(
1 − z2/2 + z3/3 − 5z4/8 + · · ·

)
.

Thus for some of the ziwj the coefficients are positive, and some are negative; G(z, w) is
a mixed sign operator.

9One can also look up sequence number A004111 in the On-Line Encyclopedia of Integer Sequences.
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If one were to form more complex operators Θ by adding the operator Set and its
restrictions SetM to our set of Standard Operators, then there is some hope for proving
that one always has the universal law holding for the solution to w = Θ(w), provided one
has a solution that is not a polynomial.

The hope stems from the fact that although the G(z, w) associated with Θ may have
mixed sign coefficients, when it comes to the condition Gw

(
z,T(z)

)
= 1 on the dominant

singularities we have the good fortune that Gw

(
z,T(z)

)
D 0, that is, it expands into a

series with nonnegative coefficients. The reason is quite simple, namely using the bivariate
generating function we have

Setm(T) = [um] exp
( ∑

n≥1

(−1)n−1unT(xn)/n
)
.

Letting Gm(z, w) be Zm

(
Sm, w,−T(z2), . . . , (−1)m+1T(zm)

)
we have

Gm(z, w) = [um] euw · exp
( ∑

n≥2

(−1)n−1unT(xn)/n
)
,

thus

∂Gm

∂w
=

∂

∂w
[um] euw · exp

( ∑

n≥2

(−1)n−1unT(xn)/n
)

= [um] ueuw · exp
( ∑

n≥2

(−1)n−1unT(xn)/n
)

= [um−1] euw · exp
( ∑

n≥2

(−1)n−1unT(xn)/n
)

= Gm−1(z, w).

Consequently if we put Gw

(
z,T(z)

)
into its pure periodic form U(zp) then we have

the necessary condition zp = ρp on the dominant singularities z. Letting zdV(zq) be
the shift periodic form of T(z) it follows that q

∣∣p. If we can show that p = q then
DomSing = {z : zq = ρq}, which is as simple as possible. Indeed this has been the case
with the few examples we have worked out by hand.

7 Comments on Background Literature

Two important sources offer global views on finding asymptotics.

7.1 The “20 Step algorithm” of [17]

This 1975 paper by Harary, Robinson and Schwenk is in good part a heuristic for how
to apply Pólya’s method10, and in places the explanations show an affinity for operators

10The paper also has a proof that the generating function for the class of identity trees (defined by
w = z + zSet(w)) satisfies the universal law.
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close to the original ones studied by Pólya. For example it says that G(z, w) should be
analytic for |z| <

√
ρT and |w| < ∞. This strong condition on w fails for most of the

simple classes studied by Meir and Moon, and hence for the setting of this paper.
The algorithm of 20 Steps also discusses how to find asymptotics for the class of free

trees obtained from a rooted class defined by recursion. Given a class T of rooted trees
let U be the associated class of free (unrooted) trees, that is, the members of U are the
same as the members of T except that the designation of an element as the root has been
removed. Let the corresponding generating series11 be T(z) and U(z).

The initial assumptions are only two: that T is not a polynomial and it is aperiodic.
Step 2 of the 20 steps is: express U(z) in terms of T(z) and T(z2). 20 Steps says that
Otter’s dissimilarity characteristic can usually be applied to achieve this. Step 20 is to
deduce that u(n) ∼ Cρ−nn−5/2.

This outline suggests that it is widely possible to find the asymptotics of the coefficients
u(n), and evidently this gives a second universal law involving the exponent −5/2 instead
of the −3/2. Our investigations suggest that determining the growth rate of the associated
classes of free trees will be quite challenging.

Suppose T is a class of rooted trees for which the Pólya style analysis has been suc-
cessful, that we have found the radius of convergence ρ ∈ (0, 1), that T(ρ) < ∞, and
that t(n) ∼ Cρ−nn−3/2. What can we say about the generating function U(z) for the
corresponding class of free trees?

Since we have the inequality t(n)/n ≤ u(n) ≤ t(n) (note that one has only n ways
to choose the root in a free tree of size n), it follows by the Cauchy-Hadamard Theorem
that U(z) has the same radius of convergence ρ as T(z). From this and the asymptotics
for t(n) it also follows that one can find C1, C2 > 0 such that for n ≥ 1

C1ρ
−nn−5/2 ≤ u(n) ≤ C2ρ

−nn−3/2.

Thus u(n) is sandwiched between a −5/2 expression and a −3/2 expression. In the case
that T is the class of all rooted trees, Otter [24] showed that

U(z) = z
(
T(z) − Set2(T)

)
= z

(
T(z) − 1

2

(
T(z)2 − T(z2)

))
,

and from this he was able to find the asymptotics for u(n) with a −5/2 exponent.
However let T be the class of rooted trees such that every node has either 2 or 5

descending branches. The recursion equation for T(z) is

T(z) = z + z
(
MSet2(T) + MSet5(T)

)
,

and T(z) is aperiodic. By Theorem 75 we know that the coefficients of T(z) satisfy the
universal law

t(n) ∼ Cρ−nn−3/2.

1120 Steps uses t(n) to denote the number of rooted trees in T on n + 1 points, whereas u(n) denotes
the number of free trees in U on n points. We will let t(n) denote the number of free trees in T on n
points, as we have done before, since this will have no material effect on the efficacy of the 20 Steps.
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Let U be the corresponding set of free trees. Note that when one converts a rooted
tree T in T to a free tree F , a root with 2 descending branches will give a node of degree
2 in F , and a root with 5 descending branches will give a node of degree 5 in F . Any
non root node with 2 descending branches will give a node of degree 3 in F ; and any non
root node with 5 descending branches will give a node of degree 6 in F . Thus F will have
exactly one node of degree 2 or degree 3, and not both, so one can identify the node that
corresponds to the root of T . This means that there is a bijection between the rooted
trees on n vertices in T and the free trees on n vertices in U . Consequently t(n) = u(n),
and thus

u(n) ∼ Cρ−nn−3/2.

Clearly u(n) cannot also satisfy a −5/2 law. Such examples are easy to produce.
Thus it is not clear to what extent the program of 20 Steps can be carried through for

free trees. It seems that free trees are rarely defined by a single recursion equation, and it
is doubtful if there is always a recursive relationship between U(z) and T(z),T(z2), . . ..
Furthermore it is not clear what the possible asymptotics for the u(n) could look like—is
it possible that one will always have either a −3/2 or a −5/2 law? Since a class U derived
from a T which has a nice recursive specification can be defined by a monadic second
order sentence, there is hope that the u(n) will obey a reasonable asymptotic law. (See
Q5 in § 8.)

In 20 Steps consideration is also given to techniques for calculating the radius of
convergence ρ of T and the constant C that appears in the asymptotic formula for the
t(n) . In this regard the reader should consult the paper of Plotkin and Rosenthal [25] as
there are evidently some numerical errors in the constants calculated in 20 Steps.

7.2 Meir and Moon’s global approach

In 1978 Meir and Moon [20] considered classes T of trees with generating functions T(z) =∑
n≥1 t(n)zn such that

(1) t(1) = 1 ;

(2) T can be obtained by taking certain forests of trees from T and adding
a root to each one (this choice of certain forests is evidently a ‘construc-
tion’);

(3) this ‘construction’ and ‘conditions implicit in the definition’ of T give rise
to a ‘recurrence relation’ for the t(n) , evidently a sequence σ of functions
σn such that t(n) = σn

(
t(1), . . . , t(n − 1)

)
;

(4) there is an ‘operator’ Γ , acting on (possibly infinite) sequences of power
series, such that the recurrence relation for the t(n) ‘can be expressed
in terms of generating series’, for example T(z) = Γ

(
T(z),T(z2), . . .

)
,

which is abbreviated to T(z) = Γ{T(z)} .
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This is the most penetrating presentation we have seen of a foundation for recursively
defined classes of trees, a goal that we find most fascinating since to prove global results
one needs a global setting. However their conditions have limitations that we want to
point out.

(1) requires t(1) = 1, so there is only one object of size 1; this means multicolored
trees are ruled out. (2) indicates that one is using a specification12 like T = {•} ∪
•
/
Seq

M
(T ) . The recurrence relation in (3) is the one item that seems to be appropriately

general. It corresponds to what we call ‘retro’. (4) is too vague; after all, a function
of

(
T(z),T(z2), . . .

)
is really just a function of T(z) since T(z) completely determines

all the T(zk). This formulation is surely motivated by the desire to include the MSet
construction; perhaps the authors were thinking of ‘natural’ functions of these arguments
like

∑
n≥1 T(zn)/n ; or perhaps something of an effective nature, an algorithm.

After this general discussion, without any attempt to prove theorems in this context,
they turn the focus to simple classes T of rooted trees, namely simple classes are those
for which

(M1) the generating series T(z) is defined by a ‘simple’ recursion equation

w = zA(w) ,

where A ∈ R≥0[[z]] with A(0) = 1 .

Additional conditions13 are needed to prove their theorems, namely

(M2) A(w) is analytic at 0,

(M3) gcd{n ∈ P : a(n) > 0} = 1 ,

(M4) A(w) is not a linear polynomial aw + b , and

(M5) A(w) = wA′(w) has a positive solution y < ρA

to guarantee that the methods of Pólya apply to give the asymptotic form (?)(?)(?) . (M2)
makes T(z) analytic at 0, (M3) ensures that T(z) is aperiodic, (M4) leads to ρT < ∞
and T(ρT) < ∞ , and (M5) shows F(z, w) := w − zA(w) = 0 is holomorphic in a
neighborhood of

(
ρT,T(ρT)

)
.

Thanks to the restriction to recursion identities based on simple operators they are
able to employ the more powerful condition (M5) instead of our condition A(ρA) = ∞ .
Our condition is easier to use in practice, and it covers the two examples frequently cited
by Meir and Moon, namely planar trees with A(w) =

∑
n≥0 wn and planar binary trees

with A(w) = 1+w2 . For the simple recursion equations one can replace our A(ρA) = ∞
by the condition A′(ρA) = ∞.

12We have not needed a specification language so far in this paper—for this comment it is useful. Let
• denote the tree with one node, and •

/
� says to add a root to any forest in � .

13Their original 1978 conditions had a minor restriction, that a(1) > 0. That was soon replaced by the
condition (M3)—see for example [22].
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8 Open Problems

(Q1) If T = E(z,T) with E ∈ DOM[z, w] and T(z) has the shift periodic form zdV(zq)
then one can use the spectrum calculus to show there is an H ∈ DOM[z, w] such
that V(z) = H

(
z,V(z)

)
. If E is open at

(
ρT,T(ρT)

)
does it follow that H is open

at
(
ρV,V(ρV)

)
?

If so one would have an easy way of reducing the multi-singularity case of T to the
unique singularity case of V. As mentioned in § 2.12, we were not able to prove
this, but instead needed an additional hypothesis on E. Partly in order to avoid
this extra hypothesis we used a detailed singularity analysis approach.

(Q2) Determine whether or not the SetM operators can be adjoined to the standard op-
erators used in this paper and still have the universal law hold. (See § 6.2.)

A simple and interesting case to consider is that of identity (0,1,...,m)-trees with
generating function T defined by w = z+zSet{1,...,m}(w). Does T satisfy the univer-
sal law? Example 78 shows the answer is yes for m = 2, but it seems the question
is open for any m ≥ 3.

(Q3) Expand the theory to handle recursion equations w = G(z, w) with G having mixed
sign coefficients.

(Q4) Find large collections of classes satisfying the universal law (or any other law) that
are recursively defined by systems of equations

(∗∗)
w1 = Θ1

(
w1, . . . , wk

)
...

wk = Θk

(
w1, . . . , wk

)
,

where the Θi are multivariate operators.

Classes defined by specifications using the standard operators that correspond to
such a system of equations are called constructible classes by Flajolet and Sedgewick;
the asymptotics of the case that the operators are polynomial has been studied in
[15], Chapter VII, provided the dependency digraph has a single strong component,
and shown to satisfy the universal law (?)(?)(?).

(Q5) The study of systems (∗∗) is of particular interest to those investigating the behavior
of monadic second order definable classes T since every such class is a finite disjoint
union of some of the Ti defined by such a system (see Woods [30]). In brief, Woods
proved: every MSO class of trees with the same radius as the whole class of trees
satisfies the universal law. However his results seem to give very little for the MSO
classes of smaller radius beyond the fact that they have smaller radius. Here is a
plausible direction:

If T is a class of trees defined by a MSO sentence, does it follow that T decomposes
into finitely many Ti such that each satisfies a nice law on its support?
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(Q6) Among the MSO classes of trees perhaps the best known are the exclusion classes
T = Excl(T1, . . . , Tn), defined by saying that certain trees T1, . . . , Tn are not to
appear as induced subtrees. The Ti are called forbidden trees . A good example is
‘trees of height n’, defined by excluding a chain of height n + 1 ; or unary-binary
trees defined by excluding the four-element tree of height 1.

Even restricting one’s attention to the collection of classes T = Excl(T ) defined by
excluding a single tree offers considerable challenges to the development of a global
theory of enumeration.

Which of these classes are defined by recursion? Which of these obey the universal
law? Given two trees T1, T2 , which of Excl(T1), Excl(T2) has the greater radius (for
its generating series)?

From Schwenk [27] (1973) we know that if one excludes any limb from the class of
trees then the radius of the resulting class is larger than what one started with. Much
later, in 1997, Woods [30] rediscovered a part of Schwenk’s result in the context of
logical limit laws; this can be used to quickly show that the class of free trees has a
monadic second order 0–1 law. Aaron Tikuisis, an undergraduate at the University
of Waterloo, has determined which Excl(T ) have radius < 1.

(Q7) Find a method to determine the asymptotics of a class U of free trees obtained from
a recursively defined class T of rooted trees. (See § 7.1.)
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[26] G. Pólya and R.C. Read, Combinatorial enumeration of groups, graphs and chemical
compounds. Springer Verlag, New York, 1987.

the electronic journal of combinatorics 13 (2006), #R63 63



[27] Allen J. Schwenk, Almost all trees are cospectral. in New Directions in the Theory of
Graphs (Frank Harary, ed.), Academic Press, New York, 1973, pp. 275-307.

[28] E.C. Titchmarsh, The Theory of Functions. Oxford University Press, 1939. 2nd Ed.

[29] Herbert S. Wilf, Generatingfunctionology. 2nd ed., Academic Press, Inc., 1994.

[30] Alan R. Woods, Coloring rules for finite trees, probabilities of monadic second order
sentences. Random Structures Algorithms 10 (1997), 453–485.

the electronic journal of combinatorics 13 (2006), #R63 64


