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Abstract

Let Sm,n be the graph on the vertex set Zm×Zn in which there is an edge between
(a, b) and (c, d) if and only if either (a, b) = (c, d ± 1) or (a, b) = (c ± 1, d) modulo
(m,n). We present a formula for the Euler characteristic of the simplicial complex
Σm,n of independent sets in Sm,n. In particular, we show that the unreduced Euler
characteristic of Σm,n vanishes whenever m and n are coprime, thereby settling
a conjecture in statistical mechanics due to Fendley, Schoutens and van Eerten.
For general m and n, we relate the Euler characteristic of Σm,n to certain periodic
rhombus tilings of the plane. Using this correspondence, we settle another conjecture
due to Fendley et al., which states that all roots of det(xI − Tm) are roots of unity,
where Tm is a certain transfer matrix associated to {Σm,n : n ≥ 1}. In the language
of statistical mechanics, the reduced Euler characteristic of Σm,n coincides with
minus the partition function of the corresponding hard square model with activity
−1.

1 Introduction

An independent set in a simple and loopless graph G is a subset of the vertex set of G with
the property that no two vertices in the subset are adjacent. The family of independent
sets in G forms a simplicial complex, the independence complex Σ(G) of G.

The purpose of this paper is to analyze the independence complex of square grids with
periodic boundary conditions. Specifically, define Sm,n to be the graph with vertex set
Zm×Zn and with an edge between (a, b) and (c, d) if and only if either (a, b) = (c, d±1) or
(a, b) = (c± 1, d) (computations carried out modulo (m,n)). Defining Lm,n := mZ × nZ,
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we may identify the vertex set of Sm,n with the quotient group Z
2/Lm,n. In particular,

we may refer to vertices of Sm,n as cosets of Lm,n in Z
2.

To avoid misconceptions, we state already at this point that we label elements in Z
2

according to the matrix convention; (i, j) is the element in the ith row below row 0 and
the jth column to the right of column 0.

Figure 1: Configuration of hard squares invariant under translation with the vectors (4, 0)
and (0, 5). The corresponding member of Σ4,5 is the set of cosets of L4,5 containing the
square centers.

Properties of Σm,n := Σ(Sm,n) were discussed by Fendley, Schoutens, and van Eerten
[4] in the context of the “hard square model” in statistical mechanics. This model deals
with configurations of non-overlapping (“hard”) squares in R

2 such that the four corners of
any square in the configuration coincide with the four neighbors (x, y±1) and (x±1, y) of
a lattice point (x, y) ∈ Z

2. Identifying each such square with its center (x, y), one obtains
a bijection between members of the complex Σm,n and hard square configurations that
are invariant under the translation maps (x, y) 7→ (x+m, y) and (x, y) 7→ (x, y + n). See
Figure 1 for an example.

1.1 The conjectures of Fendley et al.

Let ∆ be a family of subsets of a finite set. Borrowing terminology from statistical
mechanics, we define the partition function Z(∆; z) of ∆ as

Z(∆; z) :=
∑
σ∈∆

z|σ|.

Observe that the coefficient of zk in Z(∆; z) is the number of sets in ∆ of size k. In
particular, if ∆ is a simplicial complex, then −Z(∆;−1) coincides with the reduced Euler
characteristic of ∆. Write Z(∆) := Z(∆;−1).

Conjecture 1 (Fendley et al. [4]). If gcd(m,n) = 1, then Z(Σm,n) = 1.

Note that the conjecture is equivalent to saying that the unreduced Euler characteristic
χ(Σm,n) := −Z(Σm,n) + 1 vanishes. One of the main results of this paper is a proof of
Conjecture 1; see Theorems 1.1 and 2.7 below.
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A second conjecture due to Fendley et al. relates to the transfer matrix Tm(z) of the
hard square model for any fixed m ≥ 1. The rows and columns of Tm(z) are indexed by
all subsets of Zm avoiding pairs (i, j) satisfying j − i ≡ ±1 (mod m). Equivalently, these
subsets form the independence complex of the cycle graph Cm with vertex set Zm and
edge set {{i, i+ 1} : i ∈ Zm}. The element on position (σ, τ) in Tm(z) is defined to be

tσ,τ (z) :=

{
z|σ| if σ ∩ τ = ∅
0 if σ ∩ τ 6= ∅.

It is a straightforward exercise to prove that

Tr ((Tm(z))n) = Z(Σm,n; z).

In particular, Tr((Tm(−1))n) = Z(Σm,n). Let Pm(t) be the characteristic polynomial of
Tm(−1); hence Pm(t) := det(tI − Tm(−1)).

Conjecture 2 (Fendley et al. [4]). For every m ≥ 1, all roots of Pm(t) are roots of
unity. Specifically, Pm(t) is a product consisting of the linear polynomial t − 1 and a
number of factors of the form ts ± 1 such that gcd(m, s) 6= 1.

Another of the main results of this paper is a proof of Conjecture 2; see Theorem 3.4
below.

1.2 Balanced rhombus tilings

Our proofs of Conjectures 1 and 2 are based on a concrete formula for Z(Σm,n) in terms of
certain rhombus tilings of the plane; see Theorem 1.1 below. The kind of rhombus tiling
that we are interested in has the following properties:

• The entire plane is tiled.

• The intersection of two rhombi is either empty, a common corner, or a common side.

• The four corners of each rhombus belong to Z
2.

• Each rhombus has side length
√

5, meaning that each side is parallel to and has the
same length as (1, 2), (−1, 2), (2, 1), or (−2, 1).

Most rhombus tilings in the literature are built from rhombi with completely different
measures; the acute angle in the rhombi is typically 60 degrees (in the case of hexagon
tilings) or 36 or 72 degrees (in the case of Penrose tilings). For more information and
further references, see Fulmek and Krattenthaler [6, 7] in the former case and Penrose
[10] and de Bruijn [2] in the latter case. As far as we know, our tilings have very little, if
anything, in common with these tilings.

One easily checks that a rhombus tiling with properties as above is uniquely determined
by the set of rhombus corners in the tiling. From now on, we always identify a rhombus
tiling with this set.
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3-rhombi 4-rhombi 5-rhombi

Figure 2: Six different rhombi.

Figure 3: Portion of a balanced rhombus tiling.

We refer to a rhombus of area k as a k-rhombus. There are six kinds of rhombi in which
all corners are integer points and all sides have length

√
5: two 3-rhombi, two 4-rhombi,

and two 5-rhombi; see Figure 2. Note that the 5-rhombi are squares. We will restrict our
attention to tilings of the plane with 4- and 5-rhombi (i.e., the four rightmost rhombi in
Figure 2); see Figure 3 for an example. Such rhombi have the property that if we divide
them into four pieces via a horizontal and a vertical cut through the center, then the four
resulting pieces all have the same size and shape (up to rotation and reflection). For this
reason, we refer to tilings with only 4- and 5-rhombi as balanced. Further rationale for
this terminology is given in Proposition 2.1.

1.3 Relating Σm,n to balanced rhombus tilings

A rhombus tiling ρ is (m,n)-invariant if ρ is invariant under translation with the vectors
(m, 0) and (0, n). Let Rm,n be the family of balanced (m,n)-invariant rhombus tilings.
Each (m,n)-invariant rhombus tiling is a union of cosets of Lm,n; recall that we identify
a given tiling with its set of corners. We define R+

m,n as the subfamily of Rm,n consisting
of all rhombus tilings with an even number of cosets of Lm,n. Write R−

m,n := Rm,n \R+
m,n.

For d ∈ Z, define

θd :=

{
2 if 3|d;
−1 otherwise.

(1)

The following theorem provides a concrete formula for Z(Σm,n) in terms of balanced
rhombus tilings.
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Theorem 1.1. For every m,n ≥ 1, we have that

Z(Σm,n) = −(−1)dθ2
d + |R+

m,n| − |R−
m,n|,

where d = gcd(m,n).

=

Figure 4: Translating the above rhombus tiling in all possible ways, we obtain 40 balanced
(8, 10)-invariant rhombus tilings. We get another four tilings with the same property by
tiling the plane with the diamond rhombus, i.e., the dark rhombus in the very middle of
the magnified picture on the right.

For example, Z(Σ8,10) = 43, as there are 44 tilings in R8,10, each being the union of
an even number of cosets of L8,10; see Figure 4.

Remark. We express the value −(−1)dθ2
d in the way we do for alignment with Theorem 1.2

below.

See Section 5 for a proof of Theorem 1.1. In Section 3, we settle Conjecture 1 by proving
that Rm,n is empty whenever gcd(m,n) = 1; see Theorem 2.7. Analyzing R+

m,n and R−
m,n

in greater detail, showing that they satisfy certain nice enumerative properties, we also
settle Conjecture 2; see Theorem 3.4. What we obtain is a formula for the characteristic
polynomial Pm(t) in terms of rhombus tilings.

1.4 A generalization

When proving Theorem 1.1, we will consider a slightly more general situation. Let S be
the infinite two-dimensional square grid; S is the infinite graph on the vertex set Z

2 in
which there is an edge between (a1, a2) and (b1, b2) if and only if |a1 − b1|+ |a2 − b2| = 1.

Throughout this paper, u := (u1, u2) and v := (v1, v2) are two linearly independent
vectors in Z

2. The canonical special case is u = (m, 0) and v = (0, n). Let 〈u, v〉 be the
subgroup of Z

2 generated by u and v. We consider the finite graph Su,v on the vertex set
Vu,v := Z

2/〈u, v〉 induced by the canonical map ϕu,v : Z
2 → Vu,v; two vertices w1 and w2

are adjacent in Su,v if and only if there are adjacent vertices w′
1 and w′

2 in S such that

the electronic journal of combinatorics 13 (2006), #R67 5



ϕu,v(w
′
1) = w1 and ϕu,v(w

′
2) = w2. Note that the size of Vu,v equals the absolute value

|u1v2 − u2v1| of the determinant of the matrix with columns u and v. Moreover, observe
that Su,v = Sm,n when u = (m, 0) and v = (0, n).

We refer to a rhombus tiling as 〈u, v〉-invariant if the tiling is invariant under the
translation x 7→ x + w for every w ∈ 〈u, v〉. Of course, this is equivalent to the tiling
being invariant under the two translations x 7→ x + u and x 7→ x + v. Define Ru,v to
be the family of balanced 〈u, v〉-invariant rhombus tilings. Let R+

u,v be the subfamily of
Ru,v consisting of those rhombus tilings with an even number of cosets of 〈u, v〉 and write
R−
u,v := Ru,v \R+

u,v.
Write Σu,v := Σ(Su,v). Our generalization of Theorem 1.1 reads as follows:

Theorem 1.2. Write d := gcd(u1 − u2, v1 − v2) and d∗ := gcd(u1 + u2, v1 + v2). Then

Z(Σu,v) = −(−1)dθdθd∗ + |R+
u,v| − |R−

u,v|,
where θd is defined as in (1) in Section 1.3.

Since d = d∗ if u = (m, 0) and v = (0, n), Theorem 1.2 implies Theorem 1.1. Note
that the expression (−1)dθdθd∗ is symmetric in d and d∗; d is even if and only if d∗ is even.

Our analysis of the partition function of Σu,v does not seem to provide much insight
into the homology of the complex. Nevertheless, it turns out [8] that one may exploit
the nice structure of balanced rhombus tilings to detect nonvanishing free homology in
dimension k−1 whenever there are balanced 〈u, v〉-invariant rhombus tilings with exactly
k cosets of 〈u, v〉.

Organization of the paper

We deal with periodic and balanced rhombus tilings in Section 2, proving that such
tilings satisfy certain nice properties. Section 3 is devoted to settling Conjectures 1 and 2,
assuming that Theorem 1.2 is true; we postpone the difficult proof of Theorem 1.2 until
Section 5. Translation permutations form an important part of this proof; we discuss such
permutations in Section 4. Finally, we make some concluding remarks in Section 6.

2 Periodic and balanced rhombus tilings

For any element x ∈ Z
2, define s(x) := x + (1, 0) (south), e(x) := x + (0, 1) (east),

n(x) := x+ (−1, 0) (north), and w(x) := x+ (0,−1) (west); recall our matrix convention
for indexing elements in Z

2. Given a set σ, we refer to an element x as blocked in σ if at
least one of its neighbors s(x), e(x), n(x), and w(x) belongs to σ. Such a neighbor is said
to block x.

Proposition 2.1. A nonempty set ρ ⊂ Z
2 is a balanced rhombus tiling if and only if all

elements in ρ are pairwise non-blocking and the following holds: For each x ∈ ρ and each
choice of signs t, u ∈ {+1,−1}, exactly one of the elements ste2u(x) and s2teu(x) belongs
to ρ.
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Proof. (=⇒) Suppose that ρ is a balanced rhombus tiling. By symmetry, it suffices to
consider the case t = u = 1. If both y := se2(x) and z := s2e(x) belong to ρ, then the
rhombus defined by the three corners x, y, z has area three and is hence not allowed. If
neither y nor z belongs to ρ, then we have another contradiction, as the region just to the
south-east of p cannot be a 4- or 5-rhombus; consider Figure 2.

(⇐=) Suppose that ρ satisfies the latter condition in the lemma. Partition Z
2 into

regions by drawing a line segment between any two elements in ρ on distance
√

5. By
symmetry, it suffices to prove that the region just to the east of any element x in ρ is a
4- or 5-rhombus. We have four cases:

• y := se2(x) and z := ne2(x) belong to σ. Since n2e(y) = e(z) is blocked by z, we
have that ne2(y) = e4(x) belongs to σ, which yields a 4-rhombus.

• y := se2(x) and z := n2e(x) belong to σ. Since s2e(z) = n(y) is blocked by y, we
have that se2(z) = ne3(x) belongs to σ, which yields a 5-rhombus.

• s2e(x) and ne2(x) belong to σ. By symmetry, this case is analogous to the second
case.

• y := s2e(x) and z := n2e(x) belong to σ. If e2(x) /∈ σ, then y′ := se2(z) ∈ σ.
However, sw2(y′) = e(x) is blocked by x and hence not in σ. Moreover, s2w(y′) =
se2(x) is not in σ either, because s2e(x) ∈ σ. This is a contradiction; hence e2(x)
belongs to σ, which yields a 4-rhombus.

β(p)

β4(p)

α(p)

p

α3(p)

α3 ◦ β4(p)

Figure 5: Illustration of the functions α and β. As predicted by Lemma 2.2, we have that
α3 ◦ β4(p) = α3(p) + β4(p) − p.

Let ρ be a balanced rhombus tiling. For a given element p ∈ ρ, let α(p) be the one
element among s2e(p) and se2(p) that belongs to ρ; by Proposition 2.1, α(p) is well-
defined. Furthermore, let β(p) be the one element among n2e(p) and ne2(p) that belongs
to ρ. See Figure 5 for an illustration. By symmetry, α and β have well-defined inverses;
hence αr(p) and βr(p) are well-defined for all r ∈ Z.

the electronic journal of combinatorics 13 (2006), #R67 7



Lemma 2.2. For any balanced rhombus tiling ρ, the functions α and β satisfy the identity

αr ◦ βs(p) = βs ◦ αr(p) = αr(p) + βs(p) − p

for all p ∈ ρ and r, s ∈ Z.

Proof. The lemma is trivially true for r = 0 or s = 0. By symmetry, it suffices to consider
the case r, s ≥ 1. Use induction on r, s. For r = s = 1, we have that p, α(p), β(p)
constitute three of the corners in a rhombus contained in the tiling. The fourth corner is
clearly α(p)+β(p)− p, which is equal to β(α(p)) and α(β(p)) as desired. This also yields
that α and β commmute.

Now, suppose that either r or s, say s, is at least two. Assuming inductively that the
lemma holds for smaller values of s, we obtain that

αr ◦ βs(p) = αr ◦ βs−1(β(p)) = αr ◦ β(p) + βs−1 ◦ β(p) − β(p)

= αr(p) + β(p) − p+ βs(p) − β(p) = αr(p) + βs(p) − p.

The following lemma is straightforward to prove.

Lemma 2.3. Let ρ be a balanced rhombus tiling and let p, q ∈ ρ. Then there are unique
integers r and s such that q = αr ◦ βs(p).

For i ∈ Z, define δi(p) := αi(p) − αi−1(p) and εi(p) := βi(p) − βi−1(p); by symmetry,
this is well-defined for i ≤ 0.

Corollary 2.4. Let ρ be a balanced rhombus tiling, let p ∈ ρ, and let q := αr ◦ βs(p) be
another element in ρ. Then δi(q) = δi+r(p) and εi(q) = εi+s(p).

Proof. By Lemma 2.2, we have that

δi(q) = αi(q) − αi−1(q) = αr+i ◦ βs(p) − αr+i−1 ◦ βs(p)
= αr+i(p) + βs(p) − p− (αr+i−1(p) + βs(p) − p)

= αr+i(p) − αr+i−1(p) = δi+r(p).

The proof for εi(q) is analogous.

Recall that u and v are linearly independent integer vectors. Let ρ be a balanced
〈u, v〉-invariant rhombus tiling. By finiteness of Z

2/〈u, v〉 and Lemma 2.2, the sequences
(δi(p) : i ∈ Z) and (εi(p) : i ∈ Z) are periodic. Let K and L be minimal such that
δi = δi+K(p) and εi(p) = εi+L(p) for all i ∈ Z. By Corollary 2.4, K and L do not depend
on p. Define

x(p) := αK(p) − p =
K∑
i=1

δi(p);

y(p) := βL(p) − p =

L∑
i=1

εi(p).
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(3, 3)

(−4, 5)

Figure 6: Portion of a balanced periodic rhombus tiling with axes (3, 3) and (4,−5). The
border of one “period” of the tiling is marked in bold.

x(p) and y(p) are the axes of ρ. See Figure 6 for an illustration. We claim that the axes
do not depend on the choice of origin p. Namely, if q := αr ◦ βs(p), then Corollary 2.4
yields that

x(q) = αK(q) − q =
K∑
i=1

δi(q) =
K+r∑
i=r+1

δi(p) =
K∑
i=1

δi(p) = x(p).

By symmetry, the same property holds for y(p). We summarize:

Lemma 2.5. Let ρ be a balanced 〈u, v〉-invariant rhombus tiling. Then, for every p, q ∈
V (ρ), x(p) = x(q) and y(p) = y(q).

Theorem 2.6. Let x := (x1, x2) and y := (−y1, y2) be vectors such that x1, x2, y1, and
y2 are all positive. Then there are balanced 〈u, v〉-invariant rhombus tilings with axes x′

and y′ such that x and y are integer multiples of x′ and y′, respectively, if and only if the
following hold:

(i) x1/2 ≤ x2 ≤ 2x1 and y1/2 ≤ y2 ≤ 2y1.

(ii) x1 + x2 and y1 + y2 are divisible by three.

(iii) 〈x, y〉 contains 〈u, v〉.
Assuming that the above conditions hold and defining(

a b
c d

)
:=

1

3
·
(
x1 x2

y1 y2

)
·
( −1 2

2 −1

)
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(i.e., x = a · (1, 2)+ b · (2, 1) and y = c · (−1, 2)+ d · (−2, 1)), the number of such tilings is(
a+ b

a

)(
c+ d

c

)
·
(

ad+ bc

(a + b)(c+ d)
+ 4

)
.

Proof. It is clear that the axes of any 〈u, v〉-invariant rhombus tiling must satisfy condi-
tions (i)-(iii); x′ is a nonnegative sum of vectors of the form (1, 2) and (2, 1), whereas y′

is a nonnegative sum of vectors of the form (−1, 2) and (−2, 1).
Conversely, suppose that conditions (i)-(iii) are satisfied and define a, b, c, d as in the

theorem. Conditions (i)-(ii) mean that these numbers are all nonnegative integers such
that a+ b and c+ d are positive. Write K := a+ b and L := c+ d. Let (λ1, . . . , λK) and
(µ1, . . . , µL) be binary sequences such that

∑
i λi = a and

∑
i µi = c. Define λi and µi for

all i ∈ Z via the identities λi = λi+K and µi = µi+L. Define δi and εi as

δi :=

{
(1, 2) if λi = 1;
(2, 1) if λi = 0

and

εi :=

{
(−1, 2) if µi = 1;
(−2, 1) if µi = 0.

Define the set {pi,j : i, j ∈ Z} by p0,0 = (0, 0) and{
pr,s − pr−1,s = δr;
pr,s − pr,s−1 = εs

for all r, s ∈ Z. This means that pr,s =
∑r

i=1 δi +
∑s

j=1 εj for r, s ≥ 0. One easily checks
that {pr−1,s−1, pr−1,s, pr,s−1, pr,s} is the set of corners in a 4- or 5-rhombus for each r, s ∈ Z.

To prove that {pr,s : r, s ∈ Z} is a rhombus tiling, it suffices by Proposition 2.1 to show
that pr,s is not equal or adjacent to pr′,s′ unless (r, s) = (r′, s′). This is a straightforward
exercise.

Since
∑K

i=1 δi = a·(1, 2)+(K−a)·(2, 1) = x and
∑L

i=1 εi = c·(−1, 2)+(L−c)·(−2, 1) =
y, it follows that x and y are integer multiples of the axes of the tiling. This settles the
other direction in the first part of the proof.

To compute the number of rhombus tilings with desired properties, note that the
previous results of this section imply that these tilings have properties as described in
this proof, except that we do not necessarily have that (0, 0) is a corner.

First, let us compute the number of tilings having (0, 0) as a corner such that the
rhombus P in which (0, 0) is the western corner has a given fixed area. The number
of sequences {δi} such that δ1 = (1, 2) is

(
a+b−1
a−1

)
; the number of sequences such that

δ1 = (2, 1) is
(
a+b−1
a

)
. The number of sequences {εi} such that ε1 = (−1, 2) is

(
c+d−1
c−1

)
; the

number of sequences such that ε1 = (−2, 1) is
(
c+d−1
c

)
. The area of P being five means

that the second coefficients of δ1 and ε1 do not coincide. Hence there are(
a+b−1
a−1

)(
c+d−1
c

)
+
(
a+b−1
a

)(
c+d−1
c−1

)
the electronic journal of combinatorics 13 (2006), #R67 10



tilings such that the area of P is five and there are(
a+b−1
a−1

)(
c+d−1
c−1

)
+
(
a+b−1
a

)(
c+d−1
c

)
tilings such that the area of P is four.

Now, let us compute the total number of tilings. Fixing as starting point p0,0 the
western corner of the rhombus in which (0, 0) is either the western corner or an interior
point, we obtain that the total number of tilings that we want to compute equals

5
((
a+b−1
a−1

)(
c+d−1
c

)
+
(
a+b−1
a

)(
c+d−1
c−1

))
+ 4

((
a+b−1
a−1

)(
c+d−1
c−1

)
+
(
a+b−1
a

)(
c+d−1
c

))
.

This is easily seen to equal the expression in the theorem; hence we are done.

Theorem 2.7. If m and n are coprime, then there are no balanced (m,n)-invariant
rhombus tilings.

Proof. Suppose that there is such a tiling ρ and let x := (x1, x2) and y := (−y1, y2) be the
axes of ρ; x1, x2, y1, y2 are all positive integers. Since 〈x, y〉 contains Lm,n by Theorem 2.6,
we have that there is a 2 × 2 integer matrix A such that(

x1 −y1

x2 y2

)
· A =

(
m 0
0 n

)
.

However, we also have that the determinant x1y2 + x2y1 divides mn. Define m0 and n0

such that x1y2 + x2y1 = m0n0, where m0|m and n0|n. Since

A =
1

m0n0

(
my2 ny1

−mx2 nx1

)
,

it follows that m0 divides x1 and y1 and that n0 divides x2 and y2. As a consequence,(
x1/m0 −y1/m0

x2/n0 y2/n0

)

is an integer matrix with unit determinant, which is impossible.

3 Establishing Conjectures 1 and 2

For continuity, we show how to deduce Conjectures 1 and 2 from Theorem 1.2 before
actually proving the theorem, which we do in Section 5. Nothing in the present section
is used in Sections 4 and 5.

First, let us settle Conjecture 1:

Corollary 3.1. If m and n are coprime, then Z(Σm,n) = 1.

Proof. This is an immediate consequence of Theorems 1.2 and 2.7.
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For m ≥ 1, let Rm be the family of balanced rhombus tilings that are (m,n)-invariant
for some n ≥ 1.1 For two vectors x and y to satisfy the conditions in Theorem 2.6, we
must have that x1 + y1 ≤ m. In particular, there are only finitely many vectors x and y
with desired properties, which implies that Rm is a finite family.

Theorem 3.2. Let f(t) :=
∑

m≥1 |Rm|tm. Then

f(t) =
t+ 2t2

1 − t− t2
+

−t+ t2 − 4t3

1 + t3
.

Equivalently,

|Rm| =

(
1 +

√
5

2

)m

+

(
1 −√

5

2

)m

+ (−1)mθ2
m,

where θm is defined as in (1) in Section 1.3.

Proof. First, we compute the number bm of balanced rhombus tilings that are (m,n)-
invariant for some n and contain the origin p0 := (0, 0). Let ρ be such a tiling. (m,n)-
invariance implies that ρ contains the element pm := (m, 0).

p

pm

p0

p′0

p′m

Figure 7: Portion of a rhombus tiling invariant under translation with the vector (m, 0)
for m = 11, along with the elements p0, pm, p, p

′
0, p

′
m in the proof of Theorem 3.2. Note

that p′m = p′0 + (m− 3,−1) = (8,−1).

Let α and β be defined as in Section 2 (recall Figure 5). Lemma 2.3 yields unique
elements r and s such that αrβ−s(p0) = pm. It is clear that r and s are both positive.
Define p := β−s(p0) = α−r(pm). See Figure 7 for an illustration.

1It is not hard to show that Rm coincides with the family of balanced rhombus tilings that are invariant
under translation with the vector (m, 0).

the electronic journal of combinatorics 13 (2006), #R67 12



We claim that pm− p and p0 − p are multiples of the two axes of the tiling ρ. Namely,
let t be an integer. By Lemma 2.2, we have that

αt(p) = αt−r(pm) = αt−r(p0) + pm − p0

= αt−r(βs(p)) + pm − p0 = αt−r(p) + βs(p) − p+ pm − p0.

As a consequence,

δt(p) := αt(p) − αt−1(p) = αt−r(p) − αt−r−1(p) = δt−r(p),

which implies that the period of (δi(p) : i ∈ Z) divides r. Analogously, we obtain that the
period of (εi(p) := βi(p) − βi−1(p) : i ∈ Z) divides s. The claim follows.

To summarize, there is one rhombus tiling to count for each point p and each pair of
paths (P0,Pm) from p0 and pm, respectively, to p with allowed steps being (1,−2) and
(2,−1) for P0 and (−1,−2) and (−2,−1) for Pm. See Figure 7 for an illustration.

Going one step in each of the paths, we end up on new positions p′0 and p′m. If the
first steps in P0 and Pm are (1,−2) and (−1,−2), respectively, then p′m = p′0 +(m− 2, 0).
Hence there are bm−2 such paths. Defining b0 := 1 and bi := 0 if i < 0, this is true
for all m. If the first steps in P0 and Pm are (2,−1) and (−2,−1), respectively, then
p′m = p′0 + (m− 4, 0). Hence there are bm−4 such paths.

The remaining case is that the second coordinates of the first steps in P0 and Pm
do not coincide. By symmetry, we may assume that the steps are (1,−2) and (−2,−1),
which yields the identity p′m = p′0 + (m − 3, 1). Let cm−3 be the number of such paths.
We obtain the recursion

bm = bm−2 + bm−4 + 2cm−3. (2)

Now, proceed with the last case and go another step on the path Pm. First, suppose that
the second step is (−1,−2). This yields a point p′′m satisfying p′′m = p′0 + (m − 4,−1).
Hence there are cm−4 such paths. Next, suppose that the second step is (−2,−1). Then
we obtain p′′m = p′0 + (m− 5, 0). Hence there are bm−5 such paths. Summarizing, we get

cm−3 = cm−4 + bm−5,

which implies that

bm − bm−1 = bm−2 − bm−3 + bm−4 − bm−5 + 2(cm−3 − cm−4)

⇐⇒ bm − bm−1 − bm−2 + bm−3 − bm−4 − bm−5 = 0;

use (2). Since b1 = b3 = c0 = c1 = 0 and b0 = b2 = c2 = 1, we obtain that b4 = 2 and
hence that

B(t) :=
∑
i≥0

bit
i =

1 − t

1 − t− t2 + t3 − t4 − t5
=

1 − t

(1 − t− t2)(1 + t3)
. (3)

It remains to compute the total number of tilings, not only those containing the origin.
Let p0 be the point in a given tiling ρ with the property that the origin equals p0 or is an
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inner point in the rhombus with eastern corner p0. Using exactly the same approach as
above, taking one step on each of the paths P0 and Pm, we obtain that

|Rm| = 4bm−2 + 4bm−4 + 5cm−3 + 5cm−3 = 5bm − bm−2 − bm−4;

use (2) for the second equality. To understand the first equality, note that the first
term corresponds to the case that the first steps in P0 and Pm are (1,−2) and (−1,−2),
respectively. This yields a 4-rhombus just to the west of p0, which explains the factor
four. The other three terms are explained in the same manner.

Applying (3) and observing that |R1| = |R3| = 0 and |R2| = 4, we conclude that

f(t) =
(5 − t2 − t4)(1 − t)

(1 − t− t2)(1 + t3)
− 5.

A straightforward computation yields the identities in the theorem.

Proposition 3.3. Let Dm be the size of Σ(Cm), where Cm is the cycle graph on the vertex
set Zm. Equivalently, Dm is the number of rows in the transfer matrix Tm(z). Then

Dm =

(
1 +

√
5

2

)m

+

(
1 −√

5

2

)m

.

Equivalently, Dm = |Rm| − (−1)mθ2
m where θm is defined as in (1) in Section 1.3.

Proof. Clearly, D1 = 1 and D2 = 3. For m ≥ 3, let Σ1 be the subfamily of Σ(Cm)
consisting of all σ such that m− 1 /∈ σ and such that at most one of m− 2 and 0 belongs
to σ. We obtain a bijection from Σ1 to Σ(Cm−1) by removing the vertex m − 1. The
remaining family Σ2 consists of all σ such that either of the following holds:

• m− 2, 0 ∈ σ and m− 1 /∈ σ.

• m− 2, 0 /∈ σ and m− 1 ∈ σ.

We obtain a bijection from Σ2 to Σ(Cm−2) by removing the vertices m − 2 and m − 1.
Combining the two bijections, we obtain the identity Dm = Dm−1 +Dm−2, which yields
the desired formula.

Let R−
m be the family of tilings ρ in Rm such that ρ ∈ R−

m,n for some n. Write
R+
m := Rm \ R−

m. For a tiling ρ, let ν := ν(ρ) be minimal such that ρ is invariant under
translation with (0, ν). One readily verifies that ρ ∈ R−

m,n if and only if ρ ∈ R−
m and

n/ν(ρ) is an odd integer. Equivalently, ρ ∈ R+
m,n if and only if either ρ ∈ R+

m and n/ν(ρ)
is an integer or ρ ∈ R−

m and n/ν(ρ) is an even integer.
For each positive integer n, let ψ+

m(n) be the number of tilings ρ ∈ R+
m such that

ν(ρ) = n. Define ψ−
m(n) analogously for tilings in R−

m. It is clear that ψ+
m(n) and ψ−

m(n)
are integer multiples of n, because a given tiling ρ such that ν(ρ) = n must have the
property that the tilings ρ, ρ+(0, 1), ρ+(0, 2), . . . , ρ+(0, n−1) are all distinct; otherwise,
ν(ρ) would be a proper divisor of n.
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ρ ρ′

Figure 8: On the left a rhombus tiling ρ invariant under four-step horizontal and two-step
vertical translation. On the right a rhombus tiling ρ′ invariant under six-step horizontal
and vertical translation.

Example. One obtains all rhombus tilings in R6 via translation of the two tilings in
Figure 8. For the tiling ρ on the left, ν(ρ) = 4 and ρ ∈ R+

6 , because ν = 4 is minimal
such that ρ + (0, ν) = ρ and ρ contains six cosets of L6,4, which is even. For the tiling
ρ′ on the right, ν(ρ′) = 6 and ρ′ ∈ R+

6 ; ρ′ contains eight cosets of L6,6, which is again
even. Since there are four distinct translations of ρ and 18 distinct translations of ρ′, we
conclude that ψ±

6 (n) is always zero with the two exceptions ψ+
6 (4) = 4 and ψ+

6 (6) = 18.

Theorem 3.4. For any integer m ≥ 1, the characteristic polynomial Pm(t) of the transfer
matrix Tm := Tm(−1) satisfies

Pm(t) = gm(t) ·
∏
n≥1

(tn − 1)ψ
+
m(n)/n ·

∏
n≥1

(tn + 1)ψ
−
m(n)/n, (4)

where

gm(t) :=




(t− 1) if gcd(m, 6) = 1;
(t+ 1)−1 if gcd(m, 6) = 2;
(t3 − 1)(t− 1) if gcd(m, 6) = 3;
(t3 + 1)−1(t+ 1)−1 if gcd(m, 6) = 6.

Remark. Note that all but finitely many factors in the right-hand side of (4) are equal
to one.

Proof. First, note that Theorem 3.2 and Proposition 3.3 yield that the degree Dm of the
polynomial Pm(t) satisfies Dm = |Rm| − (−1)m · θ2

m, where θm is defined as in (1) in
Section 1.3. Since

∑
n(ψ

+
m(n) +ψ−

m(n)) = |Rm|, the degree of the right-hand side of (4) is
Dm as desired.
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Note that

Dm +
∑
n≥1

Z(Σm,n)

tn
=
∑
n≥0

Tr (T nm)

tn
=
tP ′

m(t)

Pm(t)
;

the second equality is true for any matrix. Writing θm,n := θgcd(m,n) and applying Theo-
rem 1.2, we conclude that it suffices to prove that

Dm +
∑
n≥1

−(−1)gcd(m,n)θ2
m,n + |R+

m,n| − |R−
m,n|

tn

=
tg′m(t)

gm(t)
+
∑
n≥1

ψ+
m(n)tn

tn − 1
+
∑
n≥1

ψ−
m(n)tn

tn + 1
.

Now, by construction, we have that

∑
n≥1

|R+
m,n| − |R−

m,n|
tn

=
∑
n≥1

ψ+
m(n)

tn − 1
−
∑
n≥1

ψ−
m(n)

tn + 1

=
∑
n≥1

(
ψ+
m(n)tn

tn − 1
− ψ+

m(n)

)
+
∑
n≥1

(
ψ−
m(n)tn

tn + 1
− ψ−

m(n)

)

=
∑
n≥1

ψ+
m(n)tn

tn − 1
+
∑
n≥1

ψ−
m(n)tn

tn + 1
−Dm − (−1)mθ2

m.

Thus it remains to prove that

tg′m(t)

gm(t)
=
∑
n≥0

−(−1)gcd(m,n)θ2
m,n

tn
.

This is a straightforward exercise in all four cases; hence (4) follows.

Proof of Conjecture 2. Let ρ and ρ′ be the rhombus tilings in Figure 8. One easily checks
that ρ ∈ R+

2k and ρ′ ∈ R+
6k for each integer k and also that ν(ρ) = 4 and ν(ρ′) = 6. In

particular, for m such that gcd(m, 6) = 2, the right-hand side of (4) contains a factor
t4 − 1. Multiplying with gm(t) = (t + 1)−1, we obtain (t2 − 1)(t − 1). For m such that
gcd(m, 6) = 6, the right-hand side of (4) contains a factor (t4 − 1)(t6 − 1). This time,
multiplication with gm(t) = (t+ 1)−1(t3 + 1)−1 yields (t2 − 1)(t− 1)(t3 − 1). To see that
every factor ts±1 in Pm(t) (except the one linear term t−1) satisfies gcd(s,m) 6= 1, simply
note that we cannot have ν(ρ) = n if ρ ∈ Rm and gcd(m,n) = 1; apply Theorem 2.7.

4 Properties of translation permutations

Recall that s(x) = x + (1, 0), e(x) = x + (0, 1), and Vu,v = Z
2/〈u, v〉. We present basic

facts about translation permutations of the form saeb : Vu,v → Vu,v. We do this in
preparation for our proof of Theorem 1.2 in Section 5. Before proceeding, let us introduce
some conventions for figures, which will be used throughout the remainder of the paper.
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a

b

c

d

Figure 9: A subset σ of Vu,v restricted to a 3 × 3 piece of Su,v. The black squares a and
b belong to σ, the white square c does not belong to σ, and the status is unknown or
unimportant for the gray square d. All other squares in the figure are blocked by a or b
and do not belong to σ if σ ∈ Σ(Su,v).

We identify each point in Z
2 with a unit square; two vertices being joined by an edge

means that the corresponding squares share a common side. In any picture illustrating a
subset σ of Vu,v restricted to a given piece of Su,v, the following conventions apply for a
given vertex x:

• x ∈ σ: the square representing x is black.

• x /∈ σ: the square is white.

• The status of x is unknown or unimportant: the square is gray.

See Figure 9 for an example.

x0

x1

x2

x3

y0

y1

y2

y3

Figure 10: For π = se, the elements x0, x1, x2, and y3 are (π, σ)-free, because they are all
unblocked, x0, y3 ∈ σ, and π−2(x2) = π−1(x1) = x0. However, x3, y0, y1, and y2 are not
(π, σ)-free; x3 and y0 are blocked by y3 and x0, respectively, whereas π−2(y2) = π−1(y1) =
y0.

Let σ be a set in Σu,v := Σ(Su,v). For a permutation π : Vu,v → Vu,v and an element
y ∈ Vu,v, let ξ := ξπ,σ(y) ≥ 0 be minimal such that π−ξ(y) ∈ σ; note the minus sign. If
no such ξ exists, we define ξπ,σ(y) := ∞. We say that y is (π, σ)-free if ξπ,σ(y) < ∞ and
all elements in the set {y, π−1(y), . . . , π−ξπ,σ(y)(y)} are unblocked in σ; hence σ+ z ∈ Σu,v

whenever z belongs to this set. See Figure 10 for an example.

Lemma 4.1. Let π : Vu,v → Vu,v be a permutation and let σ ∈ Σu,v. If y is (π, σ)-free,
then π−k(y) is (π, σ)-free whenever k ≤ ξπ,σ(y).
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Proof. This is immediate from the definition.

Lemma 4.2. Let π := saeb be a translation permutation and let σ ∈ Σu,v. Then the set
π∗(σ) of (π, σ)-free elements belongs to Σu,v.

Proof. Assume the opposite; π∗(σ) contains two neighbors x and y. Write ξσ := ξπ,σ. By
construction, π−r(x) and π−s(y) are (π, σ)-free whenever r ≤ ξσ(x) and s ≤ ξσ(y). Now,
π−ξσ(y)(x) is blocked by π−ξσ(y)(y) in σ, which implies that ξσ(x) < ξσ(y). However, we
also have that π−ξσ(x)(y) is blocked by π−ξσ(x)(x) in σ, which implies that ξσ(y) < ξσ(x).
This is a contradiction.

Lemma 4.3. Let π := saeb be a nontrivial translation permutation and let σ ∈ Σu,v.
Let x, y be (π, σ)-free elements such that y = π(x) and x ∈ σ. Then an element z is
(π, σ − y)-free if and only if z is (π, σ + y)-free.

Proof. Clearly, σ + y ∈ Σu,v. Moreover, y is (π, σ − y)-free, because y is unblocked and
y = π(x), which belongs to σ.

Now, let z be some element outside σ + y. First, suppose that z is (π, σ + y)-free
but not (π, σ − y)-free. This implies that ξσ+y(z) 6= ξσ−y(z). The only possibility is that
y = π−ξσ+y(z)(z), which implies that ξσ−y(z) = ξσ+y(z)+1, because x ∈ σ. However, since
y is unblocked, this means that z is (π, σ − y)-free, which is a contradiction.

Next, suppose that z is (π, σ − y)-free but not (π, σ + y)-free. This means that y is
blocking some element π−k(z) such that k ≤ ξσ+y(z). However, since ξσ+y(z) ≤ ξσ−y(z),
we have that π−k(z) is (π, σ − y)-free by Lemma 4.1. By Lemma 4.2, it follows that
y and π−k(z) are not neighbors, as both elements are (π, σ − y)-free. This is another
contradiction.

Lemma 4.4. Let (a, b) be an integer vector. Define

d := gcd(bu1 − au2, bv1 − av2, |Vu,v|).
Then the exponent of the translation permutation saeb : Vu,v → Vu,v equals |Vu,v|/d.
Proof. We have that (saeb)k is the identity if and only if there are integers λ, µ such that

λ · (u1, u2) + µ · (v1, v2) = k · (a, b). (5)

This implies that
λ · (bu1 − au2) + µ · (bv1 − av2) = 0. (6)

Write d0 := gcd(bu1 − au2, bv1 − av2). We have that (λ, µ) is an integer solution to (6) if
and only if λ = −c(bv1 − av2)/d0 and µ = c(bu1 − au2)/d0 for some integer c. We obtain
that

k · (a, b) = c · u1v2 − u2v1

d0

· (a, b) = ±c · |Vu,v|
d0

· (a, b).
As a consequence, the given λ and µ yield a solution to (5) if and only if c is an integer
multiple of d0/ gcd(d0, |Vu,v|) = d0/d, which is equivalent to k being an integer multiple
of |Vu,v|/d.
Remark. One easily checks that gcd(u1 − u2, v1 − v2, |Vu,v|) = gcd(u1 − u2, v1 − v2) and
gcd(u1 + u2, v1 + v2, |Vu,v|) = gcd(u1 + u2, v1 + v2).
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5 Proof of Theorem 1.2

The goal of this section is to prove Theorem 1.2, which we restate for convenience:

Write d := gcd(u1 − u2, v1 − v2) and d∗ := gcd(u1 + u2, v1 + v2). Then

Z(Σu,v) = −(−1)dθdθd∗ + |R+
u,v| − |R−

u,v|,
where θd is defined as in (1) in Section 1.3.

The proof approach is to define a matching on Σu,v \ {∅} such that every matched pair
{σ, τ} cancels out, meaning that |σ| 6≡ |τ | (mod 2). Counting the unmatched sets, taking
into account the parity of the sets, we will obtain the desired formula. We stress that our
matching is purely combinatorial in nature and does not admit a topological interpretation
in the language of discrete Morse theory [5].

By symmetry, Z(Σu,v) = Z(Σu′,v′), where u′ = (u1,−u2) and v′ = (v1,−v2). This will
be of some help in Step 12 at the end of the proof.

We divide the proof of Theorem 1.2 into several steps. Since the vectors u and v will
be the same throughout the proof, we suppress u and v from notation and write Σ instead
of Σu,v.

x0

x1

x2

x3

y0

y1

y2

y3

x0

x1

x2

x3

y0

y1

y2

y3

σ (se)∗(σ)

Figure 11: x1 and x2 belong to (se)∗(σ); they are both unblocked and (se)−2(x2) =
(se)−1(x1) = x0 ∈ σ. However, x3, y0, y1, and y2 do not belong to (se)∗(σ); x3 and y0 are
blocked, whereas (se)−2(y2) = (se)−1(y1) = y0.

Step 1: Partitioning Σ into subfamilies Σ0 and ∆

For a permutation π and a set σ ∈ Σ, let π∗(σ) be the set of (π, σ)-free elements. In
this first step, we consider the set (se)∗(σ); see Figure 11 for an illustration. Note that
(se)−1 = nw. We partition Σ into two sets:

• Σ0 is the subfamily of Σ consisting of all σ with the property that (se)∗(σ) contains
an element x such that nw(x) ∈ (se)∗(σ) and (nw)2(x) /∈ (se)∗(σ).

• ∆ = Σ \ Σ0.
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Step 2: Getting rid of Σ0

For any set X, let Σ0(X) be the subfamily of Σ0 consisting of all sets σ such that
(se)∗(σ) = X. We want to define a perfect matching on Σ0(X). Assume that this
family is nonempty. In particular, there is an element x in X such that nw(x) ∈ X and
(nw)2(x) /∈ X. To obtain the matching, note that nw(x) ∈ σ whenever σ ∈ Σ0(X), because
x is (se, σ)-free, whereas (nw)2(x) is not. By Lemma 4.3, we have that (se)∗(σ + x) =
(se)∗(σ−x), as nw(x) ∈ σ. As a consequence, we obtain a perfect matching on Σ0(X) by
pairing σ − x and σ + x. We summarize:

Lemma 5.1. We have that Z(Σ0) = 0. �

Step 3: Proceeding with the remaining family ∆

It remains to consider the family ∆ consisting of all sets σ in Σ with the property that
(se)∗(σ) does not contain any element x such that nw(x) ∈ (se)∗(σ) and (nw)2(x) /∈
(se)∗(σ).

For a set σ ∈ Σ and a permutation π, we say that an element x ∈ π∗(σ) is π-cyclic in
σ if {πi(x) : i ∈ Z} is a subset of π∗(σ); we refer to this subset as a π-cycle. Note that
any π-cycle is also a π−1-cycle, and vice versa. Let π∞(σ) be the set of π-cyclic elements
in π∗(σ).

Lemma 5.2. Suppose that σ ∈ ∆. If x ∈ σ \ (se)∞(σ), then s2e(x) ∈ σ or se2(x) ∈ σ.
Moreover, if x ∈ σ ∩ (se)∞(σ), then the entire se-cycle {(se)i(x) : i ∈ Z} is contained in
(se)∗(σ). Indeed, these two properties characterize ∆ within Σ.

Proof. For the first part of the lemma, it suffices to prove that y := se(x) is blocked in σ.
Namely, since x blocks n(y) = e(x) and w(y) = s(x), the element blocking y must be either
s(y) = s2e(x) or e(y) = se2(x). Let k ≥ 0 be minimal such that (nw)k+1(x) /∈ (se)∗(σ).
Since σ ∈ ∆, we have that (nw)k−1(x) /∈ (se)∗(σ). The only possibility is that k = 0,
which settles the claim. The other statements in the lemma are obvious.

x

∗
∗

∗
∗

Figure 12: The situation around an element x in (n3w3)∗(σ), where σ ∈ ∆ and x 6∈
(se)∞(σ). The elements marked with stars being absent is a consequence of Lemma 5.3.

For σ ∈ ∆, we will consider the set (n3w3)∗(σ) of (n3w3, σ)-free elements. Hence instead
of going one step in the south-east direction, we go three steps in the opposite direction.
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Lemma 5.3. If σ ∈ ∆ and x ∈ (n3w3)∗(σ) \ (se)∞(σ), then the four elements n2w2(x),
nw(x), se(x), and s2e2(x) do not belong to (n3w3)∗(σ); see Figure 12.

Proof. Let x be as in the lemma. First, suppose that there is an element y in (n3w3)∗(σ)∩
{n2w2(x), nw(x)}. We claim that this implies that s3e3(y) ∈ (n3w3)∗(σ); we refer to this as
“property A”. To prove the claim, assume to the contrary that s3e3(y) /∈ (n3w3)∗(σ). This
implies that y ∈ σ; hence either se2(y) or s2e(y) belongs to σ by Lemma 5.2. However,
this is a contradiction to Lemma 4.2, because both these elements are blocked by x.

We use induction on ξ(x) := ξ(n3w3)∗,σ(x) to prove the lemma. If ξ(x) = 0, meaning
that x ∈ σ, then Lemma 5.2 yields that either se2(x) or s2e(x) belongs to σ. In particular,
se(x) and s2e2(x) are both blocked and hence not present in (n3w3)∗(σ). By property A,
n3w3(se(x)) = n2w2(x) and n3w3(s2e2(x)) = nw(x) are not present either.

If ξ(x) > 0, then x′ := s3e3(x) ∈ (n3w3)∗(σ). Since ξ(x′) = ξ(x) − 1, induction
yields that n2w2(x′) = se(x) and nw(x′) = s2e2(x) do not belong to (n3w3)∗(σ). Another
application of property A settles the lemma.

x

y

z

x′

∗
∗∗

∗

Figure 13: The situation in Lemma 5.4. Given that x′, y, z ∈ (n3w3)∗(σ), the elements
marked with stars do not belong to (n3w3)∗(σ); this is because of Lemma 5.3. It follows
that the underlined element x belongs to (n3w3)∗(σ).

Lemma 5.4. Suppose that σ ∈ ∆ and s3e3(x), s2e(x), se2(x) ∈ (n3w3)∗(σ). Then x ∈
(n3w3)∗(σ).

Proof. Write y := s2e(x), z := se2(x), and x′ := s3e3(x). Clearly, these elements do
not belong to se∞(σ). Since x′ ∈ (n3w3)∗(σ), x′ is (n3w3, σ)-free. In particular, x is free
unless x is blocked in σ. However, applying Lemma 5.3 to y, we obtain that s(x) and
w(x) do not belong to σ, whereas the same lemma applied to z yields that e(x) and n(x)
do not belong to σ. Hence x is not blocked in σ, and we are done. See Figure 13 for an
illustration.

Lemma 5.5. If σ ∈ ∆ and x ∈ (n3w3)∗(σ) \ (se)∞(σ), then the following hold:

• Either n2w(x) or nw2(x) belongs to (n3w3)∗(σ).

• Either s2e(x) or se2(x) belongs to (n3w3)∗(σ).
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Proof. First, suppose that the first statement is true and the second statement is false.
Let x ∈ (n3w3)∗(σ)\ (se)∞(σ) be such that s2e(x) and se2(x) do not belong to (n3w3)∗(σ).
By Lemma 5.2, x ∈ (n3w3)∗(σ)\σ, which yields that x′ := s3e3(x) ∈ (n3w3)∗(σ). However,
nw2(x′) = s2e(x) and n2w(x′) = se2(x), which contradicts the assumption that the first
statement is true.

It hence suffices to prove the first statement. Refer to an element contradicting this
statement as a bad element. Let x be a bad element and let k be minimal such that x′2k :=
(s3e3)k(x) ∈ σ. We may assume that x′2i := (s3e3)i(x) is not bad for 1 ≤ i ≤ k; otherwise,
replace x with x′2i, where i is maximal such that x′2i is bad. In particular, for each i such
that 0 ≤ i ≤ k − 1, we have an element x′2i+1 such that x′2i+1 ∈ {se2(x′2i), s

2e(x′2i)}.
Now, for each y ∈ σ, either s2e(y) or se2(y) belongs to σ. In particular, by the

construction of x′1, . . . , x
′
2k above and by the fact that x′2k ∈ σ, there is an infinite sequence

(x0 = x, x1, x2, x3, . . .) such that xi ∈ (n3w3)∗(σ) and xi ∈ {s2e(xi−1), se
2(xi−1)} for all

i ≥ 1. Note that xi is not necessarily equal to x′i for 1 ≤ i ≤ 2k; we defined the elements
x′i just to be able to deduce that there is some infinite sequence.

x0

x1

x2

x3

x4

x5 x5 = xj = xk

x4 = y14

x11 x11 = xr

x12

x13

x14

y13

y12

∗

∗
∗

y

z

Figure 14: The construction in the proof of Lemma 5.5 with (j, k, r) = (5, 15, 11). By
the proof, y12, y13 ∈ (n3w3)∗(σ). We obtain a path from x11 = xr to x4 = xj−1 and hence
a cycle through xj−1, which contradicts the minimality of j. One may proceed to prove
that the elements marked with stars also belong to (n3w3)∗(σ).

We illustrate the following construction in Figure 14. Let j ≥ 0 be minimal such that
xj = xk for some k > j. We assume that we have chosen the sequence {xi : i ≥ 0} such
that j is as small as possible.

To prove the lemma, it suffices to show that j = 0. Namely, xk−1 will then be an ele-
ment contradicting the assumption about n2w(x) and nw2(x) not belonging to (n3w3)∗(σ).
Assume to the contrary that j > 0. We have that xj−1 and xk−1 are distinct by the
minimality of j. There are two possibilities:

• xj−1 = nw2(xk) and xk−1 = n2w(xk). Let r ≤ k − 2 be maximal such that xr =
nw2(xr+1); note that r ≥ j − 1. We claim that yi := nw2(xi+1) ∈ (n3w3)∗(σ) for i =
r+1, . . . , k−1. This is clear for i = k−1, because yk−1 = xj−1. For i < k−1, assume
inductively that yi+1 ∈ (n3w3)∗(σ). Since se2(yi) = xi+1, s

3e3(yi) = s2e(xi+1) =
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xi+2, and s2e(yi) = nw2(xi+2) = yi+1, Lemma 5.4 implies that yi ∈ (n3w3)∗(σ),
which settles the claim.

Now, we may form a new sequence by replacing xi with yi for i = r + 1, . . . , k − 1.
Since yk−1 = xj−1, this contradicts the minimality of j. Hence we must have that
j = 0.

• xj−1 = n2w(xk) and xk−1 = nw2(xk). By symmetry, this case is proved in exactly
the same manner as the previous case.

Corollary 5.6. If σ belongs to ∆, then so does (n3w3)∗(σ).

Proof. By Lemma 4.2, (n3w3)∗(σ) belongs to Σ whenever σ belongs to Σ. It remains
to prove that (n3w3)∗(σ) belongs to ∆ whenever σ belongs to ∆. By Lemma 5.2, this is
equivalent to saying the following: Whenever x ∈ (n3w3)∗(σ)\(se)∞(σ), at least one of the
elements s2e(x) and se2(x) belongs to (n3w3)∗(σ). This is a consequence of Lemma 5.5.

x

x1

x2

xk−2

xk−1

xk

z1

z2
z3

z4

z2k−4

z2k

y2k

y2k−4

y4
y3

y2
y1

y0

Figure 15: The construction in the proof of Lemma 5.7. The existence of elements y2k−i
and zi blocking each other is a consequence of the fact that the “y-path” and the “z-path”
intersect.

Lemma 5.7. Suppose that σ ∈ ∆ and x, s2e(x), se2(x) ∈ (n3w3)∗(σ). Then s3e3(x) ∈
(n3w3)∗(σ).

Proof. Assume the opposite. We illustrate the following construction in Figure 15. Let k
be minimal such that xk := (s3e3)k(x) is blocked in σ. Such a k exists, because xr = x for
sufficiently large r, and x1, . . . , xr−1 cannot be all unblocked, as x1 /∈ (n3w3)∗(σ). For the
same reason, x2, . . . , xk /∈ (n3w3)∗(σ). Let y ∈ σ be an element blocking xk; y = π(xk),
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where π ∈ {n, w, e, s}. By symmetry, we may assume that π is either s or w, meaning
that y is “below” the line through x, x1, . . . , xk.

Let z1, z2, . . . , z2k be elements in (n3w3)∗(σ) such that z1 = s2e(x) and such that zi ∈
{se2(zi−1), s

2e(zi−1)} for all i; apply Lemma 5.5. Write zi = saie3i−ai(x). Using induction,
one easily proves that ai > 3i− ai for 1 ≤ i ≤ 2k. Namely, if z2i−1 = s3i−1e3i−2(x), then
we must have that z2i = s3i+1e3i−1(x), because s3ie3i(x) = xi is not in (n3w3)∗(σ) for
i ≤ k.

Now, let y0, y1, y2, . . . , yk be elements in (n3w3)∗(σ) such that y0 = y and such that
yi ∈ {nw2(yi−1), n

2w(yi−1)} for all i; again, apply Lemma 5.5. Write yi = n3i−biwbi(y). As
above, induction yields that bi > 3i− bi for 1 ≤ i ≤ 2k. Namely, if y2i−1 = n3i−2w3i−1(y),
then we must have that y2i = n3i−1w3i+1(x), because n3iw3i(x) blocks xk−i. Moreover,
y1 = nw2(y0), as n2w(n2w(y0)) = ne ◦π(xk−1) and nw2(n2w(y0)) = π(xk−1) both block xk−1.

Let i be such that

2ai − 3i = 2b2k−i − 3(2k − i) ⇐⇒ ai = b2k−i − 3k + 3i.

Such an i exists, because (0, 2a1−3, 2a2−6, . . . , 2a2k−6k) and (0, 2b1−3, 2b2−6, . . . , b2k−
6k) both form sequences such that adjacent entries differ by exactly one and such that all
entries are nonnegative. Now,

y2k−i = n6k−3i−b2k−iwb2k−i(y) = n3k−aiw3k−3i+ai(y)

= sai−3ke3i−3k−ai(π ◦ s3ke3k(x))

= π ◦ saie3i−ai(x) = π(zi).

Hence y2k−i and zi block each other, which is a contradiction.

Step 4: Partitioning ∆ into subfamilies Γ0, ΓR, and Λ

We consider n3w3-cycles, i.e., sets of the form {(n3w3)i(x) : i ≥ 0}. We partition ∆ into
two subfamilies:

• Γ consists of all σ such that (n3w3)∗(σ) is not a union of n3w3-cycles.

• Λ consists of all σ such that (n3w3)∗(σ) is a union of n3w3-cycles.

In this and the following steps, we consider Γ; we postpone the treatment of Λ until
Step 7. We partition Γ further into two subfamilies:

• Γ0 is the family of all σ ∈ Γ with the property that there is an element x in
D := (n3w3)∗(σ) such that s3e3(x) /∈ D and such that either of the following holds:

(1) se2(x) ∈ D and n2e(x), ne2(x) /∈ D.

(2) s2e(x) ∈ D and s2w(x), sw2(x) /∈ D.

• ΓR = Γ \ Γ0.

See Figure 16 for an illustration.
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x

z1

z0

z−1

z−2y−1

y0

∗

∗
∗

Figure 16: The situation in a set σ around a vertex x satisfying (1). Elements marked
with stars are not in σ by assumption. z−1, z−2 ∈ σ and n2(x) 6∈ σ by Lemma 5.2; y−1 6∈ σ
by Lemma 5.7. Note that z0 is unblocked.

Step 5: Getting rid of Γ0

First, consider the family Γ0. For any set D, let Γ0(D) be the family of sets σ in Γ0 such
that (n3w3)∗(σ) = D.

x0

x1x2

x3

z2

z1

z0

z−1

z−2y−1

y0

y1

y2

∗

∗
∗

x0

x1x2

x3x4

z3

z2

z1

z0

z−1

z−2y−1

y0

y1

y2

y3

∗

∗
∗

Figure 17: The cases k = 3 (on the left) and k = 4 (on the right) in the proof of Lemma 5.8.
In both cases, either xk 6∈ σ or yk−1 ∈ σ. The dotted path indicates the symmetry of the
construction.

Lemma 5.8. For each D, we have that Z(Γ0(D)) = 0. Hence Z(Γ0) = 0.

Proof. Assume that Γ0(D) is nonempty and let σ ∈ Γ0(D). Let x be an element in D
such that s3e3(x) /∈ D and such that (1) or (2) holds. By symmetry, we may assume
that (1) holds. Lemma 5.7 yields that we cannot have that s2e(x) and se2(x) are both
in D, as this would imply that s3e3(x) ∈ D. In particular, (1) and (2) are mutually
exclusive. We obviously have that x ∈ σ. Moreover, Lemma 5.2 yields that z−1 := se2(x)
and z−2 := s2e4(x) are both in σ.

We illustrate the following construction in Figure 17. For i ≥ 0, define elements
xi, yi, zi as follows: Let x0 := x, x1 := n3(x), and xi = n3w3(xi−2) for i ≥ 2. Moreover,
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let y2i+1 = s2e(x2i+2) and y2i = se2(x2i+1) for i ≥ 0. We also define y−1 := s2e(x0); this
element is not present in D. Finally, let z2i = ne(x2i) and z2i+1 = sw(x2i+1). Note that
the definitions of z−1 and z−2 align well with the definition of zi for i ≥ 0; see Figure 17.

Let k := kσ ≥ 1 be minimal such that either of the following holds:

• xk /∈ σ.

• yk−1 ∈ σ.

Such a k exists, because xj = s3e3(x0) for some j. Note that Lemma 5.2 applied to xi+1

implies that zi ∈ σ for 0 ≤ i ≤ k − 2; this is because yi /∈ σ. Since before, we know that
z−1 and z−2 belong to σ.

We want to prove the following:

(i) σ − zkσ−1 and σ + zkσ−1 both belong to Γ0(D).

(ii) kσ remains unchanged when zkσ−1 is added to or deleted from σ.

This will yield the lemma, because we may then form a perfect matching on Γ0(D) by
pairing σ − zkσ−1 with σ + zkσ−1.

To prove (i), we first show that the two sets belong to ∆. Write k := kσ. First, assume
that zk−1 /∈ σ and σ ∈ Γ0(D). We have that zk−1 is not blocked in σ. For k = 1, this is by
assumption. For k ≥ 2, two of the neighbors of zk−1 are also neighbors of xk−1 and hence
blocked, whereas the other two neighbors are nw(xk−2) and n2w2(xk−2). By Lemma 5.3,
these two elements are not present in σ. Moreover, thanks to xk−2, Lemma 5.2 is true for
zk−1 in σ + zk−1. Next, assume that zk−1 ∈ σ and σ ∈ Γ0(D). If σ − zk−1 is not in ∆,
then either we have that zk ∈ σ and xk−1 /∈ σ or we have that xk ∈ σ and yk−1 /∈ σ. By
construction, neither of these conditions can hold.

To conclude the proof of (i), note that zk−3 is in D; this is true also for k ≤ 2. In
particular, to prove that (n3w3)∗(σ − zk−1) = (n3w3)∗(σ + zk−1), it suffices to show that
zk−1 is unblocked in σ, which we did above.

It remains to prove (ii). Since k := kσ is defined in terms of {xj, yj−1, j ≥ 1}, things
may go wrong only if zk−1 = xj or zk−1 = yj−1 for some j ∈ [1, k]. Since zk−1 − xk =
yk−2 − xk−1, we have that zk−1 = xk if and only if yk−2 = xk−1, which is impossible.
Similarly, zk−1 = yk−1 if and only if yk−2 = zk−2, which is again impossible. It remains to
consider the case j < k.

First, suppose that zk−1 is equal to xj for some j < k. For j = 0 and k = 1, we have
that z0 = x0 if and only if z−1 = y−1, which is a contradiction, as z−1 ∈ σ and y−1 /∈ σ.
For k ≥ 2, we have that {s2e(zk−1), se

2(zk−1)} = {zk−2, xk−2} ⊂ σ. Yet, either s2e(xj) or
se2(xj) equals yj−1, which is not in σ, a contradiction.

Next, suppose that zk−1 is equal to yj−1 for some j < k. If j ≥ 2, then s3e3(yj−1) =
yj−3, which is not in σ, contradicting the fact that s3e3(zk−1) = zk−3 ∈ σ. Suppose that
j = 1; hence zk−1 = y0. If k is odd, then s3(zk−1) = yk−2 /∈ σ. However, s3(y0) = z−1 ∈ σ,
which is a contradiction. If k is even, then s4e2(zk−1) = yk−3 /∈ σ. However, s4e2(y0) =
z−2 ∈ σ, another contradiction. This concludes the proof of (ii), and we are done.
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Step 6: Relating ΓR to a family of rhombus tilings

x0,0

x1,0

x1,1

x2,0

*

*

x0,1

x0,0

x1,0

x1,1

x2,0

*

*

x0,1

Figure 18: The two possibilities for a set σ around a vertex x := x0,0 satisfying (1’).
Elements marked with stars are not in σ either by assumption or by Lemma 5.7. x1,0, x2,0 ∈
σ by Lemma 5.2; x0,1 ∈ σ by the fact that x0,1 ∈ (n3w3)∗(σ) and s3e3(x0,1) is blocked in
σ by x2,0; x1,1 ∈ σ again by Lemma 5.2.

We analyze ΓR. A set σ in Γ belongs to this family if and only if every element x in
(n3w3)∗(σ) such that s3e3(x) /∈ (n3w3)∗(σ) satisfies either of the following two properties:

(1’) se2(x) ∈ (n3w3)∗(σ) and either n2e(x) or ne2(x) belongs to (n3w3)∗(σ).

(2’) s2e(x) ∈ (n3w3)∗(σ) and either s2w(x) or sw2(x) belongs to (n3w3)∗(σ).

See Figure 18. By Lemma 5.7, se2(x) and s2e(x) cannot both belong to (n3w3)∗(σ). In
particular, (1’) and (2’) cannot hold simultaneously.

Given a 〈u, v〉-invariant set ρ, we refer to the set of cosets of 〈u, v〉 contained in ρ as
ρ modulo 〈u, v〉.
Lemma 5.9. ΓR is the family of balanced 〈u, v〉-invariant rhombus tilings modulo 〈u, v〉
such that the first axis is not equal to (3, 3).

Proof. First, suppose that σ coincides with a balanced rhombus tiling modulo 〈u, v〉 in
which the first axis is not equal to (3, 3). One easily checks that σ = (n3w3)∗(σ), because
all elements outside σ are blocked; consider Figure 2. Since (3, 3) is not the first axis of
the tiling, there is an element x ∈ σ such that π(x), π2(x) ∈ σ, where π is either s2e

or se2. Since there are no anti-diagonals {q, sw(q)} in a rhombus tiling, it follows that
s3e3(x) /∈ σ. As a consequence, σ belongs to Γ. To see that σ belongs to ΓR, apply
Proposition 2.1 to deduce that (1’) or (2’) holds for any x ∈ σ.

Next, let σ be a set in ΓR. We want to prove that σ forms a rhombus tiling as described
in the lemma. Before proceeding, we observe that if σ forms a balanced rhombus tiling
modulo 〈u, v〉 in which the first axis is equal to (3, 3), then σ is a union of n3w3-cycles
and hence in Λ rather than in Γ.

Let x0 be an element in (n3w3)∗(σ) such that s3e3(x0) /∈ (n3w3)∗(σ). Hence (1’) or
(2’) holds and x0 ∈ σ. By symmetry, we may assume that (1’) holds. As in the previous
section, Lemma 5.2 yields that se2(x0) and s2e4(x0) both belong to σ.
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We have that exactly one of n2e(x0) and ne2(x0) belongs to (n3w3)∗(σ), because if
both were present, then they would be part of an se-cycle in (n3w3)∗(σ), which would
block s2e4(x0). Let x1 be the one of these two elements that belongs to (n3w3)∗(σ).
Since s3e3(x1) ∈ {se4(x0), s

2e5(x0)}, this element is blocked by s2e4(x0) and hence not
in (n3w3)∗(σ). In particular, x1 ∈ σ. Moreover, s2e(x1) ∈ {e2(x0), se

3(x0)}, which means
that this element is blocked by se2(x0) and hence not in (n3w3)∗(σ) either. As a conse-
quence, se2(x1) ∈ σ. Since σ belongs to ΓR, as opposed to Γ0, it follows that x1 satisfies
(1’).

Proceeding inductively, we obtain a sequence (xj : j ≥ 0) such that each xj satisfies
(1’) and belongs to σ and such that xj+1 ∈ {ne2(xj), n

2e(xj)}. Since xj = xl clearly
implies that xj−1 = xl−1, we obtain that there is a k such that x0 = xk. In particular, the
sequence is periodic and can be extended to all j ∈ Z by defining xj := xj+k for negative
j.

Now, let (yj : j ∈ Z) be any periodic sequence of elements in σ \ (se)∞(σ) such that
yj+1 ∈ {ne2(yj), n

2e(yj)} for all j ∈ Z. By Lemma 5.2, for each j, either s2e(yj) or se2(yj)
belongs to σ. Suppose that there are distinct indices i and j such that se2(yi), s

2e(yj) ∈ σ.
By periodicity, we may assume that j = i+ 1. However,

s2e(yi+1) ∈ {s2e(ne2(yi)), s
2e(n2e(yi))} = {se3(yi), e

2(yi)},
which means that s2e(yi+1) and se2(yi) block each other. Hence there is a fixed δ ∈
{se2, s2e} such that δ(yj) ∈ σ for all j ∈ Z. Moreover, with y′j = δ(yj), we obtain
a new periodic sequence (y′j : j ∈ Z) of elements in σ \ (se)∞(σ) such that y′j+1 ∈
{ne2(y′j), n

2e(y′j)} for all j ∈ Z.
Write x0,j := xj . For each j, let εj ∈ {ne2, n2e} be such that εj(x0,j−1) = x0,j .

Induction and the above discussion yield a set {xi,j : i ≥ 0, j ∈ Z} of elements in σ
and functions δi ∈ {se2, s2e} for i ≥ 1 such that xi,j = δi(xi−1,j) = εj(xi,j−1). Clearly,
(xi,j : i ≥ 0) is periodic for each j, which yields that we may extend our set to all i and
hence obtain a set {xi,j : i, j ∈ Z}. Viewing this set as a subset ρ of Z

2 in the natural
manner, identifying the coset x0,0 with any of its members, we may apply Proposition 2.1
to deduce that ρ is a balanced rhombus tiling. Since each element in Z

2 \ ρ is adjacent to
some element in ρ, we conclude that σ must coincide with ρ modulo 〈u, v〉.

Step 7: Proceeding with the family Λ

The remaining family is Λ, which consists of all independent sets σ such that (n3w3)∗(σ)
is a union of n3w3-cycles.

Recall that d = gcd(u1 − u2, v1 − v2). By Lemma 4.4, the number of orbits in Vu,v
under the permutation se is equal to d. Let γ0, . . . , γd−1 be these orbits, arranged such
that the element (0, i) belongs to γi for 0 ≤ i ≤ d− 1. Note that γ0, . . . , γd−1 are exactly
the se-cycles (equivalently, the nw-cycles) in Vu,v. We identify two cases:

• The exponent |Vu,v|/d of se is not divisible by three.

• The exponent |Vu,v|/d of se is divisible by three.
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We deal with the two cases in Step 8 and Steps 9-12, respectively, the former case being
by far the easier.

Step 8: Relating the case 3 6 | |Vu,v|
d to Σ(Cd)

First, suppose that the exponent of se is not divisible by three, meaning that |Vu,v|/d is not
a multiple of three. In this case, γ0, . . . , γd−1 are the n3w3-cycles in Vu,v. As a consequence,
a set σ belongs to Λ if and only if (se)∗(σ) is a union of se-cycles. Moreover, we also have
that there are no balanced 〈u, v〉-invariant rhombus tilings with one axis equal to (3, 3);
hence Z(ΓR) = |R+

u,v| − |R−
u,v| by Lemma 5.9.

It is clear that two se-cycles γi and γj contain elements blocking each other if and
only if j − i ≡ ±1 (mod d). In particular, for a given set τ ⊆ Zd, Xτ :=

⋃
i∈τ γi equals

(se)∗(σ) for some σ ∈ Λ if and only if τ ∈ Σ(Cd), i.e., τ is an independent set in the cycle
graph Cd. Let Λ(τ) be the family of all σ ∈ Λ such that (se)∗(σ) = Xτ .

For τ ∈ Σ(Cd), write 0 × τ := {(0, i) : i ∈ τ}. For σ ∈ Λ(τ) \ {0 × τ}, let r := rσ be
minimal such that (σ \ (0 × τ)) ∩ γr is nonempty. It is clear that σ stays in Σ(Xτ ) and
that rσ remains the same if (0, rσ) is added to or deleted from σ. In particular, we obtain
a perfect matching on Λ(τ) \ {0 × τ} by pairing σ − (0, rσ) with σ + (0, rσ).

Taking the union of all these matchings, we obtain a matching on Λ such that a set
σ is unmatched if and only σ = 0 × τ for some τ ∈ Σ(Cd). By a result due to Kozlov [9,
Prop. 5.2], we have the following consequence:

Lemma 5.10. If |Vu,v|/d is not a multiple of three, then Z(Λ) = (−1)dθd. �

Recall that d∗ = gcd(u1 + u2, v1 + v2). Since dd∗ divides

det

(
u1 − u2 v1 − v2

u1 + u2 v1 + v2

)
= ±2|Vu,v|,

we have that d∗ is not divisible by three. As a consequence, θd∗ = −1, which yields that
(−1)dθd = −(−1)dθdθd∗ , As a consequence, combining Lemma 5.10 with Lemmas 5.1, 5.8,
and 5.9, we obtain Theorem 1.2 in this particular case.

Step 9: Proceeding with the case 3 | |Vu,v|
d

From now on, assume that the exponent of se is a multiple of three, meaning that three
divides |Vu,v|/d. For a given set σ ∈ Λ, write σ̂ = σ \ (se)∞(σ). Let K(σ) be the set
of (ne, (n3w3)∗(σ̂))-free elements. Hence we first remove all se-cycles and then apply, in
order, (n3w3)∗ and (ne)∗ to the resulting set. See Figure 19 for an example.

Lemma 5.11. If σ belongs to Λ, then so does K(σ). Moreover, (se)∞(K(σ)) = ∅.
Proof. K(σ) is obviously a union of n3w3-cycles, being defined as (ne)∗ applied to such a
union. To settle the first statement in the lemma, it remains to prove that K(σ) belongs
to ∆. By Lemma 5.2, it suffices to prove that either s2e(x) or se2(x) belongs to K(σ)
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K(σ) := (ne)∗(σ′)

Figure 19: On the left a set σ ∈ Λ12,12 and the subset σ̂ obtained by removing the element
marked with a star; this element belongs to (se)∞(σ). In the middle and on the right, we
apply (n3w3)∗ to σ̂ and then (ne)∗ to the result; added elements are marked with stars.
se-cycles fully outside the sets are marked with “-”.

y

x

x′

y′

z1

z2

y

x

x′

y′

z1

z2

Figure 20: The situation in the proof of Lemma 5.11 around the vertex x in K(σ). Given
the situation illustrated on the left, we deduce that z1, z2 6∈ (n3w3)∗(σ̂), which yields the
situation illustrated on the right. In particular, x′ ∈ K(σ).

for each x ∈ K(σ); note that this will imply also the second statement in the lemma. By
Lemma 5.5, we are done if x ∈ (n3w3)∗(σ̂); thus assume that x ∈ K(σ) \ (n3w3)∗(σ̂). In
particular, y := sw(x) ∈ K(σ).

By an induction argument on the number of sw-steps needed to get to an element in
(n3w3)∗(σ̂), we may conclude that y′ := s2e(y) or x′ := se2(y) belongs to K(σ); apply
Lemma 5.5 in the base case. We want to prove that x′ belongs to K(σ); this will yield
the desired result, as x′ = s2e(x). If y′ /∈ K(σ), then we are done; thus assume that
y′ ∈ K(σ). This means that the situation is as in the picture on the left in Figure 20.
Since y′ = sw(x′), we have that x′ belongs to K(σ) unless it is blocked; apply Lemma 4.2
first to σ′ := (n3w3)∗(σ̂) and then to (ne)∗(σ′).

Now, the neighbors of x′ are se(y), s2e2(y), se(x), and s2e2(x). The first two neighbors
are blocked by s2e(y); hence the remaining neighbors z1 := se(x) and z2 := s2e2(x) have
the property that sw(zi) /∈ K(σ). As a consequence, zi belongs to K(σ) if and only if
zi belongs to (n3w3)∗(σ̂). Yet, applying Lemma 5.5 to zi, we then obtain that s2e(zi) or
se2(zi) belongs to (n3w3)∗(σ̂) and hence to K(σ). By Lemma 4.2, this is a contradiction,
because both these elements are blocked by s3e3(x), which belongs to K(σ). It follows
that x′ is not blocked in K(σ) and hence belongs to K(σ) as desired.
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Step 10: Partitioning Λ into subfamilies Λ(K)

For each possible K, define Λ(K) as the family of sets σ in Λ(K) such that K(σ) = K.
First, note that σ belongs to Λ(∅) if and only if (se)∗(σ) is a union of se-cycles. In
particular, we may deduce the following, using the same approach as in Step 8:

Lemma 5.12. We have that Z(Λ(∅)) = (−1)dθd. �

Next, consider a nonempty K. Let τK be the set of indices i such that K ∩ γi is
nonempty. We have two cases:

• τK is nonempty and not equal to the full set Zd.

• τK is equal to Zd.

The remaining case τK = ∅ (i.e., K = ∅) was handled in Lemma 5.12.

Step 11: Relating the case τK 6∈ {∅,Zd} to a family of rhombus

tilings

For a set σ and an index i, write σ(i) := σ ∩ γi. We view i as an element in Zd; hence i
and i+ d are identified. Suppose that Λ(K) 6= ∅ and that τK is nonempty and not equal
to Zd. Clearly, d ≥ 2. Moreover, whenever i ∈ τK , either i − 1 or i + 1 belongs to τK .
Namely, otherwise any given element x in K(i) would not satisfy Lemma 5.2, which would
contradict Lemma 5.11. In particular, since τK 6= Zd, we cannot have d = 2. It follows
that we may assume that d > 2.

We claim that for any two consecutive elements i and i + 1, at least one of them
belongs to τK . Namely, suppose that i + 1 /∈ τK and i − 1 ∈ τK . Let x ∈ K(i−1). Then
there is no element blocking x′ := se2(x) in K; two neighbors of x′ are in γi+1, whereas
the other two neighbors are se(x) and s2e2(x), which are not in K by Lemma 5.3 (and
Lemma 5.11). Now, suppose that x′ is not in K. Then Lemma 5.2 implies that s2e(x) is
in K. However, applying ne to this element yields x′, which is a contradiction to x′ not
being (ne, K)-free.

We may write τK as a disjoint union of “blocks” of the form {i + 1, i + 2, . . . , j − 1}
such that i, j /∈ τK . Let a1, . . . , ar be the elements outside τK in increasing order and let
Bk be the block between ak and ak+1. Hence Bk = {ak + 1, . . . , ak+1 − 1} for 1 ≤ k < r
and Br = {ar + 1, ar + 2, . . . , d + a1 − 1} (computed modulo d). For an example, see
Figure 19. Assuming that the upper left corner is (0, 0), we obtain r = 2, a1 = 1, and
a2 = 7; hence b1 = {2, 3, 4, 5, 6} and b2 = {8, 9, 10, 11, 0}.

Let σ ∈ Λ(K). Some element from γai+1 belongs to σ̂ for each i, because there are
elements x in γai+1 that are (ne, (n3w3)∗(σ̂))-free, which is not true for sw(x).

Lemma 5.13. Let ΛR be the union of all families Λ(K) such that the corresponding blocks
B1, . . . , Br have size two. Then ΛR is the family of balanced 〈u, v〉-invariant rhombus
tilings modulo 〈u, v〉 such that the first axis is equal to (3, 3).
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Proof. Consider a set K as in the lemma. Clearly, d is a multiple of three and r = d/3.
Moreover, there is a constant a ∈ {0, 1, 2} such that Bk = {3k − a, 3k − a + 1} and
3k − a− 1, 3k − a + 2 /∈ τK for k ∈ [r]. By symmetry, we may assume that a = 2; hence
Bk = {3k − 2, 3k − 1} and Zd \ τK = {0, 3, . . . , d− 3}.

Let x0 ∈ σ̂(3k−2). By Lemma 5.2, either s2e(x0) or se2(x0) belongs to σ̂. Since
s2e(x0) ∈ γ3k−3, we must have that x1 := se2(x0) belongs to σ̂. Using the same argument
and the fact that 3k /∈ τK , we obtain that x2 := s2e(x1) = s3e3(x0) belongs to σ̂.
Proceeding inductively, we may deduce that the entire n3w3-cycles containing x0 and x1

are included in σ̂. This is true for every choice of k. Moreover, there are no other elements
in σ̂(3k−2) or σ̂(3k−1), as these are all blocked by the n3w3-cycles containing x0 and x1. In
particular, σ = σ̂ = K(σ).

γ1 γ2 γ4 γ5 γ1 γ2 γ4 γ5 γ1 γ2 γ4 γ5

∗

∗

Figure 21: The three possible ways the two sets σ(1) ∪ σ(2) and σ(4) ∪ σ(5) can be related.
In the third case, the elements marked with stars are not blocked and hence belong to
K(σ).

It remains to prove that the condition in Proposition 2.1 is satisfied for every element in
σ. The condition holding for the south-east and the north-west directions is an immediate
consequence of the above discussion. For the other two directions, note that the two sets
σ(3k−2) ∪ σ(3k−1) and σ(3k+1) ∪ σ(3k+2) may relate to each other in three different ways;
see Figure 21 (this is the case k = 1). However, in the rightmost case in the figure, we
have that the elements marked with stars belong to K(σ), as they are not blocked. This
is a contradiction to the fact that K(3k) is empty. It follows that only the two leftmost
cases are possible. Inspecting these cases, one easily checks that the condition in the
proposition holds for the south-west and the north-east directions.

Conversely, one easily checks that a rhombus tiling modulo 〈u, v〉 as in the lemma
belongs to ΛR.

Lemma 5.14. If some block Bi has size at least three, then Z(Λ(K)) = 0.

Proof. Let Bi be a block of size at least three; we may assume that k = 1 and B1 =
{1, . . . , t} for some t ≥ 3. We divide the proof into steps:

Step I

First, let us get rid of all σ in Λ(K) such that σ(1) is not a full n3w3-cycle; the procedure
is illustrated in Figure 22. Let Λ1(K) be the family of such σ. For σ ∈ Λ1(K), let x1 :=
x1(σ) ∈ σ(1) be minimal (with respect to some total order) such that x3 := n3w3(x1) /∈ σ(1).
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Figure 22: The situation in Step I of the proof of Lemma 5.14. As illustrated in the
picture on the left, we can match with the element y2 whenever z3 6∈ σ or p2 ∈ σ. For the
remaining case illustrated on the right, we can match with the element z1.

Since σ(0) is empty, Lemma 5.2 yields that y0 := se2(x1) belongs to σ(2). Define a matching
on Λ1(K) by pairing with the element y2 := n3w3(y0) whenever possible; matched pairs
have the form {σ − y2, σ + y2}. Note that y2 ∈ γ2. In particular, the definition of x1(σ)
does not depend on whether y2 is present or not.

We may always add y2 to σ without ending up outside Λ1(K), because x1 assures
that y2 satisfies Lemma 5.2. Moreover, y2 is unblocked in σ, as it belongs to the same
n3w3-cycle in K(2) as y0. Hence problems may occur only if we remove y2 from σ. Indeed,
we end up outside Λ1(K) if and only if z3 := n2w(y2) ∈ σ(3) and p2 := ne(y2) /∈ σ(4).
Namely, this is the one situation in which z3 does not satisfy Lemma 5.2 for σ − y2.

Now, let Λ̂1(K) be the family of unmatched sets in Λ1(K). With notation as above
for a given set σ ∈ Λ̂1(K), consider the element z1 := s3e3(z3); z1 belongs to the same
n3w3-cycle in K(3) as z3 and is hence unblocked in σ. We may add or delete z1 and still

have a set in Λ̂1(K). Namely, z1 satisfies Lemma 5.2, thanks to y0. Moreover, the removal
of z1 may alter the status with respect to Lemma 5.2 of no other elements but y2 and
p2, and y2 already satisfies this lemma thanks to x1, whereas p2 is not even present in σ.
Hence we obtain a perfect matching on Λ̂1(K) by pairing σ − z1 with σ + z1.

Step II

Let Λ2(K) be the remaining family; thus Λ2(K) = Λ(K) \ Λ1(K). Note that σ(1) is an
n3w3-cycle whenever σ ∈ Λ2(K). Applying Lemma 5.2 to each element in σ(1), we may
deduce that σ(2) also has this property. There are now two cases for σ ∈ Λ2(K):

• γ4 is contained in (se)∞(σ); hence γ4 forms a full se-cycle in (se)∗(σ). Let Λ2,1(K)
be the family of such sets σ.

• γ4 is not contained in (se)∞(σ). Let Λ2,2(K) be the family of such sets σ.
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Step II.a

Define a matching on Λ2,1(K) by pairing with the element (0, 4) whenever possible. A set
σ remains unmatched if and only if σ(4) = {(0, 4)}. We will get rid of the family Λ4(K)
of such sets in Step III below.

γ1 γ4

y0

x1

y2

z1

p2

q1

Figure 23: The situation in Step II.b of the proof of Lemma 5.14. We can match with the
element z1 whenever p2 6∈ σ or q1 ∈ σ. Compare to the situation in Step I; see Figure 22.

Step II.b

For σ ∈ Λ2,2(K), suppose that there is an element y2 in σ(2) such that either p2 := ne(y2)
does not belong to σ(4) or q1 := e3(y2) does belong to σ(5). We assume that we have
chosen y2 := y2(σ) to be minimal with this property (with respect to some total order of
σ(2)).

We claim that we may add or delete z1 := se2(y2) without ending up outside Λ2,2(K)
and without altering the value of y2(σ). For the first part of the claim, Lemma 5.2
is satisfied for z1 thanks to y0 and for p2 – if present – thanks to q1. Moreover, z1 is
unblocked in σ by assumption and belongs to K(σ−z1) thanks to x1 := s2e(y2) = sw(z1).
For the second part of the claim, just note that z1 belongs to γ3 and that no elements
from this set are used in the definition of y2(σ). See Figure 23 for an illustration.

As a consequence, we obtain a matching on Λ2,2(K) by pairing with the element y2(σ).

Step III

The family Λ3(K) of unmatched elements in Λ2,2(K) consists of all σ such that, for every
y2 in σ(2), p2 := ne(y2) belongs to σ(4) and q1 := e3(y2) does not belong to σ(5). It follows
by Lemma 5.2 applied to p1 that z1 := se2(y2) belongs to σ(3). As a consequence, σ(i)

forms a full n3w3-cycle for i = 1, 2, 3, 4, whereas σ(5) is empty. Moreover, σ(i) is uniquely
determined by σ(1) for i = 2, 3, 4.

To conclude the proof, it suffices to prove that Z(Λ3(K)) + Z(Λ4(K)) = 0, where
Λ4(K) is the family of unmatched sets from Step II.b. Now, we obtain a bijection ϕ from
Λ3(K) to Λ4(K) by removing σ(3) and σ(4) – an even number of elements – and adding in
the single element (0, 4). Namely, ϕ is certainly well-defined and surjective, and injectivity
follows from the observation just made about σ(i) being uniquely determined by σ(1). See
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ϕ(σ) ∈ Λ4
u,v(K)

Figure 24: The function ϕ applied to a set σ in Λ3(K) in Step III of the proof of
Lemma 5.14; the elements marked with stars in the left-hand picture are replaced with
the single star-marked element in the right-hand picture.

Figure 24 for an illustration. Since the parity of the size of each set alters under ϕ, we
obtain that Z(Λ3(K)) = −Z(Λ4(K)). As a consequence, we are done.

Step 12: Relating the case τK = Zd to Λ(∅)
The very final step is that τK equals the full set Zd. This means that K(i) forms an
n3w3-cycle for each i. There is a set K with this property such that Λ(K) 6= ∅ if and only
if d∗ := gcd(u1 + u2, v1 + v2) is a multiple of three. Namely, K(i) and K(i+1) do not block
if and only if K(i+1) = se2(K(i)) = n2w(K(i)). Since this must hold for all i, we have that
K exists if and only if the lattice I3 generated by (1, 2) and (−2,−1) contains 〈u, v〉. This
is easily seen to be equivalent to u1 + u2 and v1 + v2 both being divisible by three. K is
then equal to either of the three cosets of Î3 := I3/〈u, v〉, i.e.,

K = Î
(q)
3 := eq(Î3) = {(i, j) ∈ Vu,v : (i+ j) mod 3 = q},

where q ∈ {0, 1, 2}.
Recalling the discussion from the very beginning of Section 5, we note that there is

no loss of generality assuming that d is divisible by three. Otherwise, just start from
the beginning, replacing u2 and v2 with −u2 and −v2, respectively, thereby swapping the
values of d and d∗.

Remark. Before proceeding, note that if d∗ is not a multiple of three, then we are done.
Namely, collecting values from Lemmas 5.1, 5.8, 5.9, 5.12, 5.13, and 5.14, we obtain
Theorem 1.2; in Lemma 5.12, note that (−1)dθd = −(−1)dθdθd∗ , as d∗ is not a multiple
of three.

Lemma 5.15. Suppose that d and d∗ are both multiples of three. Then

Z(Λ(Î
(q)
3 )) = −Z(Λ(∅))

the electronic journal of combinatorics 13 (2006), #R67 35



for q ∈ {0, 1, 2}. As a consequence, Z(Λ) equals −2(−1)dθd = −(−1)dθdθd∗ plus the
number of balanced 〈u, v〉-invariant rhombus tilings modulo 〈u, v〉 such that the first axis
is equal to (3, 3).

Remark. This implies Theorem 1.2; collect values from this lemma and Lemmas 5.1,
5.8, and 5.9.

Proof. The latter statement in the lemma follows from the former. To see this, apply
Lemmas 5.12, 5.13, and 5.14 and use the fact that there are three choices for q. The
contribution of the rhombus tilings in Lemma 5.13 being positive is because a rhombus
tiling with one axis equal to (3, 3) contains an even number of cosets of 〈u, v〉.

We want to prove that the partition function of the union Ω := Λ(̂I
(q)
3 )∪Λ(∅) vanishes.

By symmetry, we may assume that q = 0.
Let Ω′ be the subfamily of Ω consisting of all σ with the property that there is an

index i such that σ(i) ∩ (se)∞(σ) contains an element x different from (0, i). We obtain
a perfect matching on Ω′ by pairing with (0, i) for the smallest index i with the given
property.

Write c(i) := Î3 ∩ γi; it is clear that c(i) is an n3w3-cycle. We divide the remaining
family Ω1 := Ω \ Ω′ into subfamilies in the following manner: For any σ ∈ Ω1, let
a(σ) := (ai(σ) : i ∈ [0, d/3 − 1]) be the sequence defined as follows:

ai(σ) =




∞ if σ(3i) = {(0, 3i)} and (0, 3i) ∈ (se)∞(σ);
1 if σ(3i) = c(3i);
0 if σ(3i) = ∅;
−1 otherwise.

For a vector a ∈ {−1, 0, 1,∞}d/3, let Ω1(a) be the subfamily of Ω1 consisting of all σ such
that a = a(σ). Our goal is to prove that

Z(Ω1(a)) =

{
0 if ai ∈ {−1, 0} for some i;
(−1)|{k:ak=∞}| if ai ∈ {1,∞} for all i.

Summing over all a, we will obtain the desired result.
We divide into a number of cases:

(A) ai = −1 for some i. Let i be maximal with this property. Let σ ∈ Ω1(a). By
construction, there exists an element x in σ(3i) \ (se)∞(σ) such that n3w3(x) /∈ σ. Let
x := x(σ) be maximal with this property (with respect to some total order). Let
Ω1,x(a) be the subfamily of Ω1(a) consisting of all σ satisfying x(σ) = x.

Consider a set σ in Ω1,x(a). By Lemma 5.2, at least one of the two elements se2(x)
and s2e(x) belongs to σ. Let Ω1,x,e(a) be the subfamily consisting of those σ that
satisfy se2(x) ∈ σ and write Ω1,x,s(a) := Ω1,x(a) \ Ω1,x,e(a).

Writing y0 := se2(x) and x1 := x, the situation for a set σ in Ω1,x,e(a) is almost
identical to that in Step I of the proof of Lemma 5.14; see Figure 22. The one
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difference is that σ(3i−1) is not necessarily empty, whereas the corresponding set σ(0)

in the proof of Lemma 5.14 is empty. However, σ(0) being empty is used in that proof
only to conclude that y0 ∈ σ, which we already know in the present case.

Applying the procedure in Step I of the proof of Lemma 5.14, we obtain a perfect
matching on Ω1,x,e(a). Namely, the elements y2 and z1 used in the matching belong
to γ3i+1 and γ3i+2, respectively, and hence do not have any impact on x(σ) or a(σ).
Moreover, y2 is different from y0, as otherwise x = n3w3(x), which is impossible.
Hence y2 and z1 have no impact on whether σ belongs to Ω1,x,e(a) or Ω1,x,s(a).

x1

x3

y0

y2

z3

p2 x1

x3

y0

y2

z1

z3

p2

Figure 25: The situation for a set σ in Ω1,x,s(a) in case (A) of the proof of Lemma 5.15;
x1 = x. The reflection about the dotted line yields the situation in Step I of the proof of
Lemma 5.14; compare to Figure 22.

For the family Ω1,x,s(a), redefine y0 as s2e(x). Since se2(x) /∈ σ, we must have that
y0 ∈ σ. Now, taking the reflection of the given configuration about the line through
x1 := x with slope in direction se, we again obtain the situation in Step I of the
proof of Lemma 5.14; see Figure 25. Proceeding as in that proof, we obtain a perfect
matching on Ω1,x,s(a). Here, one should note that z1 := sw(x) does have an impact
on whether σ belongs to Ω1,x,s(a) or Ω1,x,e(a) if z1 = se2(x), but if this is true, then
p2 = x ∈ σ, where p2 is defined as in Figure 25. In particular, the situation in the
picture on the right in the figure never occurs, meaning that we never match with z1.

(B) aj 6= −1 for each j and ai = 0 for some i. Let i be maximal with this property. We
identify three different subcases:

• ai−1 = ∞. In this case, all σ in Ω1(a) have the property that σ(3i−2) and
σ(3i) are empty. As a consequence, the only possibilities for σ(3i−1) are ∅ and
{(0, 3i− 1)}. In terms of partition functions, these two possibilities cancel out;
thus Z(Ω1(a)) = 0.

• ai−1 = 0. Then the possibilities for σ(3i−2) ∪ σ(3i−1) are ∅, c(3i−2) ∪ c(3i−1),
{(0, 3i− 2)}, and {(0, 3i− 1)}. Since |σ(3i−2) ∪ σ(3i−1)| is even in two cases and
odd in two cases, it follows that Z(Ω1(a)) = 0.

• ai−1 = 1. First, we note that there exists a perfect matching on the subfamily of
Ω1(a) consisting of those σ with the property that σ(3i−2) is nonempty. Namely,
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γ3i−3 γ3i

y

z

y′

Figure 26: The case that ai = 0, ai−1 = 1, and y ∈ σ(3i−2) in case (B) of the proof of
Lemma 5.15.

if y ∈ σ(3i−2), then we may add or delete z := n2w(y) ∈ γ3i−1 without ending
up outside Ω1(a). To see this, note that n2w(z) belongs to γ3i and is hence not
in σ, whereas y′ := nw2(z) already satisfies Lemma 5.2 thanks to the fact that
s2e(y′) ∈ c(3i−3) = σ(3i−3). See Figure 26 for an illustration.

What remains is the subfamily consisting of all σ such that σ(3i−2) is empty.
The situation then coincides with that for the case ai−1 = ∞ above, meaning
that ∅ and {(0, 3i− 1)} are the two possibilities for σ(3i−1). Again, the partition
function vanishes.

γ3k γ3k+3

y

z′

z

p

Figure 27: A set σ in Ω1,k(a) in case (C) of the proof of Lemma 5.15. We have that z 6∈ σ
or p ∈ σ.

(C) ai ∈ {1,∞} for each i. For k in [0, d/3 − 1], let Ω1,k(a) be the subfamily of Ω1(a)
consisting of all σ such that σ(3k−1) is nonempty and such that σ(3i−1) is empty for
all i ∈ [0, k − 1]. Note that σ(3k) = c(3k), as σ(3k−1) is nonempty.

Let z′ be maximal in σ(3k−1) with respect to some total order. We claim that we may
add or delete y := ne(z′) ∈ σ(3k+1) without ending up outside Ω1,k(a) or affecting the
maximality of z′; see Figure 27. The latter is obvious. To prove the former, note
that s2e(y) ∈ σ(3k) and that z := n2w(y) cannot belong to σ(3k+2) unless ak+1 = 1
and hence p := se2(z) ∈ σ(3k+3); thus Lemma 5.2 is satisfied both in σ − y and in
σ + y. As a consequence, matching with y yields a perfect matching on Ω1,k(a).

The remaining family Ω2(a) consists of all σ in Ω1(a) such that σ(3k−1) is empty for
all k. This implies that σ(3k+1) = c(3k+1) if σ(3k) = c(3k) (equivalently, ak = 1) and
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σ(3k+1) = ∅ if σ(3k) = (0, 3k) (equivalently, ak = ∞). It follows that Ω2(a) consists of
the single element

σa := {(0, 3k) : ak = ∞} ∪
⋃

k:ak=1

(c(3k) ∪ c(3k+1)).

Since c(3k) and c(3k+1) have the same number of elements, we may conclude that
Z(Ω1(a)) = Z(Ω2(a)) = (−1)|{k:ak=∞}|.

6 Concluding remarks

Our main discovery is an enumerative connection between the simplicial complex Σu,v

and the family Ru,v of balanced 〈u, v〉-invariant rhombus tilings. Unfortunately, our proof
is quite technical in nature, ranging over several steps, and does not reveal much of the
inner structure of Σu,v. In particular, the following question remains unanswered:

• Is there a way to “understand” the connection between Σu,v and Ru,v?

We would be particularly interested in hearing about interpretations of this connection
in the language of statistical mechanics.

One may also consider other graphs with a grid structure. Fendley and Schoutens [3]
examined several such graphs and obtained exact results for octagon-square and enneagon-
triangle grids. In fact, they managed to compute the (co-)homology of the relevant inde-
pendence complexes.

Another important example, closely related to the square grid Sm,n, is the “cylinder”
Cm,n = Im ×Cn, where Im is the graph obtained from Cm by removing the edge between
0 and m− 1. Hence we obtain Cm,n from Sm,n by removing the edge between (0, j) and
(m − 1, j) for every j ∈ Zn. As Fendley et al. observed [4], the independence complex
of Cm,n appears to have nice enumerative properties. Specifically, for m ≤ 11, all roots
of the transfer matrix associated to {Cm,n : n ≥ 1} are roots of unity; see Table 1. It
seems reasonable to conjecture that this is true in general. Moreover, the situation for
m ≤ 11 suggests that Z(Cm,n) = 1 for odd n unless gcd(m−1, n) is a multiple of three, in
which case Z(Cm,n) = −2; see Table 2. For even n, the situation appears to be far more
complicated; see Table 3 for the value of Z(Cm,n) for small m and small even n. So far,
we have been unsuccessful in our attempts to adapt our methods to Cm,n.

For the triangular grid, numerical computations [4] suggest that the partition function
(evaluated at z = −1) grows approximately as 1.14N , where N is the number of vertices
modulo the given periodicity. As a comparison, our results imply that |Z(Σm,n;−1)| ≤
Dm, where Dm ∼

(
1+

√
5

2

)m
≈ 1.618m, which is subexponential in the vertex size mn.

Hence the behavior of the triangular grid appears to be completely different from that
of the square grid. In this context, it is worth mentioning that the case z = +1 is
well-understood for the triangular grid, thanks to a beautiful result due to Baxter [1].
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Table 1: The characteristic polynomial Qm(t) of the transfer matrix associated to the
family {Z(Cm,n) : n ≥ 1} for small m. We multiply by (t+ 1) · (t4 + (−1)m) for optimal
display.

m (t+ 1) · (t4 + (−1)m) ·Qm(t)

1 (t4 − 1)(t3 + 1)

2 (t8 − 1)

3 (t8 − 1)(t2 − 1)

4 (t8 − 1)(t3 + 1)(t2 − 1)

5 (t10 − 1)(t8 − 1)

6 (t14 − 1)(t8 − 1)(t4 − 1)

7 (t18 − 1)(t12 − 1)(t4 + 1)(t3 + 1)(t2 − 1)

8 (t22 − 1)(t16 − 1)2(t4 − 1)(t2 − 1)

9 (t26 − 1)(t20 − 1)2(t14 − 1)(t10 + 1)(t4 + 1)

10 (t30 − 1)(t24 − 1)3(t18 − 1)2(t4 − 1)2(t3 + 1)

11 (t34 − 1)(t28 − 1)3(t22 − 1)4(t14 − 1)(t8 + 1)(t4 + 1)2(t2 − 1)

Table 2: Z(Cm,n) for m ≤ 11 and odd n.

n mod 6
Z(Cm,n) 1 3 5

1 1 −2 1
m mod 3 2 1 1 1

3 1 1 1

Further computational results appear in the work of van Eerten [11]. The grids under
consideration are square, hexagonal, and triangular grids along with their dimer counter-
parts, and for all but the first family, the growth at z = −1 appears to be exponential.
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Table 3: Z(Cm,n) for m ≤ 11 and even n.

n
Z(Cm,n) 2 4 6 8 10 12 14 16 18 20 22 24

1 −1 −1 2 −1 −1 2 −1 −1 2 −1 −1 2
2 −1 3 −1 3 −1 3 −1 3 −1 3 −1 3
3 1 −3 1 5 1 −3 1 5 1 −3 1 5
4 1 5 4 5 1 8 1 5 4 5 1 8
5 −1 −5 −1 3 9 −5 −1 3 −1 5 −1 3

m 6 −1 7 −1 7 −1 7 13 7 −1 7 −1 7
7 1 −7 4 1 1 8 1 1 22 −7 1 16
8 1 9 1 1 1 9 1 33 1 9 23 1
9 −1 −9 −1 −1 −11 −9 13 −1 −1 41 −1 −1

10 −1 11 2 3 −1 14 −1 3 38 11 −1 78
11 1 −11 1 −3 1 −11 15 13 1 −11 89 −3
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A The characteristic polynomial of Tm for small m

Fendley et al. [4] computed the characteristic polynomial Pm(t) of the transfer matrix Tm
for m ≤ 15. Since the size of Tm grows exponentially, it is hard to compute Pm(t) directly
from Tm for large m. Yet, by Theorem 3.4, we may instead compute Pm(t) by counting
rhombus tilings, which is a substantially easier task (indeed polynomial in m) thanks to
Theorem 2.6.

Define P̃m(t) = Pm(t)/gm(t), where gm(t) is defined as in Theorem 3.4. Using com-
puter, we have calculated P̃m(t) for m ≤ 50:

P̃1 = 1.

P̃2 = t4 − 1.

P̃3 = 1.

P̃4 = (t2 − 1)2(t4 − 1).

P̃5 = (t5 + 1)2.

P̃6 = (t4 − 1)(t6 − 1)3.

P̃7 = (t14 + 1)2.

P̃8 = (t2 − 1)2(t4 − 1)(t10 − 1)4.

P̃9 = (t9 − 1)4(t18 − 1)2.

P̃10 = (t4 − 1)(t5 − 1)2(t8 − 1)5(t14 − 1)5.

P̃11 = (t55 − 1)2(t22 + 1)4.

P̃12 = (t2 − 1)2(t4 − 1)(t6 − 1)3(t12 − 1)12(t18 − 1)6(t24 − 1)2.

P̃13 = (t26 − 1)4(t91 − 1)4(t13 + 1)4.

P̃14 = (t4 − 1)(t10 − 1)7(t14 − 1)2(t16 − 1)28(t22 − 1)7(t28 − 1)4(t7 + 1)4.

P̃15 = (t15 − 1)12(t30 − 1)6(t45 − 1)18(t5 + 1)2(t30 + 1)6.

P̃16 = (t2 − 1)2(t4 − 1)(t10 − 1)4(t14 − 1)32(t20 − 1)48(t26 − 1)8(t32 − 1)10

(t112 − 1)2.

P̃17 = (t17 − 1)4(t34 − 1)6(t136 − 1)8(t187 − 1)10(t34 + 1)2(t68 + 1)4.
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P̃18 = (t4 − 1)(t6 − 1)3(t9 − 1)8(t12 − 1)9(t18 − 1)101(t24 − 1)81(t30 − 1)9

(t36 − 1)16(t27 + 1)36.

P̃19 = (t19 − 1)4(t38 − 1)6(t133 − 1)4(t190 − 1)20(t247 − 1)14(t38 + 1)8(t95 + 1)10.

P̃20 = (t2 − 1)2(t4 − 1)(t5 − 1)2(t8 − 1)5(t14 − 1)5(t16 − 1)60(t22 − 1)250

(t28 − 1)120(t34 − 1)10(t40 − 1)28(t160 − 1)4(t220 − 1)14.

P̃21 = (t21 − 1)36(t42 − 1)26(t63 − 1)60(t84 − 1)144(t105 − 1)56(t14 + 1)2(t21 + 1)4

(t42 + 1)18.

P̃22 = (t4 − 1)(t14 − 1)11(t20 − 1)275(t22 − 1)4(t26 − 1)539(t32 − 1)176(t38 − 1)11

(t44 − 1)42(t55 − 1)14(t110 − 1)28(t11 + 1)8(t143 + 1)56.

P̃23 = (t46 − 1)40(t161 − 1)28(t184 − 1)4(t253 − 1)78(t322 − 1)84(t391 − 1)24

(t23 + 1)8(t46 + 1)10(t92 + 1)2.

P̃24 = (t2 − 1)2(t4 − 1)(t6 − 1)3(t10 − 1)4(t12 − 1)16(t18 − 1)114(t24 − 1)926

(t30 − 1)1044(t36 − 1)240(t42 − 1)12(t48 − 1)68(t72 − 1)18(t96 − 1)168

(t120 − 1)150.

P̃25 = (t25 − 1)4(t50 − 1)10(t125 − 1)10(t250 − 1)34(t325 − 1)220(t400 − 1)160

(t475 − 1)30(t5 + 1)2(t50 + 1)84(t125 + 1)2(t200 + 1)16.

P̃26 = (t4 − 1)(t13 − 1)12(t16 − 1)13(t22 − 1)637(t26 − 1)4(t28 − 1)2548(t34 − 1)1872

(t40 − 1)325(t46 − 1)13(t52 − 1)110(t91 − 1)28(t182 − 1)280(t286 − 1)2

(t143 + 1)80(t221 + 1)168.

P̃27 = (t9 − 1)4(t18 − 1)2(t27 − 1)124(t36 − 1)216(t45 − 1)540(t54 − 1)206(t81 − 1)18

(t108 − 1)448(t135 − 1)1400(t162 − 1)720(t189 − 1)110(t18 + 1)54(t54 + 1)14

(t81 + 1)180.

P̃28 = (t2 − 1)2(t4 − 1)(t7 − 1)4(t10 − 1)7(t14 − 1)10(t16 − 1)28(t20 − 1)168

(t22 − 1)7(t26 − 1)2744(t28 − 1)4(t32 − 1)6160(t38 − 1)3150(t44 − 1)420

(t50 − 1)14(t56 − 1)190(t280 − 1)10(t364 − 1)168(t448 − 1)336(t532 − 1)132

(t91 + 1)40.

P̃29 = (t29 − 1)4(t58 − 1)22(t203 − 1)30(t290 − 1)20(t319 − 1)66(t406 − 1)650

(t493 − 1)1140(t580 − 1)400(t667 − 1)44(t29 + 1)4(t58 + 1)264(t145 + 1)10

(t203 + 1)56.

P̃30 = (t4 − 1)(t5 − 1)2(t6 − 1)3(t8 − 1)5(t14 − 1)5(t15 − 1)24(t18 − 1)15

(t24 − 1)1305(t30 − 1)9681(t36 − 1)13500(t42 − 1)5040(t45 − 1)918(t48 − 1)540

(t54 − 1)15(t60 − 1)770(t90 − 1)3672(t120 − 1)18(t150 − 1)110(t15 + 1)12

(t75 + 1)3360(t105 + 1)1188.
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P̃31 = (t62 − 1)424(t155 − 1)2(t248 − 1)16(t310 − 1)6(t341 − 1)110(t403 − 1)408

(t496 − 1)2000(t589 − 1)2244(t682 − 1)550(t775 − 1)52(t31 + 1)20(t62 + 1)58

(t124 + 1)8(t248 + 1)168.

P̃32 = (t2 − 1)2(t4 − 1)(t10 − 1)4(t14 − 1)32(t16 − 1)20(t20 − 1)48(t22 − 1)256

(t26 − 1)8(t28 − 1)7040(t32 − 1)10(t34 − 1)28224(t40 − 1)27200(t46 − 1)7744

(t52 − 1)672(t58 − 1)16(t64 − 1)608(t112 − 1)2(t224 − 1)76(t272 − 1)220

(t352 − 1)14(t448 − 1)420(t544 − 1)1584(t640 − 1)1320(t736 − 1)286.

P̃33 = (t33 − 1)376(t55 − 1)2(t66 − 1)340(t99 − 1)546(t132 − 1)272(t165 − 1)5562

(t198 − 1)15876(t231 − 1)12360(t264 − 1)2520(t297 − 1)180(t22 + 1)4(t33 + 1)12

(t66 + 1)722(t99 + 1)594(t132 + 1)108.

P̃34 = (t4 − 1)(t17 − 1)16(t20 − 1)17(t26 − 1)2448(t32 − 1)29988(t34 − 1)8

(t38 − 1)74052(t44 − 1)51425(t50 − 1)11492(t56 − 1)833(t62 − 1)17(t68 − 1)1098

(t136 − 1)208(t187 − 1)110(t272 − 1)3360(t374 − 1)4664(t442 − 1)14(t544 − 1)176

(t646 − 1)286(t17 + 1)4(t85 + 1)4(t221 + 1)280(t323 + 1)7920(t425 + 1)800.

P̃35 = (t35 − 1)28(t49 − 1)10(t70 − 1)994(t98 − 1)30(t119 − 1)260(t245 − 1)28

(t350 − 1)528(t385 − 1)8(t490 − 1)740(t595 − 1)6864(t700 − 1)12680

(t805 − 1)7150(t910 − 1)1092(t1015 − 1)70(t5 + 1)2(t14 + 1)2(t70 + 1)416

(t175 + 1)264(t245 + 1)60(t350 + 1)50(t455 + 1)182.

P̃36 = (t2 − 1)2(t4 − 1)(t6 − 1)3(t9 − 1)8(t12 − 1)21(t18 − 1)139(t24 − 1)443

(t27 − 1)324(t30 − 1)16209(t36 − 1)106904(t42 − 1)176418(t48 − 1)91980

(t54 − 1)24120(t60 − 1)1026(t66 − 1)18(t72 − 1)1940(t144 − 1)56(t180 − 1)2750

(t216 − 1)17820(t252 − 1)26950(t288 − 1)12012(t324 − 1)1638(t45 + 1)1344

(t63 + 1)8008.

P̃37 = (t37 − 1)28(t74 − 1)1010(t185 − 1)52(t259 − 1)14(t296 − 1)168(t407 − 1)858

(t481 − 1)148(t518 − 1)42(t592 − 1)4288(t703 − 1)21896(t814 − 1)27610

(t925 − 1)11830(t1036 − 1)1568(t1147 − 1)80(t37 + 1)4(t74 + 1)1458(t148 + 1)84

(t296 + 1)96(t407 + 1)550.

P̃38 = (t4 − 1)(t19 − 1)16(t22 − 1)19(t28 − 1)4275(t34 − 1)82764(t38 − 1)14

(t40 − 1)331056(t46 − 1)388531(t52 − 1)157339(t58 − 1)23275(t64 − 1)1216

(t70 − 1)19(t76 − 1)3420(t95 − 1)858(t133 − 1)44(t152 − 1)10(t190 − 1)1716

(t247 − 1)2002(t266 − 1)440(t380 − 1)34320(t494 − 1)12012(t532 − 1)28

(t646 − 1)624(t760 − 1)2000(t874 − 1)1430(t19 + 1)16

(t323 + 1)9268(t437 + 1)37752(t551 + 1)1456.

P̃39 = (t26 − 1)4(t39 − 1)1264(t78 − 1)2720(t91 − 1)4(t117 − 1)3420(t156 − 1)312

(t195 − 1)5096(t234 − 1)57870(t273 − 1)183870(t312 − 1)168940(t351 − 1)56004

(t390 − 1)5880(t429 − 1)272(t13 + 1)4(t39 + 1)42(t78 + 1)2312(t117 + 1)720

(t156 + 1)6006.
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P̃40 = (t2 − 1)2(t4 − 1)(t5 − 1)2(t8 − 1)5(t10 − 1)4(t14 − 1)5(t16 − 1)60(t20 − 1)56

(t22 − 1)250(t26 − 1)500(t28 − 1)120(t32 − 1)34000(t34 − 1)10(t38 − 1)348480

(t40 − 1)28(t44 − 1)920080(t50 − 1)801600(t56 − 1)258720(t62 − 1)32000

(t68 − 1)1440(t74 − 1)20(t80 − 1)5984(t160 − 1)4(t220 − 1)14(t320 − 1)544

(t380 − 1)5460(t440 − 1)11004(t500 − 1)5720(t520 − 1)24(t640 − 1)1856

(t760 − 1)18946(t880 − 1)47190(t1000 − 1)37180(t1120 − 1)10192(t1240 − 1)952.

P̃41 = (t41 − 1)4(t82 − 1)4870(t164 − 1)80(t205 − 1)10(t287 − 1)30(t410 − 1)830

(t533 − 1)1274(t574 − 1)190(t697 − 1)9614(t820 − 1)73088(t943 − 1)155610

(t1066 − 1)107614(t1189 − 1)29016(t1312 − 1)2688(t1435 − 1)102(t41 + 1)58

(t82 + 1)2936(t205 + 1)400(t287 + 1)4(t410 + 1)1320(t533 + 1)2860(t656 + 1)64.

P̃42 = (t4 − 1)(t6 − 1)3(t10 − 1)7(t14 − 1)2(t16 − 1)28(t21 − 1)92(t22 − 1)7

(t24 − 1)21(t28 − 1)4(t30 − 1)7056(t36 − 1)205821(t42 − 1)1264571

(t48 − 1)2337993(t54 − 1)1565109(t60 − 1)411600(t63 − 1)2844(t66 − 1)43155

(t72 − 1)1701(t78 − 1)21(t84 − 1)17534(t105 − 1)840(t126 − 1)64638

(t168 − 1)686400(t210 − 1)92550(t252 − 1)5400(t294 − 1)30030(t336 − 1)41184

(t378 − 1)16200(t7 + 1)4(t21 + 1)36(t63 + 1)13728(t105 + 1)2160(t147 + 1)398076

(t189 + 1)411840(t231 + 1)7344.

P̃43 = (t43 − 1)48(t86 − 1)4200(t215 − 1)1430(t301 − 1)1456(t344 − 1)88(t473 − 1)1498

(t559 − 1)10(t602 − 1)4368(t688 − 1)2304(t817 − 1)50830(t946 − 1)240206

(t1075 − 1)363896(t1204 − 1)197008(t1333 − 1)43384(t1462 − 1)3264(t1591 − 1)114

(t43 + 1)16(t86 + 1)9744(t172 + 1)44(t344 + 1)88(t473 + 1)4290(t602 + 1)196

(t731 + 1)408.

P̃44 = (t2 − 1)2(t4 − 1)(t11 − 1)8(t14 − 1)11(t20 − 1)275(t22 − 1)88(t26 − 1)539

(t28 − 1)660(t32 − 1)176(t34 − 1)66550(t38 − 1)11(t40 − 1)1012088(t44 − 1)42

(t46 − 1)4048902(t52 − 1)5510736(t55 − 1)910(t58 − 1)2914912(t64 − 1)635712

(t70 − 1)57222(t76 − 1)1980(t82 − 1)22(t88 − 1)18466(t110 − 1)1820

(t143 − 1)19448(t176 − 1)264(t220 − 1)36400(t286 − 1)116688(t308 − 1)2

(t616 − 1)30(t748 − 1)3456(t880 − 1)53200(t1012 − 1)205442(t1144 − 1)260260

(t1276 − 1)123760(t1408 − 1)22848(t1540 − 1)1550(t187 + 1)2352(t253 + 1)128128

(t319 + 1)38896.

P̃45 = (t9 − 1)4(t15 − 1)66(t18 − 1)2(t27 − 1)900(t30 − 1)1356(t45 − 1)7722

(t54 − 1)6300(t63 − 1)77000(t72 − 1)184800(t75 − 1)72144(t81 − 1)119340

(t90 − 1)61152(t105 − 1)486486(t120 − 1)1441440(t135 − 1)1474200

(t150 − 1)501228(t165 − 1)69768(t180 − 1)16016(t225 − 1)660(t270 − 1)41820

(t315 − 1)490762(t360 − 1)1601600(t405 − 1)1873872(t450 − 1)862400

(t495 − 1)166464(t540 − 1)12960(t585 − 1)380(t5 + 1)2(t30 + 1)6(t36 + 1)1680

(t45 + 1)4(t60 + 1)61776(t90 + 1)6390(t135 + 1)1842(t225 + 1)7840.
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P̃46 = (t4 − 1)(t23 − 1)88(t26 − 1)23(t32 − 1)11132(t38 − 1)470327(t44 − 1)4232943

(t46 − 1)50(t50 − 1)11758175(t56 − 1)12189632(t62 − 1)5211248(t68 − 1)957168

(t74 − 1)74727(t80 − 1)2300(t86 − 1)23(t92 − 1)32720(t161 − 1)28(t184 − 1)64

(t253 − 1)10098(t322 − 1)34020(t368 − 1)1040(t391 − 1)7752(t506 − 1)428120

(t644 − 1)1089088(t736 − 1)84(t782 − 1)62016(t874 − 1)4622(t1012 − 1)40040

(t1150 − 1)91936(t1288 − 1)68068(t1426 − 1)16796(t23 + 1)20(t115 + 1)5720

(t437 + 1)48528(t575 + 1)1149712(t713 + 1)424320(t851 + 1)3876.

P̃47 = (t47 − 1)48(t94 − 1)10632(t188 − 1)424(t235 − 1)266(t329 − 1)104(t470 − 1)952

(t611 − 1)20020(t658 − 1)10(t752 − 1)320(t799 − 1)3868(t893 − 1)570

(t940 − 1)117648(t1081 − 1)843030(t1222 − 1)1894412(t1363 − 1)1644240

(t1504 − 1)580416(t1645 − 1)90124(t1786 − 1)5130(t1927 − 1)140(t47 + 1)60

(t94 + 1)33626(t235 + 1)80(t376 + 1)32(t470 + 1)2010(t611 + 1)7852

(t752 + 1)11424.

P̃48 = (t2 − 1)2(t4 − 1)(t6 − 1)3(t10 − 1)4(t12 − 1)16(t14 − 1)32(t18 − 1)114

(t20 − 1)48(t24 − 1)1062(t26 − 1)8(t30 − 1)1908(t32 − 1)10(t36 − 1)122880

(t42 − 1)2672004(t48 − 1)15531608(t54 − 1)31409664(t60 − 1)25527024

(t66 − 1)8989056(t72 − 1)1456074(t78 − 1)96264(t84 − 1)2856(t90 − 1)24

(t96 − 1)59042(t112 − 1)2(t120 − 1)150(t144 − 1)11790(t168 − 1)166320

(t192 − 1)884962(t216 − 1)1432080(t240 − 1)831410(t264 − 1)167960

(t288 − 1)18000(t336 − 1)406296(t384 − 1)2312320(t432 − 1)4445856

(t480 − 1)3341520(t528 − 1)1054272(t576 − 1)139482(t624 − 1)7182.

P̃49 = (t35 − 1)14(t49 − 1)8(t77 − 1)714(t98 − 1)58784(t133 − 1)210(t154 − 1)3570

(t175 − 1)10850(t245 − 1)3536(t343 − 1)9724(t392 − 1)4(t539 − 1)6006

(t686 − 1)29452(t784 − 1)344(t833 − 1)4896(t931 − 1)36322(t1078 − 1)599242

(t1225 − 1)2826356(t1372 − 1)4706464(t1519 − 1)3230136(t1666 − 1)943296

(t1813 − 1)125970(t1960 − 1)6600(t2107 − 1)154(t14 + 1)2(t49 + 1)168

(t98 + 1)19852(t196 + 1)2(t343 + 1)28(t392 + 1)44(t539 + 1)4080(t686 + 1)20384

(t833 + 1)19380(t980 + 1)100.

P̃50 = (t4 − 1)(t5 − 1)2(t8 − 1)5(t14 − 1)5(t25 − 1)24(t28 − 1)25(t34 − 1)16900

(t40 − 1)1002000(t46 − 1)12780625(t50 − 1)94(t52 − 1)51122500(t58 − 1)78145600

(t64 − 1)50979600(t70 − 1)15023375(t76 − 1)2030625(t82 − 1)122500(t88 − 1)3025

(t94 − 1)25(t100 − 1)104198(t125 − 1)44(t200 − 1)16(t250 − 1)3066

(t325 − 1)35780(t400 − 1)14272(t475 − 1)570(t500 − 1)97456(t650 − 1)4899360

(t800 − 1)4275840(t850 − 1)132(t950 − 1)128592(t1000 − 1)10570(t1150 − 1)136250

(t1300 − 1)482664(t1450 − 1)587860(t1600 − 1)268736(t1750 − 1)45220(t25 + 1)168

(t125 + 1)204(t425 + 1)1540(t575 + 1)1267200(t725 + 1)7117832(t875 + 1)1129548

(t1025 + 1)5852.
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