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Abstract

A graph is Y ∆Y reducible if it can be reduced to isolated vertices by a sequence
of series-parallel reductions and Y ∆Y transformations. It is still an open problem
to characterize Y ∆Y reducible graphs in terms of a finite set of forbidden minors.
We obtain a characterization of such forbidden minors that can be written as clique
k-sums for k = 1, 2, 3. As a result we show constructively that the total number of
forbidden minors is more than 68 billion up to isomorphism.

1 Introduction

We follow the terminology of Archdeacon et al. [1]. The graphs under consideration are
finite, undirected, but may have loops or multiple edges. The series-parallel reductions
are defined by the following four operations:

• Loop reduction: Delete a loop.

• Degree-one reduction: Delete a degree-one vertex and its incident edge.

• Series reduction: Delete a degree-two vertex y and its two incident edges xy and yz,
and add the new edge xz.

• Parallel reduction: Delete one of a pair of parallel edges.

The class of graphs that can be reduced to isolated vertices by these four reductions is
called series-parallel reducible. (Disconnected graphs are allowed for convenience.) The
Y ∆ and ∆Y transformations are defined as follows:
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• Y ∆ transformation: Delete a degree-three vertex w and its three incident edges wx,
wy and wz, and add three edges xy, yz and xz.

• ∆Y transformation: Delete the three edges of a triangle (delta) xyz, and add a new
vertex w and three new edges wx, wy and wz.

Two graphs that can be obtained from each other by a sequence of Y ∆Y transformations
are called Y ∆Y equivalent. The class of graphs that can be reduced to isolated vertices
by the above six reductions/transformations is called Y ∆Y reducible.

A graph H is a minor of a graph G, if H can be obtained from G by a sequence of edge
deletions, edge contractions, and deletions of isolated vertices. A class of graphs is minor
closed if for graph G in the class, any minor H of G is also in the class. According to the
deep results of Robertson and Seymour [7], a minor closed graph family is characterized
by a finite set of forbidden minors, i.e., graphs that are not in the family but every minor
is in the family.

Truemper [8] shows that the class of Y ∆Y reducible graphs is minor closed. The
forbidden minor characterization for this class of graphs, however, is still open. According
to Epifanov [2] (see also [4, 3]), all planar graphs are Y ∆Y reducible. There are 57587
known graphs from the literature that belong to the finite set of minor-minimal Y ∆Y
irreducible graphs. These graphs fit in four Y ∆Y equivalent families, one of which has
57578 members. Yu [10] charters the 57578-member family with the aid of a computer.

The main result of the current paper is to present additional families of graphs that
are forbidden minors for Y ∆Y reducibility. Specifically, a total of 68897913659 graphs,
including the known 57587, are shown to be minor-minimal. These graphs fit in 20 Y ∆Y
equivalent families. The result is obtained by a combination of detailed analysis and
computer confirmation.

The concept of terminal Y ∆Y reducibility is instrumental to the development of this
paper. For a graph G, let T ⊂ G be a set of distinguished vertices, called terminals. G is
terminal Y ∆Y reducible (or T-reducible) if all non-terminal vertices can be reduced to iso-
lated vertices by performing series-parallel reductions and Y ∆Y transformations without
ever deleting any vertex in T . A minor H of a graph G with terminals is called a terminal
minor (or T-minor) of G if H can be obtained from G by edge deletion, edge contraction
and deletion of isolated vertices, without deleting any of the terminals, or contracting any
edges between terminals. These two concepts are introduced in Archdeacon et al. [1].

Two graphs H and H ′ with terminals are said to be T-isomorphic if there is a bijection
between the vertices of H and H ′ that maps terminals to terminals, non-terminals to non-
terminals, and also preserves adjacency. If H is T-isomorphic to a T-minor of G, we say
G contains an H T-minor.

Connectivity considerations are important for this work. For a graph G, a separation
is a pair of subgraphs (G1, G2) such that G1 ∪ G2 = G and E(G1) ∩ E(G2) = ∅. The
order of the separation is |V (G1) ∩ V (G2)|. We call C = V (G1) ∩ V (G2) the cut set. G
is k-connected if |V (G)| > k and there is no (nontrivial) separation of order less than k.
G is internally 4-connected if G is 3-connected and for every separation (G1, G2) of order
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three, either |E(G1)| ≤ 3 or |E(G2)| ≤ 3. In this paper, we call a separation essential, if
each of G1 − C and G2 − C has at least two vertices.

The rest of the paper is organized as follows. We begin with some preliminary results
on the connectivity properties of the forbidden minors. In particular, Section 2 shows that
the known 57587 forbidden minors are internally 4-connected. Section 3 then naturally
explores the possibility of forbidden minors with lower connectivity, which leads to a
characterization of such forbidden minors in terms of clique sums of very special graphs
called T-critical graphs. Finally it is shown that forbidden minors that are not internally
4-connected exist in large numbers.

2 Connectivity and Y ∆Y Reducibility

We have the following proposition, which follows, for example, from Theorem 2.1 of
Archdeacon et al. [1] (the Minor Theorem).

Proposition 2.1 Let G be minor-minimal (terminal) Y ∆Y irreducible. Then G does not
have loops, parallel edges, or non-terminal vertices with degree one or two. Furthermore,
graphs obtained from G by Y ∆Y transformations are also minor-minimal.

We now explore connectivity properties of G under Y ∆Y transformations. If G is
minor-minimal Y ∆Y irreducible, observe that for k = 1, 2 every k-separation of G is
essential. If there is a 3-separation (G1, G2) with cut set C and either G1 −C or G2 − C
has just a single vertex, then there are no edges between vertices in C. It follows that G
being internally 4-connected is equivalent to having no essential separation of order less
than four. We also have

Proposition 2.2 Let G be minor-minimal Y ∆Y irreducible. If G has an essential sepa-
ration of order at most three, then the minimum order of essential separations of G does
not change after Y ∆Y transformations.

Note: this is implied by the main theorem in Section 3. Below is a direct proof.
Proof. Only need to show that the minimum order of the essential separations does
not increase after applying Y ∆ and ∆Y transformations. This is obvious if a ∆Y trans-
formation is applied to G, since any essential cut of G is still an essential cut after the
transformation. If a Y ∆ transformation is applied, let the center of wye be a, with three
adjacent vertices b, c, d. Let (G1, G2) be an essential separation of G with minimal order.
Denote the cut set C and consider two cases:

1. a ∈ C. Then a must be adjacent to at least one vertex in each of G1−C and G2−C.
Since a has degree three, without loss of generality assume b ∈ G1 − C and c, d ∈ G2.
Consider the new cut set C ′ (for the graph after the transformation) obtained from C by
substituting b for a. C ′ necessarily has the same order as C. If the new cut is not essential,
G1 − C has to be reduced to a single vertex e. Then in G, b is adjacent to a, e, and at
least one of the other vertices in C, otherwise a series reduction is applicable. Since e has
degree at least three and is not adjacent to a, there must be three vertices in C, and two
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of them plus b are adjacent to e. It is clear that if we apply a Y ∆ transformation using
e as the center of wye, a parallel edge appears, which is a contradiction.

2. a is in G1−C or G2−C. Assume a ∈ G1−C to be exact. In this case C is still a cut
set of the same order for the transformed graph. We show that the cut is still essential.
Otherwise, besides a, G1 −C has exactly one vertex, denoted e. Thus a is adjacent to at
least two vertices in C. After the Y ∆ transformation an edge appears between these two
vertices. Since e is the only vertex left in G1 − C after the transformation, e has to be
adjacent to all three vertices in C. We get the same contradiction as before.

Proposition 2.3 The known 57587 forbidden minors do not have essential separations
of order less than four.

Proof. These 57587 graphs fit in four Y ∆Y equivalent families. According to the pre-
ceding proposition, we only need to show that there are no such separations for four
representatives, one for each family. This is done by inspection.

Representatives of the four internally 4-connected families are depicted in Figure 1.
We call a graph G apex if G − v is planar for some vertex v. Apex graphs are depicted
by first drawing G − v, then marking the vertices adjacent to v by unfilled circles. The
graphs Ga, Gb are apex and are drawn with this style.

Y ∆Y equivalent companions of K6 form the seven graphs of the Petersen family,
because the Petersen graph is one of them. Graph K5,5−M where M is a perfect matching
is mentioned in Archdeacon et al. [1]. Existence of minor-minimal Y ∆Y irreducible apex
graphs is mentioned in Truemper [9]. Ga, Gb are shown to be minor-minimal by Yu [10].
(Ga is labeled as G0 in Yu [10].) Ga belongs to a Y ∆Y equivalent family of 57578 graphs.
In contrast, no Y ∆ or ∆Y transformation can be applied to Gb and K5,5 − M .

3 Forbidden Minors of Lower Connectivity

A natural question is whether there are forbidden minors that have essential separations
of orders at most three. This section gives a characterization of such forbidden minors.

Let H be a simple graph with k terminals. Denote by H + ∆ (H − ∆) the simple
graph obtained from H by adding (deleting) all possible edges between terminals. This
notation is convenient, and is used whenever terminals are clearly defined. Define H to
be T-critical if

1. H is not T-reducible.

2. Every T-minor of H is T-reducible.

3. H + ∆ is Y ∆Y reducible if terminals are not respected.

4. Each terminal is adjacent to at least one non-terminal vertex.

We now state the main theorem.
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Figure 1: Representatives of four minor-minimal Y ∆Y irreducible families.
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Theorem 3.1 Let G be a graph whose minimum order of essential cuts is k ≤ 3. Let
(G1, G2) be such a cut. Then G is minor-minimal Y ∆Y irreducible if and only if each of
Gi is T-critical, each with the vertices in the cut set as terminals. Furthermore, in such
a case, the minimal essential cut set is unique.

Proof of the theorem is presented in a series of lemmas below. We first explore simple
properties of T-critical graphs.

Lemma 3.1 Let H be T-critical and let T be the set of terminals. Suppose k = |T | ≤ 3,
then

1. There are no edges between terminals.

2. H − T is connected.

3. Each terminal has degree at least two.

4. If H ′ is obtained by applying a single Y ∆ or ∆Y transformation to H, respecting
the terminals, then H ′ is T-critical.

Proof. 1. If there are edges between terminals, then H − ∆ is a T-minor of H and
is T-reducible. Furthermore, the reductions/transformations on H − ∆ can be applied
to H correspondingly. These reductions/transformations reduce H entirely, which is a
contradiction.

2. If H − T is disconnected, then H + ∆ has a k-separation (H1, H2) with T =
V (H1) ∩ V (H2). Therefore H1 − ∆ and H2 − ∆ are both T-minors of H , and are T-
reducible. H is T-reducible correspondingly, a contradiction. Note, since terminals are
not isolated, H − T being connected implies H being connected.

3. Suppose a terminal denoted a has degree one and let b be its only adjacent non-
terminal vertex. Form set T ′ by substituting b for a in T . Then H − a with terminals in
T ′ is T-isomorphic to a T-minor of H (with terminals in T ). Hence H − a is T-reducible
to T ′ and H is T-reducible after applying these reductions and a final series reduction or
Y ∆ transformation. This is again a contradiction.

4. The fact that H ′ is simple and T-minor minimal Y ∆Y irreducible follows from
Proposition 2.1. Since there are no edges between terminals in H , the Y ∆ or ∆Y trans-
formation from H to H ′ can be applied to H + ∆ to obtain H ′ + ∆ (possibly resulting
in a parallel edge). Hence H ′ + ∆ is reducible without respecting terminals. Since each
terminal of H is adjacent to at least two non-terminal vertices, obviously each terminal
in H ′ is adjacent to a non-terminal vertex. By definition H ′ is also T-critical.

The following proposition is conveniently used in later development.

Proposition 3.1 Let G be a simple k-connected graph, k ≤ 3, with a k-separation
(G1, G2). Denote the cut set by C. Form G′

i, i = 1, 2, from Gi by adding all edges
between vertices in C. Then G′

1 is k-connected, and can be obtained from G by a sequence
of edge deletions/contractions and (possibly) a Y ∆ transformation that only involve edges
in G2.
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Proof. We may assume k ≥ 2. If G′
1 is not k-connected, then there is a separation of

order at most k − 1; it is easy to show that such a separation is also a separation of G
itself, which is a contradiction. We may assume G2 − C is connected. It is clear that
every vertex in C is adjacent to a vertex in G2 −C, otherwise a separation of lower order
for G results. Contract all edges in G2 −C, delete the resulting parallel edges, and apply
an additional edge contraction or Y ∆ transformation, we get G′

1 from G.

Proposition 3.2 Under the same setting as in Proposition 3.1, suppose in addition G
has k terminals, all contained in G1. Declare the cut set C to be the set of terminals for
G2. Assume G is not T-reducible. Then both G′

1 and G2 + ∆ are k-connected. Either G′
1

or G2 is T-irreducible. In addition, G2 is T-isomorphic to a T-minor of G.

Proof. k-connectivity of G′
1 and G2+∆ follows by Proposition 3.1. If both G′

1 and G2 are
T-reducible, then G is T-reducible by first applying the reductions that reduce G2 then
those that reduce G′

1. If C contains only terminal vertices of G, then G2 is a T-minor of
G. If l > 0 vertices in C are non-terminal, let G0 be the graph G after deleting the k − l
terminals in C. G0 is necessarily l-connected. By Menger’s Theorem, there are vertex
disjoint paths in G0 connecting the remaining l terminals of G with the non-terminal
vertices in C. These paths necessarily belong to G1. By contracting edges along these
paths, it is easy to see that G contains a minor T-isomorphic to G2 (with C as the set of
terminals).

Lemma 3.2 If H is T-critical with k ≤ 3 terminals, then H + ∆ has no essential sepa-
ration of order l ≤ k.

Proof. Assume k ≥ 2. Assume the contrary and let (H1, H2) be an essential separation
of H +∆ of order l, where H1 contains the terminals and the cut set is C. Assume l is the
minimum order of such separations. Because H is T-critical, any separation of H + ∆ of
order less than 3 is essential, hence H + ∆ is l-connected. (Otherwise it has a separation
of order less than l, which is necessarily essential, a contradiction to the choice of l.)

We only prove the case l = k, for the general argument is similar. Following Propo-
sition 3.2, H2 − ∆ (with vertices of C as terminals) is a T-minor of H . By T-criticality,
H2 is T-reducible. Since H2 − C has at least two vertices, it is easy to show that
|E(H2)| strictly decreases after these reductions/transformations. Moreover, these reduc-
tions/transformations can be performed accordingly on H and decrease |E(H)|, which
contradicts T-criticality.

Corollary 3.1 Let H be k-terminal critical. Then H + ∆ is 3-connected if k = 2, and
internally 4-connected if k = 3.

Proof. If k = 2, then any 2-separation of H + ∆ has to be essential, thus no such
separation exists. Suppose k = 3, and there is a 3-separation (H1, H2), with cut set C,
s.t. |E(H1)| > 3 and |E(H2)| > 3. By Lemma 3.2, one of H1 −C, H2 −C, say H1 −C, is
a singleton, denoted y. Since |E(H1)| > 3, there is an edge ab between two vertices in C.
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Perform a Y ∆ transformation on H using y (obviously not a terminal) as the wye, we get
parallel edges if one of a, b is not a terminal, and an edge between terminals otherwise;
both contradict T-criticality.

Corollary 3.2 A k-terminal critical graph H with k ≤ 3 is 2-connected.

Proof. We only prove the case k = 3, because k ≤ 2 is similar but easier. Assume H has
a 1-separation (H1, H2) with cutpoint c. Notice that by T-criticality c is an essential cut.
If c is a terminal, let a be another terminal, then H ′ = H−{c, a} is disconnected, because
H1−{c} and H2−{c} each has at least two vertices. But H ′ is the same as deleting {c, a}
from H + ∆, and H + ∆ should be 3-connected, a contradiction. Now assume c is not a
terminal. If one of H1, H2 has all three terminals, then deleting c disconnects H + ∆; if
H2 has two terminals and H1 has a, the third one, then deleting {c, a} disconnects H +∆,
again a contradiction.

Lemma 3.3 Suppose vertex-disjoint graphs G1 and G2 are T-critical, each with k ≤ 3
terminals. Let there be a bijection f between the two sets of terminals. Form G from G1

and G2 by identifying each terminal of G1 with its image under f . Denote by C the set of
k merged terminal vertices. Then G is k-connected and minor-minimal Y ∆Y irreducible.

Proof. To show that G is k-connected we may assume k = 3 since k = 1, 2 are easy.
Suppose G has a cut {a, b} of order two. If a, b belong to one of G1, G2 (say G1), then
{a, b} is a separation of G1 + ∆, a contradiction. Suppose a ∈ G1 − C and b ∈ G2 − C.
Choose c ∈ C and d ∈ G such that c, d lie in different components of G−{a, b}. We may
assume d ∈ G1. Then it is easy to see that a is a cutpoint for G1, another contradiction.

To show that G is not Y ∆Y reducible, notice that by T-criticality of Gi, i = 1, 2, there
are no edges between vertices of C in G, and each vertex in C has degree at least four (at
least two in each of Gi). No series-parallel reductions are possible for G, otherwise they
can be applied to one of Gi, terminals respected. Hence the only possible transformations
on G are Y ∆ and ∆Y transformations. The vertices in C cannot be eliminated by a
Y ∆ transformation. Therefore, the Y ∆ or ∆Y transformation on G corresponds to the
transformation on one of Gi, terminals respected. Since Y ∆Y equivalent companions of
T-critical graphs are also T-critical, all the above still hold for G after the Y ∆ or ∆Y
transformation. It follows that G is not Y ∆Y reducible.

To show that every minor of G is reducible. Let G′ be obtained from G by contract-
ing/deleting an edge ab. Without loss of generality suppose ab is in G1 and let G′

1 be the
corresponding T-minor of G1 after contracting/deleting ab. According to T-criticality, G′

1

is T-reducible. Furthermore, these reductions apply to G′ correspondingly and G′ after
these transformations is a minor of G2 + ∆. G2 + ∆ is further reducible by definition,
hence G′ as a whole is Y ∆Y reducible.
Note: G is the clique sum of G1 + ∆ and G2 + ∆. We stress that there are no edges
between vertices of C.

Lemma 3.4 Let H be a graph with k ≤ 3 terminals. Suppose H + ∆ is k-connected and
Y ∆Y reducible but H is not T-reducible. If H is not T-critical, then there is a sequence
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of edge deletions/contractions, and Y ∆ transformations (terminals respected) that reduce
H to be T-critical.

Proof. We may assume k ≥ 2. Let H be a counterexample with the property that
any counterexample either has more vertices than H , or has the same number of vertices
but at least as many edges. If H + ∆ has a separation of order k, then by Propositions
3.1 and 3.2 we can obtain a k-connected graph H ′ from H + ∆ by a sequence of edge
deletions/contractions and Y ∆ transformations (terminals respected) such that H ′ is still
T-irreducible and |V (H ′)| < |V (H)|, which contradicts the choice of H . Assume H + ∆
has no separation of order k. Clearly there are no edges between terminals in H . Since
H is not T-critical, there is an edge ab of H such that the graph H ′ formed from H
by deleting/contracting ab is still T-irreducible. H ′ + ∆ is obtained from H + ∆ by
the corresponding deletion/contraction. Because H + ∆ has no k-separation, H ′ + ∆ is
k-connected. Hence H ′ is a smaller counterexample.

Lemma 3.5 Suppose G is minor-minimal Y ∆Y irreducible and suppose (G1, G2) is an
essential separation of minimal order k ≤ 3. Then the cut set is unique and each Gi, i =
1, 2, is T-critical with vertices in the cut as terminals.

Proof. Denote the cut set by C and declare C to be the terminals for Gi, i = 1, 2.
By Proposition 3.1, Gi + ∆ is k-connected and can be obtained by a sequence of edge
deletions/contractions, and Y ∆ transformations from G. Because the separation is es-
sential, the number of edges of G decreases in this process, hence at least one edge is
contracted/deleted. Thus Gi+∆ is necessarily Y ∆Y reducible without respecting the ter-
minals. Moreover G1 is not T-reducible. Otherwise G can be reduced to a minor of G2+∆
and can then be reduced entirely, which is a contradiction. By the preceding lemma, if
one of Gi itself is not T-critical, there is a sequence of edge contractions/deletions, and
Y ∆ transformations that respect terminals and reduce Gi to a T-critical graph G′

i. Cor-
respondingly, G can be reduced by these reductions/transformations to the clique sum of
G′

1 + ∆ and G′
2 + ∆. Since such clique sums are Y ∆Y irreducible, this contradicts the

minor minimality of G.
To prove the uniqueness of the cut, we may assume k ≥ 2 since k = 1 is easy. Suppose

there is another cut set C ′ of the same order but not identical to C. If all vertices of C ′

lie in one of G1 or G2 (say G1), then C ′ is a k-separation of G1 + ∆, denoted (G11, G12).
Assume C ⊂ G11, and choose c ∈ C but c /∈ C ′. Since c is adjacent to at least two
vertices d, e in G1 − C, we have c, d, e ∈ G11. Among the k + 2 vertices of C ∪ {d, e},
at most k belong to C ′, hence |G11 − C ′| ≥ 2. Notice that |G12 − C ′| ≥ 2 because C ′ is
an essential separation of G itself. It follows that (G11, G12) is an essential separation for
G1 + ∆, which contradicts Lemma 3.2. Suppose some of the vertices of C ′ lie in G1 − C
and some in G2−C. Without loss of generality assume G1−C contains exactly one vertex
of C ′ denoted a. We may assume in addition that there are two vertices u, v in C such
that there are no paths connecting them in G − C ′. If k = 2, it follows that every path
that connects u, v in G1 contains vertex a. Hence G1 has a cutpoint, which contradicts
Corollary 3.2. A similar contradiction results when k = 3 and C ∩ C ′ = ∅. Now assume
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k = 3 and |C ∩ C ′| = 1, with x ∈ C ∩ C ′. It is clear that every path connecting u, v in
G1 has to contain either a or x, so {a, x} separates G1. It follows that {a, x, u} separates
G1 + ∆. Denote the separation (G11, G12) and assume v ∈ G11 − {a, x, u}. By Lemma
3.2, such a separation should not be essential. Since v is adjacent to at least two vertices
in G1 − C, |G11 − {a, x, u}| ≥ 2. Hence G12 − {a, x, u} is a singleton, denoted y. It is
only possible for y to be adjacent to u, a, x in G, hence y is adjacent to all three. By
T-criticality of G1, u has to be adjacent to at least two vertices in G1 − C, so u has to
be adjacent to both a and y. If we apply a Y ∆ transformation to eliminate y, a parallel
edge au results, which is a contradiction.

4 Construction of T-critical Graphs

Finding forbidden minors of low connectivity now reduces to finding T-critical graphs.
This section explores ways of constructing such graphs.

Proposition 4.1 Let H be T-critical with a single terminal a. Let b be a vertex adjacent
to a. Then there is a T-critical graph H ′ as a T-minor of H treating both a, b as terminals.

Proof. H is 2-connected and Y ∆Y reducible without respecting the terminal. Since
H is not 1-terminal reducible, it is certainly not 2-terminal reducible (with terminals
a, b). By Lemma 3.4, there is a sequence of edge deletions/contractions that reduces H
to a 2-terminal critical graph H ′. (The Y ∆ transformation is not needed with only two
terminals).

Similarly, we have

Proposition 4.2 Let H be T-critical with two terminals a, b. Suppose c is adjacent to
both a, b. Then there is a T-critical graph H ′ with three terminals a, b, c obtained from H
by a sequence of edge deletions/contractions and Y ∆ transformations.

On the other hand, from a 3-terminal critical graph, we can obtain a 2-terminal critical
graph as follows:

Proposition 4.3 Let H be T-critical with three terminals a, b, c. Form H ′ from H by
adding two new vertices d, e and six new edges ad, ae, bd, be, cd, ce. Declare d, e to be the
terminals of H ′. Then there is a T-minor of H ′ that is T-critical.

Proof. H ′ + ∆ is Y ∆Y reducible by first eliminating d, e then following the reductions
of H + ∆. Since a, b, c in H each has degree at least two, each has degree at least four in
H ′. Also, there are no edges between a, b, c and between d, e in H ′. Hence the only Y ∆Y
transformations that apply to H ′ respecting the terminals are those that apply to H ,
respecting its terminals a, b, c. These still hold even after the Y ∆Y transformations. It is
now clear that H ′ is not T-reducible because a, b, c cannot be eliminated. It is easy to see
that H ′ + ∆ is 2-connected. The claim therefore follows by Lemma 3.4 as in Proposition
4.1.
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Figure 2: k-terminal critical graphs with k = 1, 2, 3.

G3

G21G1b

G22b

b

b

So far we have not yet shown any example of T-critical graphs. Finding such graphs
is nontrivial since the conditions are very restrictive. According to Gitler [4], all planar
graphs are 3-terminal Y ∆Y reducible. Thus k-terminal critical graphs with k ≤ 3 are
necessarily non-planar. The graph Gb in Figure 1, found by Yu [10], leads to an easy
proof of the existence of k-terminal critical graphs. Consider the following graphs in
Figure 2 (G1b in particular) derived from Gb. (All four are apex, and terminals are
marked by a square rather than a circle; the implicit vertex is not a terminal.) Without
respecting the terminal, G1b is reducible because it is a minor of Gb; when the terminal
is respected, no reductions/transformations can be applied. It is trivial to check the
connectivity requirement. By Lemma 3.4, 1-terminal critical graphs exist. In fact, all
four are T-critical.

A computer aided search turns up more T-critical graphs. These are derived from Ga

in Figure 1. Three Y ∆Y equivalent families of k-terminal critical graphs are discovered,
one for each of k = 1, 2, 3. Three representatives are depicted in Figure 3.
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Figure 3: More k-terminal critical graphs with k = 1, 2, 3.

G1a G2a G3a

The computer is used to show that each graph in Figure 2 and Figure 3 satisfies the
definition of T-criticality. In particular, to verify that one of the graphs (say G0) is not
T-reducible, we run the following program:

• Step 1. Let L be a list of graphs. Initialize L = {G0}. Initialize the current size of
the list n = 1. Initialize the current search position i = 0.

• Step 2. Consider the graph Gi. If series-parallel reductions are possible, stop; the
claim is false.

• Step 3. Find all graphs that can be obtained from Gi by a single Y ∆ or ∆Y
transformation, respecting the terminals. For each of these graphs, check if it is
T-isomorphic to one already in the list, i.e., the graphs Gj , 0 ≤ j < n. If not,
denote the new graph by Gn, append Gn to the list, and increment n.

• Step 4. Increment i. If i < n, go to Step 2; otherwise stop, and the claim is proved.

Testing of T-isomorphism is performed frequently in the above program. We use the
Nauty package of B. D. McKay [5, 6]. To verify that every T-minor of G0 is T-reducible,
we can either check by hand, or use trial-and-error with the computer. All graphs that
are Y ∆Y equivalent to G0 form a family of T-critical graphs.

It is helpful to classify these graphs by the number of terminals and symmetry struc-
tures of the terminals. Specifically, let Sk be the symmetric group of order k ≤ 3. For
a k-terminal critical graph G0 with terminals labeled 1, 2, . . . , k, let Γk be a subset of Sk

such that p ∈ Γk if and only if there is a terminal-preserving automorphism of G0 that
maps terminal i to p(i), i = 1, . . . , k. Obviously Γk is a subgroup of Sk. T-critical graphs
Y ∆Y equivalent to the seven graphs depicted in Figure 2 and Figure 3 are classified by
the number of terminals k and the order of the group Γk as follows:

• There are two families of 1-terminal critical graphs. One has 342288 members, one
of which is G1a in Figure 3. The other has only a single member, which is G1b in
Figure 2.
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Table 1: Number of k-terminal critical graphs found, by |Γk|.

|Γk| = 1 |Γk| = 2 |Γk| = 3 |Γk| = 6
k = 1 342288+1
k = 2 101303+1+1 518
k = 3 646 61+1 7 5

• There are three families of 2-terminal critical graphs. One has 101821 members,
one of which is G2a in Figure 3. 101303 of these satisfy |Γ2| = 1, whereas the other
518 satisfy |Γ2| = 2. The other two families each has a single member satisfying
|Γ2| = 1. These are G21b and G22b of Figure 2 to be exact.

• There are two families of 3-terminal critical graphs. One has 719 members, one of
which is G3a of Figure 3. 646 of these have |Γ3| = 1, 61 have |Γ3| = 2, 7 have
|Γ3| = 3, and 5 have |Γ3| = 6. The other family has a single member with |Γ3| = 2,
which is G3b in Figure 2.

The findings are summarized as Table 1.
We can now compute the total number of minor-minimal Y ∆Y irreducible graphs

with essential cuts of order k ≤ 3. Suppose G, G′ are such forbidden minors with cuts
(G1, G2) and (G′

1, G
′
2) of order k, respectively. Suppose k is minimal of its kind. Denote

C = V (G1) ∩ V (G2) and C ′ = V (G′
1) ∩ V (G′

2). Suppose there is an isomorphism f
from G to G′. Since the cut set is unique, f maps C to C ′. Since Gi − C, i = 1, 2 and
G′

i−C ′, i = 1, 2 are connected, either f(Gi−C) = G′
i−C ′, i = 1, 2, or f(G1−C) = G′

2−C ′

and f(G2−C) = G′
1−C ′. Hence G1 is T-isomorphic to G′

1 and G2 is T-isomorphic to G′
2,

or vice versa. On the other hand, given two k-terminal critical graphs G1, G2, the number
of forbidden minors up to isomorphism that can be constructed by combining them in
this manner depends on the group Γk of each. Specifically, there is only one possibility if
k = 1. When k = 2 there is one possibility if |Γ2| = 2 is satisfied by one of Gi, i = 1, 2,
and two possibilities otherwise. Suppose k = 3. There is only one possibility if |Γ3| = 6 is
satisfied by one of Gi, i = 1, 2, or |Γ3| = 3 for one and |Γ3| = 2 for the other. There are
two possibilities if |Γ3| = 3 for both, or |Γ3| = 2 for both, or |Γ3| = 3 for one and |Γ3| = 1
for the other. There are three if |Γ3| = 2 for one and |Γ3| = 1 for the other. Finally, if
both satisfy |Γ3| = 1, then there are five possibilities if G1 is T-isomorphic to G2, and six
otherwise. Hence we have

Proposition 4.4 Denote the number of k-terminal critical graphs (k ≤ 3) that satisfy
|Γk| = l by nkl. The total number of forbidden minors for Y ∆Y reducibility with essential
cuts of order k ≤ 3 is

n11(n11 + 1)/2 + 2n21(n21 + 1)/2 + n22(n22 + 1)/2 + n21n22

+n36(n36 + 1)/2 + n36(n31 + n32 + n33) + 2n33(n33 + 1)/2 + 2n33n31 + n33n32
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+2n32(n32 + 1)/2 + 3n32n31 + 6n31(n31 − 1)/2 + 5n31.

Combining the above proposition with the newly discovered k-terminal critical graphs, we
now know of 68897913659 minor-minimal Y ∆Y irreducible graphs, including the known
57587 that are internally 4-connected.

Theorem 4.1 There are at least 68897913659 minor-minimal Y ∆Y irreducible graphs,
all of which fit in 20 Y ∆Y equivalent families.

Proof. The family of 719 3-terminal critical graphs has members with |Γ3| = 6. Hence
forbidden minors formed by combining two graphs, both in this family, are all Y ∆Y
equivalent. Similarly, forbidden minors formed by combining a graph in this family with
G3b of Figure 2 are also Y ∆Y equivalent. There are two ways of combining G3b with
itself. Hence there are four Y ∆Y equivalent families with minimum order of essential
separation k = 3. Similarly, there are nine with k = 2 and three with k = 1. In addition,
there are four known internally 4-connected families. The 68897913659 graphs therefore
fit in 20 families.

5 Conclusions

We provide a characterization of minor-minimal Y ∆Y irreducible graphs that admit es-
sential separations of order k ≤ 3. Such graphs are obtained by combining two graphs of
a special type, called T-critical graphs. Examples of T-critical graphs are shown, which
leads to the discovery of large quantities of minor-minimal Y ∆Y irreducible graphs.

Finding other possible forbidden minors seems hard. The concept of k-terminal crit-
icality, in particular, is useful only for k ≤ 3. It is easy to show that if G is 4-terminal
critical, then G + ∆ is isomorphic to K5. In addition, there are no k-terminal critical
graphs for k > 4. Extensive computer search for additional T-critical graphs has yielded
no result. It is an open question whether there are exactly 68897913659 minor-minimal
Y ∆Y irreducible graphs.

Acknowledgement: The author thanks the referees for their valuable comments.
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