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Abstract

Let G be a group acting faithfully on a set X. The distinguishing number of
the action of G on X, denoted DG(X), is the smallest number of colors such that
there exists a coloring of X where no nontrivial group element induces a color-
preserving permutation of X. In this paper, we show that if G is nilpotent of class
c or supersolvable of length c then G always acts with distinguishing number at
most c + 1. We obtain that all metacyclic groups act with distinguishing number
at most 3; these include all groups of squarefree order. We also prove that the
distinguishing number of the action of the general linear group GLn(K) over a field
K on the vector space Kn is 2 if K has at least n + 1 elements.

1 Introduction

An action of a group G on a set X is said to be faithful if only the identity element of
G fixes every element of X. Let G be a group acting faithfully on X. For r ∈ N, an
r-coloring of X is a function c : X → {1, . . . , r}. A permutation π of X preserves the
coloring c if c(πx) = c(x) for all x ∈ X. A coloring is said to be distinguishing if the only
element in G that induces a color-preserving permutation of X is the identity element.
The distinguishing number of the action of G on X, denoted DG(X), is the smallest r
admitting a distinguishing r-coloring of X with respect to the action of G. If there does
not exist a distinguishing r-coloring of X for any finite r, we say that DG(X) = ∞.

The distinguishing number was first defined by Albertson and Collins in [2] as a
property of graphs. More specifically, the distinguishing number of a graph M , denoted
D(M), is the smallest number of colors admitting a coloring of the vertices such that the
only color-preserving automorphism of M is the identity; thus D(M) = DAut(M)(V (M)).
Note that distinguishing colorings of graphs need not be proper colorings in the graph
theoretic sense: two adjacent vertices may or may not have the same color. Although
Albertson and Collins initially defined the distinguishing number solely in terms of graphs,
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the approach they chose to take is nevertheless highly group theoretic. Given a group G,
they define the distinguishing set of G, denoted D(G), as

D(G) = {D(G) | G is a graph with Aut(G) ∼= G}.
Their results in [2] center around characterizing the distinguishing set of a group. For

example, they show that D(S4) = {2, 4}. They also prove the following result.

Theorem. [2, Corollary 3.1, Theorem 6]
(1) If G is Abelian then max{D(G)} ≤ 2.
(2) If G is dihedral then max{D(G)} ≤ 3.

In addition, the distinguishing number of several families of graphs, including trees,
hypercubes, and generalized Petersen graphs, have been studied in [3], [5], [7], and [10].

In [12], Tymoczko generalizes the notion of the distinguishing number to group actions
on sets and proves results about the distinguishing number of actions of the symmetric
group Sn. She shows that the distinguishing number of group actions is indeed a more
general question than the distinguishing number of graphs. For example, she exhibits a
faithful S4-action with distinguishing number 3, contrasting Albertson and Collins’ result
that D(S4) = {2, 4}. This difference highlights the fact that not all faithful group actions
are realized as actions of the automorphism group of a graph on its vertex set.

Following Tymoczko, it seems natural to expand the notion of the distinguishing
set of a group to include all of its possible actions, not just those arising from graph
automorphism groups. In this generalized context, we ask the following question: given a
group G, what is the best upper bound we can give for DG(X)? In Section 2, we give an
upper bound for the maximum distinguishing number for a large class of groups including
nilpotent and supersolvable groups.

Theorem. If G is nilpotent of class c or supersolvable of length c then G acts with
distinguishing number at most c + 1.

As a corollary, we obtain that all metacyclic groups act with distinguishing number
at most 3 since they are supersolvable of length 2; these include all groups of squarefree
order. Albertson and Collins’ results for Abelian and dihedral groups are special cases of
nilpotent groups of class 1 and metacyclic groups, respectively. In Section 3, we compute
the distinguishing number for an important group action, that of the general linear group
over a field K on a vector space over K. We show that the distinguishing number of this
action is 2 if |K| > n + 1 where n denotes the dimension of the vector space.

Our definition of the distinguishing number of a group action differs from the one given
in [12] in that we require the action to be faithful. This apparent restriction does not in
actuality limit the question being considered, however, for given a nonfaithful action of
G on X, we may consider instead the faithful action of the quotient group G/Stab(X)
on X, where Stab(X) denotes the elements of G that fix each x ∈ X. Also, in contrast
to both [2] and [12], we do not require our groups and sets to be finite, simply because
there seems to be no reason to do so. We only note that if G is an infinite group acting
faithfully on a set X, then X must be infinite as well.
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2 The maximum distinguishing number of a group

Given a group G, let D(G) = max
{
DG(X) | G acts faithfully on X

}
denote the largest

distinguishing number that G admits, or D(G) = ∞ if some DG(X) = ∞. In [12],
Tymoczko proves the bound DG(X) ≤ k if |G| ≤ k!, a result originally formulated by
Albertson, Collins and Kleitman in terms of graphs. This result holds for any action of G
on X, faithful or nonfaithful. In [2], Albertson and Collins show that if G is Abelian then
D(G) ≤ 2 and if G is dihedral then D(G) ≤ 3. Their proof is formulated only in terms
of graphs but also holds for group actions. In this section, we generalize these results to
a class of groups that includes all nilpotent and supersolvable groups.

The following lemma gives some conditions under which we may characterize the
maximum distinguishing number of a group. The idea to consider the intersection of a
normal subgroup with the stabilizing subgroup of orbit representatives was inspired by
Albertson and Collins’ proof for dihedral groups in [2]. In what follows, we use 〈x〉 to
denote the subgroup generated by a group element x. Also, we will denote group actions
by exponentiation on the right. Thus, the image of an element x ∈ X under the action
of g ∈ G is denoted xg, and we have (xg1)g2 = x(g1g2) for all g1, g2 ∈ G.

Lemma 2.1. Suppose N is a normal subgroup of G with the property that if n1, n2 ∈ N
are conjugate elements in G, then 〈n1〉 = 〈n2〉. Suppose further that any subgroup L of
G/N has the property that D(L) ≤ c. Then D(G) ≤ c + 1.

Proof. The case G = 1 is trivial. Suppose that a nontrivial group G acts faithfully on a
set X. Choose a set U of representatives of the orbits of G on X (using the Axiom of
Choice if there are infinitely many orbits), and let H = {g ∈ G | ug = u for each u ∈ U}
stabilize the set U pointwise. We claim that H ∩N = 1. Suppose that n ∈ H ∩N , so that
n stabilizes each u ∈ U . Fix any x ∈ X and let u ∈ U be the representative of the orbit
containing x. Let g ∈ G satisfy u = xg, and let Hx be the stabilizer subgroup of x. By
assumption, n stabilizes u, so gng−1 stabilizes x. But the fact that 〈n〉 = 〈gng−1〉 implies
that n ∈ 〈gng−1〉 ≤ Hx. Therefore, n stabilizes each x ∈ X. Since G acts faithfully,
n = 1 and so H ∩ N = 1. Applying the Second Isomorphism Theorem, we conclude that
H ∼= HN/N ≤ G/N .

Now, we know that X \U is nonempty because G is nontrivial, so consider the action
of H on X \ U . This action is faithful since the action of G on X is faithful. Then
DH(X\U) ≤ D(H) ≤ c since H is isomorphic to a subgroup of G/N . Then let C : X\U →
{1, . . . , c} be a c-coloring of X \ U that is distinguishing with respect to the action of H .
Now define C ′ : X → {1, . . . , c + 1} as

C ′(x) =

{
c + 1 if x ∈ U,

C(x) if x 6∈ U.

We claim that C ′ is a distinguishing (c + 1)-coloring of X with respect to the action of
G. Suppose g ∈ G preserves C ′. Then g must fix each orbit representative u ∈ U , since
they are the only elements of color c + 1 and lie in different orbits. Thus g ∈ H . Then
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consider the action of g on X \U . Since the restriction of C ′ to X \U is a distinguishing
coloring with respect to the action of H , and g ∈ H preserves this coloring, we have
g = 1. Therefore, C ′ is a distinguishing c + 1-coloring with respect to the action of G.
We conclude that an arbitrary action of G has distinguishing number at most c + 1, and
so D(G) ≤ c + 1.

The next theorem is a consequence of Lemma 2.1. Following [8], we define a normal
series for a group G to be a chain of subgroups 1 = G0 / G1 / · · · / Gc = G with the
additional condition that each Gi / G.

Theorem 2.2. Suppose a group G has a finite normal series

1 = G0 / G1 / · · · / Gc = G

in which each quotient Gi+1/Gi is cyclic or is contained in Z(G/Gi). Then D(G) ≤ c+1.

Proof. We proceed by induction on c. If c = 0, then G = G0 = 1 and D(G) = 1. Now
let G have a normal series 1 = G0 / G1 / · · · / Gc = G of length c > 0 with the required
property. In order to apply Lemma 2.1, we wish to show that any two conjugate elements
lying in G1 generate the same subgroup, and in addition any subgroup of the quotient
group G/G1 acts with distinguishing number at most c.

Let n1 and n2 be conjugate elements in G1. We have assumed that G1 is either
cyclic or contained in Z(G). In the former case, note that since conjugation is a group
automorphism, [G1 : 〈n1〉] = [G1 : 〈n2〉]. But G1 is cyclic, so it has precisely one subgroup
of this index. Therefore 〈n1〉 = 〈n2〉. In the latter case, note that every element of Z(G)
has no conjugates other than itself, so n1 = n2 and 〈n1〉 = 〈n2〉.

Next, it follows from the Third Isomorphism Theorem that

1 = G1/G1 / G2/G1 / · · · / G/G1

is a normal series for G/G1 of length c−1 in which each quotient group (Gi+1/G1)/(Gi/G1)
is cyclic or is contained in Z((G/G1)/(Gi/G1)). Now for any subgroup L of G/G1, let
Li = (Gi+1/G1) ∩ L for each i with 0 ≤ i ≤ c − 1. Then one can check that

1 = L0 / L1 / · · · / Lc−1 = L

is a normal series of length c−1 for L with the property that each quotient group Li+1/Li

is cyclic or is contained in Z(L/Li). Then D(L) ≤ c by the inductive hypothesis. Thus,
all the conditions of Lemma 2.1 are satisfied, so D(G) ≤ c + 1.

As consequences of Theorem 2.2, we obtain upper bounds on the distinguishing number
of nilpotent and supersolvable groups. We recall the definitions of these important classes
of groups below; see [8] for a more detailed discussion of them.

A group G is said to be nilpotent if it possesses a finite normal series 1 = G0 /G1 / · · ·/
Gc = G such that each quotient group Gi+1/Gi is contained in Z(G/Gi). If the shortest
such normal series has length c, then we say that G is nilpotent of class c.
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Corollary 2.3. Let G be nilpotent of class c. Then D(G) ≤ c + 1.

In particular, since all Abelian groups are class-1 nilpotent, we have D(G) ≤ 2 for G
Abelian, as shown in [2].

A group G is said to be supersolvable if it possesses a finite normal series 1 = G0 /
G1 / · · · / Gc = G such that each quotient group Gi+1/Gi is cyclic. In this case, we will
say that G is supersolvable of length c. See [4] for a detailed discussion of supersolvable
groups.

Corollary 2.4. Let G be supersolvable of length c. Then D(G) ≤ c + 1.

A group G is called metacyclic if it has a normal subgroup N / G such that both N
and G/N are cyclic. Such groups have been completely classified in [9], and include all
groups of squarefree order.

Corollary 2.5. Let G be a metacyclic group. Then D(G) ≤ 3.

We obtain as a special case that if G is dihedral then D(G) ≤ 3, as shown in [2].

3 The action of GLn(K) on Kn

In this section, we consider the action of GLn(K), the group of n × n invertible matrices
over a field K, on Kn, the n-dimensional vector space over K. We may regard the
elements of Kn as column vectors and accordingly define a left action of GLn(K) on Kn

as A : v 7→ Av for each v ∈ Kn, A ∈ GLn(K). This action is clearly faithful.
Our main result is that if K is sufficiently large, then 2 colors suffice to distinguish

this action.

Theorem 3.1. Let K be a field. If K is infinite or is finite of order greater than n + 1,
then DGLn(K)(K

n) = 2.

Proof. We first observe that the multiplicative group K× must contain a nonzero element
α of order greater than n. For if K is infinite, then we may certainly choose such an
α since there exist only finitely many solutions in K to the equations xl = 1 for each
1 ≤ l ≤ n. On the other hand, if K is finite, then we know that K× is a cyclic group of
order |K| − 1. Let α generate the group K×, then the order of α is |K| − 1 > n.

Now let e1, . . . , en be the standard basis vectors in Kn, and let S be the set of vectors
{αiej | 0 ≤ i < j ≤ n}. Each of these vectors is distinct since α has order greater than n,
so the cardinality of S is 1

2
n(n + 1). Now color every vector in S blue and all remaining

vectors red. We claim this is a distinguishing 2-coloring of Kn with respect to the action
of GLn(K).

Suppose A ∈ GLn(K) preserves this coloring. It suffices to show that Aek = ek for
each ek. Since ek is blue, the image of ek must also be blue and so must have the form
αiej for 0 ≤ i < j ≤ n. We wish to show that i = 0 and j = k. First, note that
Aek = αiej implies that A−1(αi−1ej) = α−1A−1(αiej) = α−1ek. Now, α−1ek is a red
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point, because if instead α−1ek = αcek for some 0 ≤ c < k, then α would have order at
most c + 1, but c + 1 ≤ k ≤ n and we assumed that the order of α was greater than
n. So, α−1ek is red, and since A was assumed to be color preserving, αi−1ej is also red.
This is only possible if i = 0. Thus Aek = ej and so A induces some permutation of the
basis vectors {e1, . . . , en}. Suppose for a contradiction that A permutes them nontrivially.
Then there must exist Aek = ej with k < j. Then αj−1ek is red since k ≤ j − 1, but
αj−1ej is blue, and A(αj−1ek) = αj−1ej , a contradiction. Therefore, A fixes each basis
vector ek and so A = 1n as desired. We have exhibited a distinguishing 2-coloring of Kn,
so DGLn(K)(K

n) ≤ 2. Now, it is possible that DGLn(K)(K
n) = 1 only if GLn(K) is the

trivial group. This occurs only when n = 1 and K = F2, which was excluded by the
assumption that |K| > n + 1. Therefore, we have the equality DGLn(K)(K

n) = 2.

Theorem 3.1 leaves open the case when the size of the field is relatively small. It is
possible to show by case analysis that DGL2(F2 )(F

2
2) = DGL2(F3 )(F

2
3) = 3. However, we

leave the case when n > 2 and |K| ≤ n + 1 as an open problem.

4 Discussion and open questions

The distinguishing number seems to be a very natural property of group actions, and
efforts to relate the distinguishing number of a group action to group properties seem
likely to be fruitful. Below, we give several possibilities for further investigation.

One interesting method of attack relies on the following simple fact.

Observation. Let G act faithfully on X. Fix a coloring c of X and let Hc = {g ∈
G | g preserves c}. Then Hc is a subgroup of G.

The distinguishing number, then, is the smallest number of colors admitting a coloring
c such that Hc = 1. Thus, it seems plausible that one could make direct use of information
on the subgroup structure of G to characterize the distinguishing number. We present
the theorem below as an example of employing this technique.

Theorem 4.1. Let G be a finite group acting faithfully on a set X. Let p be the smallest
prime dividing the order of G, and let M be the length of the largest orbit of the action
of G on X. Then DG(X) ≤ d M

p−1
e.

Proof. With d M
p−1

e colors, we may color each orbit of X such that every color class within
a given orbit has size at most p−1. Call this coloring c. Let ∼ be the equivalence relation
given by x1 ∼ x2 if and only if x1 and x2 are in the same orbit and have the same color.
Let P1, P2, . . . , Pk be the equivalence classes of this relation, and let ni = |Pi|. Note that
a color preserving permutation h ∈ Hc can take a given element only to another element
in its equivalence class. Thus Hc ≤ Sn1 × Sn2 × · · · × Snk

. Also, Hc ≤ G. But since each
ni < p, the orders of Sn1 × Sn2 × · · · × Snk

and G are relatively prime. Since the order of
Hc divides both orders, we have Hc = 1, and so c is distinguishing.

In addition, we could use subgroup structure as a way to generalize the notion of the
distinguishing number, as follows. Given a group G acting faithfully on a set X and H a
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subgroup of G, let DG,H(X) denote the smallest number of colors admitting a coloring of
X such that the only elements of G that induce color-preserving permutations lie in H .
Thus, when H = 1, we recover the original notion of the distinguishing number.

Question 1. Characterize DG,H(X).

In Section 2, we considered the maximum distinguishing number admitted by a given
group. Intuitively, we would expect a large group to admit actions that require many
colors to distinguish them. Thus, we ask whether the distinguishing number is ordered in
a way that respects the partial ordering of groups defined by subgroup inclusion.

Question 2. Let G and H be groups, H a subgroup of G. Does it follow that D(H) ≤
D(G)?

Note that if a given faithful action of H on X can be extended to a faithful action
of G on X then DH(X) ≤ DG(X), because any coloring of X that is distinguishing with
respect to the action of G is also distinguishing with respect to the action of H . However,
since not every faithful action of H on X can necessarily be extended to a faithful action
of G (for example if |G| > |X|!), the question cannot be answered immediately in the
affirmative.

We also ask whether the bounds obtained in Section 2 for nilpotent and supersolvable
groups are tight.

Question 3. For which k > 2 does there exist a group G that is nilpotent group of class k
(or a supersolvable group of length k) acting faithfully on a set X such that DG(X) = k+1?

In Section 3, we showed that DGLn(K)(K
n) = 2 if |K| > n+1 and DGLn(K)(K

n) = 3 if
|K| ∈ {2, 3} and n = 2. As mentioned, we leave the remaining cases as an open question.

Question 4. Compute DGLn(K)(K
n) for n > 2 and |K| ≤ n + 1.

The generalization of the distinguishing number to infinite groups acting on infinite
sets is new, and it might be interesting to investigate conditions on the finiteness or
infiniteness of the distinguishing number. This leads to many questions, including the
following.

Question 5. Suppose G is a group that always acts with finite distinguishing number.
Does it follow that D(G) < ∞, that is, that the set {DG(X)} has a maximum element?

Another approach would simply be to define the distinguishing number of an action
to be the cardinality of the smallest set of colors admitting a distinguishing coloring. This
would eliminate the formal distinction between the finite and infinite cases.

Finally, throughout this paper, we have considered the distinguishing numbers that
a fixed group admits in its actions on various sets. We could instead fix a set [n] and
consider the distinguishing numbers it admits under the actions of various groups.

Question 6. For each n, characterize the set

Tn = {DG([n]) | G is a transitive subgroup of Sn}.
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One may show that Tn = {2, . . . , n} for n = 2, 3, 4, 5, and 6. We ask whether Tn has
this form for larger n. Note that we require our group G to be transitive, for otherwise
each distinguishing number k between 1 and n could be achieved by taking a subgroup
of Sn that fixes each k + 1, k + 2, . . . , n and whose action on 1, . . . , k is isomorphic to the
action of Sk.
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