Bounding the partition function of spin-systems

David J. Galviri

Department of Mathematics
University of Pennsylvania
209 South 33th Street
Philadelphia PA 19104 USA

dgalvin@math.upenn.edu

Submitted: Aug 23, 2005; Accepted: Jul 28, 2006; Published: Aug 22, 2006
Mathematics Subject Classifications: 05C15, 82B20

Abstract

With a graphG = (V, E) we associate a collection of non-negative real weights
Upey i 1 1 <i <mpUUypep{iju 1 1 < < j <m}. We consider the probability
distribution on{f : V" — {1,...,m}} in which eachf occurs with probability propor-
tional 0 [[,cv A rw),0 [ Tuver Af(w)fv),uo- Many well-known statistical physics models,
including the Ising model with an external field and the hard-core model with non-uniform
activities, can be framed as such a distribution. We obtain an upper bound, independent
of G, for the partition function (the normalizing constant which turns the assignment of
weights on{f : V. — {1,...,m}} into a probability distribution) in the case when
is a regular bipartite graph. This generalizes a bound obtained by Galvin and Tetali who
considered the simpler weight collectidny; : 1 < i < mjU{); : 1 < i <5 <
m} with each);; either0 or 1 and with eachf chosen with probability proportional to
[Tocv Afw) [Huver Afw) ). Our main tools are a generalization to list homomorphisms
of a result of Galvin and Tetali on graph homomorphisms and a straightforward second-
moment computation.

1 Introduction and statement of results
LetG = (V(G), E(G)) andH = (V(H), E(H)) be non-empty graphs. Set
Hom(G,H)={f:V(G) = V(H):uw € E(G) = f(u)f(v) € E(H)}

(that is, Hom(G, H) is the set of graph homomorphisms frahto /). In [4], the following
result is obtained using entropy considerations (and in particular, Shearer's Lemma).

*This work was begun while the author was a member of the Institute for Advanced Study, Einstein Drive,
Princeton, NJ 08540 and was supported in part by NSF grant DMS-0111298.
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Theorem 1.1 For any graphH and anyd-regular N-vertex bipartite grapit,
|Hom(G, H)| < |Hom(K 4, H)|2
wherekK, , is the complete bipartite graph withvertices in each partition class.

In [4] Theorem 1.1 is extended to a result on weighted graph homomorphisms. To each
i € V(H) assign a positive pair of weights,, ;). Write (A, M) for the set of weights. For a
bipartite graphz with bipartition classeg; andO give eachf € Hom(G, H) weight

wtMW(f) =TT My T #ro-

veEG veQq

The constant that turns this assignment of weight§om (G, H) into a probability distribution

IS
ZOM(G H) = > w™M(f).

feHom(G,H)

The following is proved in [4].

Theorem 1.2 For any graphH, any set A, M) of positive weights o' (4 ) and anyd-regular
N-vertex bipartite graplit,

N
ZON(GH) < (20N (K, H))™.

Taking all weights to bé&, Theorem 1.2 reduces to Theorem 1.1.

In this note we consider a more general weighted model.nkix N and a graplG =
(V, E). With eachl < i < m andv € V associate a non-negative real weight and with
eachl <i < j <manduv € E associate a non-negative real weight,,. Seth;; ., := \ji uw
fori > j. Write W for the collection of weights and for eagh: V' — {1,...,m} set

w' (f) = H A f(v)0 H A f(u) f(v),uv

veV weE

and

We may put all this in the framework of a well-known mathematical model of physical spin
systems. We think of the vertices 6f as particles and the edges as bonds between pairs of
particles (typically a bond represents spatial proximity), and we think of. ., m} as the set
of possible spins that a particle may take. For eac8 V' we think of the weights\. , as
a measure of the likelihood of seeing the different spins; durthermore, for eachiv € E
we think of the weights\. ,,, as a measure of the likelihood of seeing the different spin-pairs
across the edgev. The probability of a particular spin configuration is thus proportional to
the product over the vertices 6f of the weights of the spins times the product over the edges
of G of the weights of the spin-pairs. In this languag® (G) is the partition function of the
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model — the normalizing constant that turns the above-described system of weights on the set of
spin configurations into a probability measure.

An example of such a model is tiard-core(or independent set) model. Here= 2 and
the system of weight®/,,.. is given by

A ifi=1 _Jo ifi=5=1
)‘Lv—{ 1 ifi=2 and )"'j"“’_{ 1 otherwise,

and so

72V (@) = Z < H /\> Liguver: f(u)=1 Z H)‘

fV—{1,2} u:f(v I€T(G) vel

is a weighted sum of independent set<:in(Recall that/ C V' is independenin ¢ if for all
u,v € I,uv ¢ E. We writeZ(G) for the collection of independent sets(h)

The hard-core model istaard-constrainimodel in which all of the edge-weights are either
0 or 1, and the ole of these weights is to exclude certain configurations from contributing to the
partition function. We now consider the best known examplesgfaconstraintnodel (one in
which all configurations are potentially allowable), tseng model. Heren = 2 and there are
two parameters?, h € R. Itis convenient to take the set of spins to{el, —1}. The system
Wisings,n Of weights on{+1, —1} is as follows.

A1, = e'forallo eV

A1, = eforallveV

Niiww = e Pforie {+1,-1}and alluv € E and
Mi11w = e’foralluv € E.

Foreacty : V' — {41, -1} we have

wWIsing,ﬁ,h( ) — eXp{ ﬁ Z + h Z

weE veV (G

Then ZWisinas.n(G) = Y wWisinasn(g) is the partition function of the Ising model o
with inverse temperaturgs| and external fielch. (If 3 > 0, we are in the anti-ferromagnetic
case, where configurations with mamyl-—1 edges are favoured; | < 0, we are in the
ferromagnetic case, where configurations with feiv—1 edges are favoured.)

Let us now set up the notation for our main result. For completeness, we choose to make
the straightforward generalization from regular bipartite graphatb)-biregular graphs, that
is, bipartite graphs in which one partition class, which we shall I&belconsists of vertices
of degreea and the other class)s, consists of vertices of degrée Forv € Og write
{n1(v),...,ny(v)} for the set of neighbours of

Let G be such a graph and I8t be a collection of weights ofi. Give labelsw, ..., w, to
the degree vertices ofK, ;, (the complete bipartite graph withvertices in one partition class
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andb in the other) and labels,, . . ., z, to the degreé vertices. Fow € O write W for the
following system of weights o, ;:

o) A if u= 2, forsomel <k <a
P Mgy If uw = wy, for somel <k <b

and, forl <k <bandl < ¢ < a, Ajjuw,z, = Nijng(v)o- OUr main result is a generalization of
Theorem 1.2 to the following.

Theorem 1.3 For any (a, b)-biregular graphG and any system of weighitg,

27(@) < [ (2% (Kup)*

veQq

Takinga = b =d,

_ fa fveés _J 1 ifije E(H)
Aiw = { wi ifve Ogq and  Aijuw = { 0 otherwise,

Theorem 1.3 reduces to Theorem 1.2.

Let us consider an application of Theorem 1.3 to the antiferromagnmgtic({) Ising model
without external field § = 0) on ad-regular,N-vertex bipartite grapli-. A trivial lower bound
on ZWIsing,B,h(G)’

dN

is obtained by considering the configuration in which one partition claGs®Mmapped entirely
to +1 and the other entirely te-1. Applying Theorem 1.3 we obtain as an upper bound

ZWI.singﬂ,h (G) S ZWIsing»B,h (Kd d) 2d

< (22de,8d2> 2d )
= 2Nexp{ﬁdTN}. 3)

In (2) we are using that there a2é&! possible configurations off; ; and that each has weight
at moste”®*. Combining (1) and (3) we obtain the following bounds on filee-energyof the
Ising model, the quantity"Vrsins.0:0 (G) := log(ZWisina.6:n(G)) /N

pd < FWisingsh () < pd +In2.

2 2
Note that these bounds are absolute (independefitarid V), and asymptotically tight in the
case of a family of graphs satisfyimtgl = w(1).

We give the proof of Theorem 1.3 in Section 3. Animportant tool in the proof is an extension
of Theorem 1.1 to the case of list homomorphisms, which we now discus#/ BatiG be non-
empty graphs. To eache V(G) associate a sét(v) C V(H) and writeL(G, H) for {L(v) :
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v € V(G)}. A list homomorphism frond- to H with list set£(G, H) is a homomorphism
f € Hom(G, H) satisfyingf (v) € L(v) forallv € V(G). Write Hom*(%H) (G, H) for the set
of all list homomorphism front to H with list setL(G, H).

The notion of a list homomorphism is a generalization of that of a homomorphism. Indeed,
if L(v) = V(H) forallv € V(G) then Hom*““H) (G, H) is the same a#lom(G, H). List
homomorphisms also generalize the well-studied notion of list colourings of a graphb.¢see
[3, Chapter 5] for an introduction). Recall that if a listv) of potential colours is assigned to
each vertex of a graphGz, then a list colouring of7 (with list setL(G) = {L(v) : v € V(G)})
is a functiony : V(G) — Uwev(a)L(v) satisfying the property thatis a proper colouringi.,
x(u) # x(v) for all wv € E(G)) that respects the lists€., x(v) € L(v) for all v € V(G)).
The set of list colourings off with list set£(G) is exactly the seHHom* () (G, Hy(c)) where
H ) is the complete loopless graph on vertexisgty ) L(v).

In the discussion that follows we fix dn, b)-biregular graptG. We also fixH andL(G, H)
and for convenience of notation we often suppress dependenceéand H. Forv € Og
write £V for the list set onk,;, in which each vertex of degréegets listZ(v) and the ver-
tices of degree get the listsL(n,(v)),. .., L(ny(v)) (each one occurring exactly once) where
{n1(v),...,np(v)} is the set of neighbours af. (Recall thatk,; is the complete bipartite
graph witha vertices in one partition class ahndn the other.) We generalize Theorem 1.1 to
the following result, whose proof is given in Section 2.

Theorem 1.4 For any graphH, any(a, b)-biregular graphG and any list se_,
|Hom*(G, H)| < [] (JHom*" (K, H)

)1
veEQaG
Takinga = b = dandL(v) = V(H) for allv € V(G), Theorem 1.4 reduces to Theorem 1.1.

Before turning to proofs, we pause to make a conjecture. The point of departure for this
note and for [4] is a result of Kahn [5] bounding the number of independent set&liagular,
N-vertex bipartite graply by

Z(G)] < [Z(Kqa)|20. (@)
Kahn conjectured in [5] that for an arbitrary gra@ht should hold that
Z@) < [ 1ZKa).an)| ™. (5)
weF(G)

whered(u) denotes the number of neighboursuoih G. Note that (4) is a special case of (5),
and that (5), if true, would be tight for aly which is the union of complete bipartite graphs.

At the moment we see no reason not to conjecture the following, which stands in relation to
Theorem 1.3 as (5) does to (4).

Conjecture 1.5 LetG be any graph andil” any collection of weights of¥. For eachu € V(G)
let {ni(u), ..., nquw(u)} be the set of neighbours of For each edgew € E(G), label the

degreed(u) vertices ofK ) 4wy DY wi(u,v), ..., wqw (u,v) and the degree(v) vertices by
21(w,v), ..., Zaw) (u, v). LetW™ be the collection of weights dif;.,) 4.) given by
)\Z;:J)j(u,v) = Ai:”]’(“)’ )\ZZ;(U,,U) - /\i:”]’(“) and )\ZZUj(u,U)Zk(QL,U) = /\ij,nj(v)nk(u)~

THE ELECTRONIC JOURNAL OF COMBINATORICS 13 (2006), #R72 5



Then )
) < H ZV (K gy dgw) ) 090

weE(G)

Exactly as Theorem 1.3 follows from Theorem 1.4 (as will be described in Section 3), Conjec-
ture 1.5 would follow from the following conjecture concerning list homomorphisms.

Conjecture 1.6 Let G and H be any graphs andC any list set. LetC"” be the list set on
Kd(u),d(v) given by

L% (w;(u, v)) = L(n;(v)) and L*"(z;(u,v)) = L(n;(u))

(with the notation as in Conjecture 1.5). Then

1

[Hom“(G, H)| <[] 1Hom®" (Kuuau))| 7.
weE(G)

2 Proof of Theorem 1.4

We derive Theorem 1.4 from the following more general statement.

Theorem 2.1 Let G be a bipartite graph with partition classe%; and Oq, H an arbitrary
graph andl = L(G, H) a list set. Suppose that thereris t; andt, and familiesd = {4; :
1<i<m}andB = {B;:1<i<m}witheachA; C &; and eachB; C O such that each
v € Eq Is contained in at least; members of4 and eachu € O is contained in at least;,
members of5. Then

\Homn(G,H)ygﬁ( 3 ’CQ(Ai’Bi)‘%)i

i=1 Nzell,eq, L(v)

where, for each <i < m and eachr € [],., L(v),

z _ ‘ VYveB, f(v)e L(v)and
O Bi) = {f B VIH) S e B we Awithuo € B(G), (2)uf(v) € E(H) }

is the set of extensions of the partial list homomorphismn A; to a partial list homomorphism
on Az U B;.

To obtain Theorem 1.4 from Theorem 2.1 we take= {N(v) : v € Og} andB = {{v} : v €
Oc} whereN(v) = {u € V(G) : wv € E(G)} so thatt; = a andt, = 1, and note that in this
case) |CZ(N (v),{v})|* is preciselyf Hom*" (K, H)|.

2€[lyea, Lw)

The proof of Theorem 2.1 uses entropy considerations, which for completeness we very
briefly review here. Our treatment is mostly copied from [5]. For a more thorough discussion,
seee.g. [6]. In what follows X, Y etc. are discrete random variables, which in our usage are
allowed to take values in any finite set.
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Theentropyof X is
Zp Jlog

where we writep(x) for P(X = z) (and extend this convention in natural ways below). The
conditional entropyf X givenY is

HXIY) = EHXIY = 9}) = 30 p) 3 plaly) og ——.

Notice that we are also writin§f (X|Q) with @ an event (in this cas@ = {Y = y}):

H(X|Q) =) p(x|Q) log ‘@

We have the inequalities
H(X) < log |range(X)| (with equality if X is uniform),

H(X|Y) < H(X),

and more generally,

if Y determine< thenH (X|Y) < H(X|Z). (6)
For arandom vectaX = (X, ...,X,) there is a chain rule
H(X)=H(X,)+ HXyXy) + -+ HX, X1, ..., Xpm1). (7)

Note that (6) and (7) imply

We also have a conditional version of (8):

Finally we use a lemma of Shearer (see [2, p. 33]). For a random VEcter(X,, ..., X,,)
andA C{1,...,m},setX, = (X;:i € A).

Lemma 2.2 LetX = (X4, ...,X,,) be arandom vectoly a random variable ant4 a collec-
tion of subsets (possibly with repeats)of. . ., m}, with each elementdfl, ..., m} contained
in at leastt members ofd. Then

1
=N H(Xa) and  H(X[Y) < § H(XA]Y).
AeA AGA

THE ELECTRONIC JOURNAL OF COMBINATORICS 13 (2006), #R72 7



Proof of Theorem 2.1We follow closely the proof of [4, Lemma 3.1]. Létbe a uniformly
chosen member offom” (G, H). For eachl < i < m and each: € [],., L(v) let p;(z)

be the probability thaf restricted toA; is x. With the key inequalities justified below (the
remaining steps follow in a straightforward way from the properties of entropy just established)
we have

H(f) = H(fle )+H(f|oclf\sc)

1 m
< = H H
< g ; )+ — Z (9)
1 & t
= ii Z (z) 1o ! +t—1 (z)H(f =z})
- tl . DPilZ gpz(z) t2pl L B A — 4
=1 ervEAi L(v)
& C=(A;, By
Lm0 gell,ca, L) Pi\E
1 & 4
< Y Y ettamlt). (1)

2€ll,e 4, L(v)

In (9) we use Shearer's Lemma twice, once withas the covering family and once with,
and in (11) we use Jensen’s inequality. In (10) we would have equality if it happened that for
eachi, A; included all the neighbours @;, sincef|z, depends only on the valuesbbn B;’s

neighbours. It is easy, ) < H(f|p, | f|a,)
when A; does not include all the neighbours Bf.
The theorem now follows from the equality(f) = log |Hom*(G, H)|. O

3 Proof of Theorem 1.3

By continuity we may assume that all weights are rational and non-zero. By scaling appropri-
ately we may also assume thtat \;; ., < 1forall i, j anduv € E(G) (we will later think of
the \;; ..,'S as probabilities).

SetN = |V(G)| and

)\vmin = HllH )\i,wy AUmaac = max )\i,w and /\emin = HllH )\ij,vw'
i,w i,w ij,ow

Also, setwy, = AN . AN this is a lower bound om" (f) for all f : V(G) —
{1,...,m} (observe that afia, b)- blregular graphZ on N vertices hasés| = bON/(a + b),
|Oc¢| = aN/(a +b) and |E(G)| = abN/(a + b)) as well as a lower bound ap™"(f) for all

veOgandallf: V(K,,) — {1,...,m}.
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ChooseC' > 1 large enough that’\; , € Nforall1 < i < m andv € V(G). For eachi
andwv let S, , be a set of siz€’'); ,, with all the S; ,’s disjoint. Let H be the graph on vertex set
U;uSi0 Withzy € E(H) iff z € S, andy € S;,, for somei, j, v, w withvw € E(G). For each
v € V(G)letL(v) = U;5;, and sel = {L(v) : v € V(G)}. Foreacty : V(G) — {1,...,m}
and each subgraptl of H (on the same vertex set &8 set

H,(G, H) = {f € Hom*(G, H) : f(v) € Sy, forallv € V(Q)}.
Note thatH,(G, H) is exactly{f : V(G) — V(H) : f(v) € Syw) forallv e V(G)} and so
[Hy(G, H)| = CV [ cv (@) Agw).- Note also that fog # ¢’ we haveH, (G, H)N'Hy (G, H) =
0 and thatHom®(G, H) = U,H,(G, H).
For eachv € Og, eachg : V(K,;) — {1,...,m} and eaclH, set

v T LY 7\ . f(wk) € Sg(wk),nk(v)u 1 S k S b
HQ(Ka,baH) - {f € Hom (Ka,baH) : f(zk) c Sg(zk),va 1 S k S a )

where the notation is asgstablished beiore the statements of Theorgms 1.3and 1.4. Note that for
qg 7é g, we haVe}'(;(Kmb, H) N H;/(Ka,b, H) = () and thatHomU(Kmb, H) = UgHZ(Ka,ba H)
We will exhibit a subgraptﬁ of H which satisfies

YW (g) = [Hy(G )| < S(O)H,(G, ) (12)
forallg: V(G) — {1,...,m} and
CH Y (g) — [ (K, B | < 6Oy (Ko, 1) (13)

forallv € Og andg : V(K,,) — {1,...,m}, wherej(C) depends also or, a, b andV and
tends ta) asC' tends to infinity (withV, a, b andWW fixed). This suffices to prove the theorem,
for we have

CVZM(G) — [Hom (G )| < D[N w (g) - M (G )
g9
< 8(0) ) IH, (G, H)
g
= §(C)|Hom"(G, H)|
and similarly, for each € Og,
CHZY (Kop) = | Hom® (Kqp, )| < 8(C)| HomE (Ko, ) (14)

and so
ONZW(G) < (1+6(C))|H0mﬁ(07ﬁ)‘

< (1430 IT (1Hom* (Kop, 1)])° (15)
veQg
ov LHNE) T (v (K, )¢ (16)

(1-0(C)™ 2o,
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In (15) we use Theorem 1.4 while in (16) we use (14). Theorem 1.3 follows since the constant
in front of the product in (16) can be made arbitrarily closé {with NV, a, b andV fixed) by
choosingC sufficiently large.

The graphi will be a random graph defined as follows. For eaghe E(H) withz € S, ,

andy € S, we putzy € E(H ) with probability \;; ..., all choices independent. The proofs
of (12) and (13) involve a second moment calculation. For gach H, (G, H), setX; =

L per iy @NAX =37 oy Xy Note thatX = [H,(G, H)|. For eachf € H,(G, H)
we have
E(X;) = P(f €M, (G, H))
= P{f(w)f(v) € E(H)Vuv € E(G)})
= JI Mwsw 17)

weE(G)

with (17) following from the fact thaf f(u) f(v) : uv € E(G)} is a collection of disjoint edges
and sof{f(u)f(v) € E(H)} : uwv € E(G)} is a collection of independent events. By linearity
of expectation we therefore have

E(X) = [Hy(G H)| T Mgt = CV0™ (9) = g (18)

weF(G)

We now consider the second moment. Horf’ € H, (G, H) write f ~ f' if there is
wv € E(G)with f(u) = f'(u) andf(v) = f’(v). Note thatX ; andX; are not independent iff
f ~ f'. By standard methods (seg.[1]) we have

Var(X) < p+ 3 P({f € Hy(G, H)} N {f' € Hy(G, H)})
(f.f)EHG(GH)? « f~f!
< p+|{(f, f) € Hy(G H)? : f~ f}].
To estimatd{(f, /') € H,(G, H)? : f ~ f'}| note that there arg,(G, H)| choices forf, at
mostN? choices for auwv € E(G) on which f and f’ agree, and finally at most

MG H)|_ [H,(C. 1)
O/\g(u),uO/\g(v),y - (O2)\2

Vmin

choices for the rest of’. We therefore have

Var(X) 1 |H,(G, H)]>?N?
112 S ;+ (1202 )2

vman

1 1 N?
2\ CN 2wl (g) Aimml—[uvemc) Ag(w)g(v)uv

1 1 )\f)VmMN2
a(N,a,b,W)

< 5B

> 2
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for some functiom (independent otz andg). In (19) we use (18) and the fact that > 2
(which holds sincé- is non-empty). By Tchebychev’s inequality, we therefore have

o 1

It follows that the probability that/ fails to satisfy

H,(G, )|
H )\g(u W),wo T A7 T N ’H G H H )‘ u)g(v),uv (20)

weE(G) quE(G

for a particularg is at mostl /C, and so the probability that it fails to satisfy (20) for anis at
mostm” /C.

A similar argument gives that for a particularc O andg : V(K,;) — {1,...,m} the
probability thatH fails to satisfy

‘H aba
IT  Mewscomwy — TH (Ko, 1) 11 Ag(wng(zk),nk(v)v (21)

w;zp€E(Kq,b) ab’ w 2LEE(Ka,b

is at mostl /C', and so the probability that it fails to satisfy (21)jor anis at mostm**t/C.
As long asC > m”" + aNm®*/(a + b) there is therefore ai for which (12) is satisfied
for eachg : V(G) — {1,...,m} and (13) is satisfied for eache Oq andg : V(K,;) —

{1,...,m} with
W
" =Te- Ja'

Sinced(C') — 0 asC' — oo, we are done.
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