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Abstract

With a graphG = (V,E) we associate a collection of non-negative real weights⋃
v∈V {λi,v : 1 ≤ i ≤ m} ∪⋃uv∈E{λij,uv : 1 ≤ i ≤ j ≤ m}. We consider the probability

distribution on{f : V → {1, . . . ,m}} in which eachf occurs with probability propor-
tional to

∏
v∈V λf(v),v

∏
uv∈E λf(u)f(v),uv . Many well-known statistical physics models,

including the Ising model with an external field and the hard-core model with non-uniform
activities, can be framed as such a distribution. We obtain an upper bound, independent
of G, for the partition function (the normalizing constant which turns the assignment of
weights on{f : V → {1, . . . ,m}} into a probability distribution) in the case whenG
is a regular bipartite graph. This generalizes a bound obtained by Galvin and Tetali who
considered the simpler weight collection{λi : 1 ≤ i ≤ m} ∪ {λij : 1 ≤ i ≤ j ≤
m} with eachλij either0 or 1 and with eachf chosen with probability proportional to∏

v∈V λf(v)

∏
uv∈E λf(u)f(v). Our main tools are a generalization to list homomorphisms

of a result of Galvin and Tetali on graph homomorphisms and a straightforward second-
moment computation.

1 Introduction and statement of results

Let G = (V (G), E(G)) andH = (V (H), E(H)) be non-empty graphs. Set

Hom(G, H) = {f : V (G) → V (H) : uv ∈ E(G) ⇒ f(u)f(v) ∈ E(H)}
(that is,Hom(G, H) is the set of graph homomorphisms fromG to H). In [4], the following
result is obtained using entropy considerations (and in particular, Shearer’s Lemma).
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Theorem 1.1 For any graphH and anyd-regularN-vertex bipartite graphG,

|Hom(G, H)| ≤ |Hom(Kd,d, H)|N
2d

whereKd,d is the complete bipartite graph withd vertices in each partition class.

In [4] Theorem 1.1 is extended to a result on weighted graph homomorphisms. To each
i ∈ V (H) assign a positive pair of weights(λi, µi). Write (Λ, M) for the set of weights. For a
bipartite graphG with bipartition classesEG andOG give eachf ∈ Hom(G, H) weight

w(Λ,M)(f) :=
∏
v∈EG

λf(v)

∏
v∈OG

µf(v).

The constant that turns this assignment of weights onHom(G, H) into a probability distribution
is

Z(Λ,M)(G, H) :=
∑

f∈Hom(G,H)

w(Λ,M)(f).

The following is proved in [4].

Theorem 1.2 For any graphH, any set(Λ, M) of positive weights onV (H) and anyd-regular
N-vertex bipartite graphG,

Z(Λ,M)(G, H) ≤ (Z(Λ,M)(Kd,d, H)
)N

2d .

Taking all weights to be1, Theorem 1.2 reduces to Theorem 1.1.

In this note we consider a more general weighted model. Fixm ∈ N and a graphG =
(V, E). With each1 ≤ i ≤ m andv ∈ V associate a non-negative real weightλi,v and with
each1 ≤ i ≤ j ≤ m anduv ∈ E associate a non-negative real weightλij,uv. Setλij,uv := λji,uv

for i > j. Write W for the collection of weights and for eachf : V → {1, . . . , m} set

wW (f) =
∏
v∈V

λf(v),v

∏
uv∈E

λf(u)f(v),uv

and
ZW (G) =

∑
f :V →{1,...,m}

wW (f).

We may put all this in the framework of a well-known mathematical model of physical spin
systems. We think of the vertices ofG as particles and the edges as bonds between pairs of
particles (typically a bond represents spatial proximity), and we think of{1, . . . , m} as the set
of possible spins that a particle may take. For eachv ∈ V we think of the weightsλ·,v as
a measure of the likelihood of seeing the different spins atv; furthermore, for eachuv ∈ E
we think of the weightsλ·,uv as a measure of the likelihood of seeing the different spin-pairs
across the edgeuv. The probability of a particular spin configuration is thus proportional to
the product over the vertices ofG of the weights of the spins times the product over the edges
of G of the weights of the spin-pairs. In this languageZW (G) is the partition function of the
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model – the normalizing constant that turns the above-described system of weights on the set of
spin configurations into a probability measure.

An example of such a model is thehard-core(or independent set) model. Herem = 2 and
the system of weightsWhc is given by

λi,v =

{
λv if i = 1
1 if i = 2

and λij,uv =

{
0 if i = j = 1
1 otherwise,

and so

ZWhc(G) =
∑

f :V →{1,2}

( ∏
v:f(v)=1

λv

) (
1{6∃uv∈E:f(u)=f(v)=1}

)
=
∑

I∈I(G)

∏
v∈I

λv

is a weighted sum of independent sets inG. (Recall thatI ⊆ V is independentin G if for all
u, v ∈ I, uv 6∈ E. We writeI(G) for the collection of independent sets inG.)

The hard-core model is ahard-constraintmodel in which all of the edge-weights are either
0 or 1, and the rˆole of these weights is to exclude certain configurations from contributing to the
partition function. We now consider the best known example of asoft-constraintmodel (one in
which all configurations are potentially allowable), theIsing model. Herem = 2 and there are
two parameters,β, h ∈ R. It is convenient to take the set of spins to be{+1,−1}. The system
WIsing,β,h of weights on{+1,−1} is as follows.

λ+1,v = eh for all v ∈ V

λ−1,v = e−h for all v ∈ V

λii,uv = e−β for i ∈ {+1,−1} and alluv ∈ E and

λ+1−1,uv = eβ for all uv ∈ E.

For eachσ : V → {+1,−1} we have

wWIsing,β,h(σ) = exp
{
− β

∑
uv∈E

σ(u)σ(v) + h
∑

v∈V (G

σ(v)
}
.

Then ZWIsing,β,h(G) =
∑

σ wWIsing,β,h(σ) is the partition function of the Ising model onG
with inverse temperature|β| and external fieldh. (If β > 0, we are in the anti-ferromagnetic
case, where configurations with many+1-−1 edges are favoured; ifβ < 0, we are in the
ferromagnetic case, where configurations with few+1-−1 edges are favoured.)

Let us now set up the notation for our main result. For completeness, we choose to make
the straightforward generalization from regular bipartite graphs to(a, b)-biregular graphs, that
is, bipartite graphs in which one partition class, which we shall labelEG, consists of vertices
of degreea and the other class,OG, consists of vertices of degreeb. For v ∈ OG write
{n1(v), . . . , nb(v)} for the set of neighbours ofv.

Let G be such a graph and letW be a collection of weights onG. Give labelsw1, . . . , wb to
the degreea vertices ofKa,b (the complete bipartite graph witha vertices in one partition class
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andb in the other) and labelsz1, . . . , za to the degreeb vertices. Forv ∈ OG write W v for the
following system of weights onKa,b:

λv
i,u =

{
λi,v if u = zk for some1 ≤ k ≤ a
λi,nk(v) if u = wk for some1 ≤ k ≤ b

and, for1 ≤ k ≤ b and1 ≤ ` ≤ a, λij,wkz`
= λij,nk(v)v. Our main result is a generalization of

Theorem 1.2 to the following.

Theorem 1.3 For any(a, b)-biregular graphG and any system of weightsW ,

ZW (G) ≤
∏

v∈OG

(
ZW v

(Ka,b)
) 1

a .

Takinga = b = d,

λi,v =

{
λi if v ∈ EG

µi if v ∈ OG
and λij,uv =

{
1 if ij ∈ E(H)
0 otherwise,

Theorem 1.3 reduces to Theorem 1.2.

Let us consider an application of Theorem 1.3 to the antiferromagnetic (β > 0) Ising model
without external field (h = 0) on ad-regular,N-vertex bipartite graphG. A trivial lower bound
onZWIsing,β,h(G),

exp

{
βdN

2

}
≤ ZWIsing,β,h(G), (1)

is obtained by considering the configuration in which one partition class ofG is mapped entirely
to +1 and the other entirely to−1. Applying Theorem 1.3 we obtain as an upper bound

ZWIsing,β,h(G) ≤ ZWIsing,β,h(Kd,d)
N
2d

≤
(
22deβd2

) N
2d

(2)

= 2N exp

{
βdN

2

}
. (3)

In (2) we are using that there are22d possible configurations onKd,d and that each has weight
at mosteβd2

. Combining (1) and (3) we obtain the following bounds on thefree-energyof the
Ising model, the quantityF WIsing,β,h(G) := log(ZWIsing,β,h(G))/N :

βd

2
≤ F WIsing,β,h(G) ≤ βd

2
+ ln 2.

Note that these bounds are absolute (independent ofG andN), and asymptotically tight in the
case of a family of graphs satisfyingβd = ω(1).

We give the proof of Theorem 1.3 in Section 3. An important tool in the proof is an extension
of Theorem 1.1 to the case of list homomorphisms, which we now discuss. LetH andG be non-
empty graphs. To eachv ∈ V (G) associate a setL(v) ⊆ V (H) and writeL(G, H) for {L(v) :
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v ∈ V (G)}. A list homomorphism fromG to H with list setL(G, H) is a homomorphism
f ∈ Hom(G, H) satisfyingf(v) ∈ L(v) for all v ∈ V (G). WriteHomL(G,H)(G, H) for the set
of all list homomorphism fromG to H with list setL(G, H).

The notion of a list homomorphism is a generalization of that of a homomorphism. Indeed,
if L(v) = V (H) for all v ∈ V (G) thenHomL(G,H)(G, H) is the same asHom(G, H). List
homomorphisms also generalize the well-studied notion of list colourings of a graph (seee.g.
[3, Chapter 5] for an introduction). Recall that if a listL(v) of potential colours is assigned to
each vertexv of a graphG, then a list colouring ofG (with list setL(G) = {L(v) : v ∈ V (G)})
is a functionχ : V (G) → ∪v∈V (G)L(v) satisfying the property thatχ is a proper colouring (i.e.,
χ(u) 6= χ(v) for all uv ∈ E(G)) that respects the lists (i.e., χ(v) ∈ L(v) for all v ∈ V (G)).
The set of list colourings ofG with list setL(G) is exactly the setHomL(G)(G, HL(G)) where
HL(G) is the complete loopless graph on vertex set∪v∈V (G)L(v).

In the discussion that follows we fix an(a, b)-biregular graphG. We also fixH andL(G, H)
and for convenience of notation we often suppress dependence onG andH. For v ∈ OG

write Lv for the list set onKa,b in which each vertex of degreeb gets listL(v) and the ver-
tices of degreea get the listsL(n1(v)), . . . , L(nb(v)) (each one occurring exactly once) where
{n1(v), . . . , nb(v)} is the set of neighbours ofv. (Recall thatKa,b is the complete bipartite
graph witha vertices in one partition class andb in the other.) We generalize Theorem 1.1 to
the following result, whose proof is given in Section 2.

Theorem 1.4 For any graphH, any(a, b)-biregular graphG and any list setL,∣∣HomL(G, H)
∣∣ ≤ ∏

v∈OG

(∣∣HomLv

(Ka,b, H)
∣∣) 1

a .

Takinga = b = d andL(v) = V (H) for all v ∈ V (G), Theorem 1.4 reduces to Theorem 1.1.

Before turning to proofs, we pause to make a conjecture. The point of departure for this
note and for [4] is a result of Kahn [5] bounding the number of independent sets in ad-regular,
N-vertex bipartite graphG by

|I(G)| ≤ |I(Kd,d)|N
2d . (4)

Kahn conjectured in [5] that for an arbitrary graphG it should hold that

|I(G)| ≤
∏

uv∈E(G)

|I(Kd(u),d(v))|
1

d(u)d(v) . (5)

whered(u) denotes the number of neighbours ofu in G. Note that (4) is a special case of (5),
and that (5), if true, would be tight for anyG which is the union of complete bipartite graphs.

At the moment we see no reason not to conjecture the following, which stands in relation to
Theorem 1.3 as (5) does to (4).

Conjecture 1.5 LetG be any graph andW any collection of weights onG. For eachu ∈ V (G)
let {n1(u), . . . , nd(u)(u)} be the set of neighbours ofu. For each edgeuv ∈ E(G), label the
degreed(u) vertices ofKd(u),d(v) by w1(u, v), . . . , wd(v)(u, v) and the degreed(v) vertices by
z1(u, v), . . . , zd(u)(u, v). LetW uv be the collection of weights onKd(u),d(v) given by

λu,v
i,wj(u,v) = λi,nj(v), λu,v

i,zj(u,v) = λi,nj(u) and λu,v
ij,wj(u,v)zk(u,v) = λij,nj(v)nk(u).
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Then
ZW (G) ≤

∏
uv∈E(G)

ZW uv

(Kd(u),d(v))
1

d(u)d(v) .

Exactly as Theorem 1.3 follows from Theorem 1.4 (as will be described in Section 3), Conjec-
ture 1.5 would follow from the following conjecture concerning list homomorphisms.

Conjecture 1.6 Let G and H be any graphs andL any list set. LetLuv be the list set on
Kd(u),d(v) given by

Lu,v(wj(u, v)) = L(nj(v)) and Lu,v(zj(u, v)) = L(nj(u))

(with the notation as in Conjecture 1.5). Then

|HomL(G, H)| ≤
∏

uv∈E(G)

|HomLuv

(Kd(u),d(v))|
1

d(u)d(v) .

2 Proof of Theorem 1.4

We derive Theorem 1.4 from the following more general statement.

Theorem 2.1 Let G be a bipartite graph with partition classesEG andOG, H an arbitrary
graph andL = L(G, H) a list set. Suppose that there ism, t1 andt2 and familiesA = {Ai :
1 ≤ i ≤ m} andB = {Bi : 1 ≤ i ≤ m} with eachAi ⊆ EG and eachBi ⊆ OG such that each
v ∈ EG is contained in at leastt1 members ofA and eachu ∈ OG is contained in at leastt2
members ofB. Then

|HomL(G, H)| ≤
m∏

i=1

( ∑
x∈Qv∈Ai

L(v)

|Cx(Ai, Bi)|
t1
t2

) 1
t1

where, for each1 ≤ i ≤ m and eachx ∈∏v∈Ai
L(v),

Cx(Ai, Bi) =

{
f : Bi → V (H) :

∀ v ∈ Bi, f(v) ∈ L(v) and
∀ v ∈ Bi, u ∈ Ai with uv ∈ E(G), (x)uf(v) ∈ E(H)

}
is the set of extensions of the partial list homomorphismx onAi to a partial list homomorphism
onAi ∪ Bi.

To obtain Theorem 1.4 from Theorem 2.1 we takeA = {N(v) : v ∈ OG} andB = {{v} : v ∈
OG} whereN(v) = {u ∈ V (G) : uv ∈ E(G)} so thatt1 = a andt2 = 1, and note that in this
case

∑
x∈Qu∈Av

L(u) |Cx(N(v), {v})|a is precisely|HomLv
(Ka,b, H)|.

The proof of Theorem 2.1 uses entropy considerations, which for completeness we very
briefly review here. Our treatment is mostly copied from [5]. For a more thorough discussion,
seee.g. [6]. In what followsX, Y etc. are discrete random variables, which in our usage are
allowed to take values in any finite set.
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Theentropyof X is

H(X) =
∑

x

p(x) log
1

p(x)
,

where we writep(x) for P(X = x) (and extend this convention in natural ways below). The
conditional entropyof X givenY is

H(X|Y) = EH(X|{Y = y}) =
∑

y

p(y)
∑

x

p(x|y) log
1

p(x|y)
.

Notice that we are also writingH(X|Q) with Q an event (in this caseQ = {Y = y}):

H(X|Q) =
∑

p(x|Q) log
1

p(x|Q)
.

We have the inequalities

H(X) ≤ log |range(X)| (with equality ifX is uniform),

H(X|Y) ≤ H(X),

and more generally,

if Y determinesZ thenH(X|Y) ≤ H(X|Z). (6)

For a random vectorX = (X1, . . . ,Xn) there is a chain rule

H(X) = H(X1) + H(X2|X1) + · · ·+ H(Xn|X1, . . . ,Xn−1). (7)

Note that (6) and (7) imply
H(X1, . . . ,Xn) ≤

∑
H(Xi) (8)

We also have a conditional version of (8):

H(X1, . . . ,Xn|Y) ≤
∑

H(Xi|Y).

Finally we use a lemma of Shearer (see [2, p. 33]). For a random vectorX = (X1, . . . ,Xm)
andA ⊆ {1, . . . , m}, setXA = (Xi : i ∈ A).

Lemma 2.2 LetX = (X1, . . . ,Xm) be a random vector,Y a random variable andA a collec-
tion of subsets (possibly with repeats) of{1, . . . , m}, with each element of{1, . . . , m} contained
in at leastt members ofA. Then

H(X) ≤ 1

t

∑
A∈A

H(XA) and H(X|Y) ≤ 1

t

∑
A∈A

H(XA|Y).
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Proof of Theorem 2.1:We follow closely the proof of [4, Lemma 3.1]. Letf be a uniformly
chosen member ofHomL(G, H). For each1 ≤ i ≤ m and eachx ∈ ∏v∈Ai

L(v) let pi(x)
be the probability thatf restricted toAi is x. With the key inequalities justified below (the
remaining steps follow in a straightforward way from the properties of entropy just established)
we have

H(f) = H(f |EG
) + H(f |OG

| f |EG
)

≤ 1

t1

m∑
i=1

H(f |Ai
) +

1

t2

m∑
i=1

H(f |Bi
| f |EG

) (9)

≤ 1

t1

m∑
i=1

(
H(f |Ai

) +
t1
t2

H(f |Bi
| f |Ai

)

)
(10)

=
1

t1

m∑
i=1

∑
x∈Qv∈Ai

L(v)

(
pi(x) log

1

pi(x)
+

t1
t2

pi(x)H(f |Bi
| {f |Ai

= x})
)

≤ 1

t1

m∑
i=1

∑
x∈Qv∈Ai

L(v)

pi(x) log
|Cx(Ai, Bi)|

t1
t2

pi(x)

≤ 1

t1

m∑
i=1

log

( ∑
x∈Qv∈Ai

L(v)

|Cx(Ai, Bi)|
t1
t2

)
. (11)

In (9) we use Shearer’s Lemma twice, once withA as the covering family and once withB,
and in (11) we use Jensen’s inequality. In (10) we would have equality if it happened that for
eachi, Ai included all the neighbours ofBi, sincef |Bi

depends only on the values off onBi’s
neighbours. It is easy, however, to construct examples whereH(f |Bi

| f |EG
) < H(f |Bi

| f |Ai
)

whenAi does not include all the neighbours ofBi.
The theorem now follows from the equalityH(f) = log |HomL(G, H)|. 2

3 Proof of Theorem 1.3

By continuity we may assume that all weights are rational and non-zero. By scaling appropri-
ately we may also assume that0 < λij,uv ≤ 1 for all i, j anduv ∈ E(G) (we will later think of
theλij,uv’s as probabilities).

SetN = |V (G)| and

λvmin = min
i,w

λi,w, λvmax = max
i,w

λi,w and λemin = min
ij,vw

λij,vw.

Also, setwmin = λN
vminλ

abN/(a+b)
emin ; this is a lower bound onwW (f) for all f : V (G) →

{1, . . . , m} (observe that an(a, b)-biregular graphG on N vertices has|EG| = bN/(a + b),
|OG| = aN/(a + b) and|E(G)| = abN/(a + b)) as well as a lower bound onwW v

(f) for all
v ∈ OG and allf : V (Ka,b) → {1, . . . , m}.
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ChooseC ≥ 1 large enough thatCλi,v ∈ N for all 1 ≤ i ≤ m andv ∈ V (G). For eachi
andv let Si,v be a set of sizeCλi,v, with all theSi,v’s disjoint. LetH be the graph on vertex set
∪i,vSi,v with xy ∈ E(H) iff x ∈ Si,v andy ∈ Sj,w for somei, j, v, w with vw ∈ E(G). For each
v ∈ V (G) letL(v) = ∪iSi,v and setL = {L(v) : v ∈ V (G)}. For eachg : V (G) → {1, . . . , m}
and each subgraph̃H of H (on the same vertex set asH) set

Hg(G, H̃) = {f ∈ HomL(G, H̃) : f(v) ∈ Sg(v),v for all v ∈ V (G)}.
Note thatHg(G, H) is exactly{f : V (G) → V (H) : f(v) ∈ Sg(v),v for all v ∈ V (G)} and so
|Hg(G, H)| = CN

∏
v∈V (G) λg(v),v. Note also that forg 6= g′ we haveHg(G, H̃)∩Hg′(G, H̃) =

∅ and thatHomL(G, H̃) = ∪gHg(G, H̃).
For eachv ∈ OG, eachg : V (Ka,b) → {1, . . . , m} and eachH̃, set

Hv
g(Ka,b, H̃) =

{
f ∈ HomLv

(Ka,b, H̃) :
f(wk) ∈ Sg(wk),nk(v), 1 ≤ k ≤ b
f(zk) ∈ Sg(zk),v, 1 ≤ k ≤ a

}
,

where the notation is as established before the statements of Theorems 1.3 and 1.4. Note that for
g 6= g′ we haveHv

g(Ka,b, H̃)∩Hv
g′(Ka,b, H̃) = ∅ and thatHomLv

(Ka,b, H̃) = ∪gHv
g(Ka,b, H̃).

We will exhibit a subgraph̃H of H which satisfies∣∣∣CNwW (g) − |Hg(G, H̃)|
∣∣∣ ≤ δ(C)|Hg(G, H̃)| (12)

for all g : V (G) → {1, . . . , m} and∣∣∣Ca+bwW v

(g) − |Hv
g(Ka,b, H̃)|

∣∣∣ ≤ δ(C)|Hv
g(Ka,b, H̃)| (13)

for all v ∈ OG andg : V (Ka,b) → {1, . . . , m}, whereδ(C) depends also onN , a, b andW and
tends to0 asC tends to infinity (withN , a, b andW fixed). This suffices to prove the theorem,
for we have∣∣∣CNZW (G) − |HomL(G, H̃)|

∣∣∣ ≤
∑

g

∣∣∣CNwW (g) − |Hg(G, H̃)|
∣∣∣

≤ δ(C)
∑

g

|Hg(G, H̃)|

= δ(C)|HomL(G, H̃)|
and similarly, for eachv ∈ OG,∣∣∣Ca+bZW v

(Ka,b) − |HomLv

(Ka,b, H̃)|
∣∣∣ ≤ δ(C)|HomLv

(Ka,b, H̃)| (14)

and so

CNZW (G) ≤ (1 + δ(C))|HomL(G, H̃)|
≤ (1 + δ(C))

∏
v∈OG

(
|HomLv

(Ka,b, H̃)|
) 1

a

(15)

≤ CN 1 + δ(C)

(1 − δ(C))
N

a+b

∏
v∈OG

(
ZW v

(Ka,b)
) 1

a . (16)
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In (15) we use Theorem 1.4 while in (16) we use (14). Theorem 1.3 follows since the constant
in front of the product in (16) can be made arbitrarily close to1 (with N , a, b andW fixed) by
choosingC sufficiently large.

The graphH̃ will be a random graph defined as follows. For eachxy ∈ E(H) with x ∈ Si,v

andy ∈ Sj,w we putxy ∈ E(H̃) with probabilityλij,uv, all choices independent. The proofs
of (12) and (13) involve a second moment calculation. For eachf ∈ Hg(G, H), setXf =

1{f∈Hg(G, eH)} andX =
∑

f∈Hg(G,H) Xf . Note thatX = |Hg(G, H̃)|. For eachf ∈ Hg(G, H)
we have

E(Xf ) = P(f ∈ Hg(G, H̃))

= P({f(u)f(v) ∈ E(H̃) ∀uv ∈ E(G)})
=

∏
uv∈E(G)

λg(u)g(v),uv , (17)

with (17) following from the fact that{f(u)f(v) : uv ∈ E(G)} is a collection of disjoint edges
and so{{f(u)f(v) ∈ E(H̃)} : uv ∈ E(G)} is a collection of independent events. By linearity
of expectation we therefore have

E(X) = |Hg(G, H)|
∏

uv∈E(G)

λg(u)g(v),uv = CNwW (g) := µ. (18)

We now consider the second moment. Forf, f ′ ∈ Hg(G, H) write f ∼ f ′ if there is
uv ∈ E(G) with f(u) = f ′(u) andf(v) = f ′(v). Note thatXf andXf ′ are not independent iff
f ∼ f ′. By standard methods (seee.g.[1]) we have

Var(X) ≤ µ +
∑

(f,f ′)∈Hg(G,H)2 : f∼f ′
P({f ∈ Hg(G, H̃)} ∧ {f ′ ∈ Hg(G, H̃)})

≤ µ + |{(f, f ′) ∈ Hg(G, H)2 : f ∼ f ′}|.
To estimate|{(f, f ′) ∈ Hg(G, H)2 : f ∼ f ′}| note that there are|Hg(G, H)| choices forf , at
mostN2 choices for auv ∈ E(G) on whichf andf ′ agree, and finally at most

|Hg(G, H)|
Cλg(u),uCλg(v),v

≤ |Hg(G, H)|
C2λ2

vmin

choices for the rest off ′. We therefore have

Var(X)

µ2
≤ 1

µ
+

|Hg(G, H)|2N2

µ2C2λ2
vmin

=
1

C2

(
1

CN−2wW (g)
+

N2

λ2
vmin

∏
uv∈E(G) λg(u)g(v),uv

)

≤ 1

C2

(
1

wmin

+
λN

vmaxN
2

λ2
vminwmin

)
(19)

≤ α(N, a, b, W )

C2
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for some functionα (independent ofG andg). In (19) we use (18) and the fact thatN ≥ 2
(which holds sinceG is non-empty). By Tchebychev’s inequality, we therefore have

P

(
|µ − X| > µ

√
α

C

)
≤ 1

C
.

It follows that the probability that̃H fails to satisfy∣∣∣∣ ∏
uv∈E(G)

λg(u)g(v),uv − |Hg(G, H̃)|
|Hg(G, H)|

∣∣∣∣ ≤√α

C

∏
uv∈E(G)

λg(u)g(v),uv (20)

for a particularg is at most1/C, and so the probability that it fails to satisfy (20) for anyg is at
mostmN/C.

A similar argument gives that for a particularv ∈ OG andg : V (Ka,b) → {1, . . . , m} the
probability thatH̃ fails to satisfy∣∣∣∣ ∏

wjzk∈E(Ka,b)

λg(wj)g(zk),nk(v)v −
|Hv

g(Ka,b, H̃)|
|Hv

g(Ka,b, H)|
∣∣∣∣ ≤√α

C

∏
wjzk∈E(Ka,b)

λg(wj)g(zk),nk(v)v (21)

is at most1/C, and so the probability that it fails to satisfy (21) for anyg is at mostma+b/C.
As long asC > mN + aNma+b/(a + b) there is therefore añH for which (12) is satisfied

for eachg : V (G) → {1, . . . , m} and (13) is satisfied for eachv ∈ OG andg : V (Ka,b) →
{1, . . . , m} with

δ(C) =

√
α√

C −√
α

.

Sinceδ(C) → 0 asC → ∞, we are done.

AcknowledgmentWe are grateful to Alex Scott [7] for suggesting the construction ofH̃.
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