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Abstract

The maximal and next-to-maximal subspaces of a nonsingular parabolic quadric
Q(2n, 2), n ≥ 2, which are not contained in a given hyperbolic quadric Q+(2n −
1, 2) ⊂ Q(2n, 2) define a sub near polygon In of the dual polar space DQ(2n, 2). It
is known that every valuation of DQ(2n, 2) induces a valuation of In. In this paper,
we classify all valuations of the near octagon I4 and show that they are all induced
by a valuation of DQ(8, 2). We use this classification to show that there exists up
to isomorphism a unique isometric full embedding of In into each of the dual polar
spaces DQ(2n, 2) and DH(2n − 1, 4).

1 Introduction

1.1 Basic Definitions

A near polygon is a partial linear space S = (P,L, I), I ⊆ P × L, with the property that
for every point x ∈ P and every line L ∈ L, there exists a unique point on L nearest to
x. Here, distances are measured in the point graph or collinearity graph Γ of S. If d is
the diameter of Γ, then the near polygon is called a near 2d-gon. The unique near 0-gon
consists of one point (no lines). The near 2-gons are precisely the lines. Near quadrangles
are usually called generalized quadrangles (Payne and Thas [15]). Near polygons were
introduced by Shult and Yanushka [17] because of their connection with the so-called
tetrahedrally closed line systems in Euclidean spaces. A detailed treatment of the basic
theory of near polygons can be found in the recent book of the author [4].

If x1 and x2 are two points of a near polygon S, then d(x1, x2) denotes the distance
between x1 and x2 (in the point graph). If X1 and X2 are two nonempty sets of points,
then d(X1, X2) denotes the minimal distance between a point of X1 and a point of X2. If

∗Postdoctoral Fellow of the Research Foundation - Flanders

the electronic journal of combinatorics 13 (2006), #R76 1



X1 is a singleton {x1}, then we will also write d(x1, X2) instead of d({x1}, X2). If X is
a nonempty set of points and i ∈ N, then Γi(X) denotes the set of all points y for which
d(y, X) = i. If X is a singleton {x}, then we will also write Γi(x) instead of Γi({x}).

A subspace S of a near polygon S is called convex if every point on a shortest path
between two points of S is also contained in S. The points and lines of a near polygon
which are contained in a given convex subspace define a sub(-near-)polygon of S. The
maximal distance between two points of a convex subspace S is called the diameter of
S and is denoted as diam(S). If Xi, i ∈ {1, . . . , k}, are nonempty sets of points, then
〈X1, . . . , Xk〉 denotes the smallest convex subspace containing X1 ∪ X2 ∪ · · · ∪ Xk, i.e.,
〈X1, . . . , Xk〉 is the intersection of all convex subspaces containing X1 ∪ X2 ∪ · · · ∪ Xk.

A near polygon is said to have order (s, t) if every line is incident with precisely s + 1
points and if every point is incident with precisely t + 1 lines. A near polygon is called
dense if every line is incident with at least three points and if every two points at distance 2
have at least two common neighbours. Dense near polygons satisfy several nice properties,
see e.g. Chapter 2 of [4]. The most interesting among these properties is without any
doubt the following result due to Brouwer and Wilbrink [2]: if x and y are two points of a
dense near polygon at distance δ from each other, then (the point-line geometry induced
by) 〈x, y〉 is a sub-near-2δ-gon. These subpolygons are called quads if δ = 2 and hexes if
δ = 3.

If x is a point and Q is a quad of a dense near polygon such that d(x, Q) = δ, then
precisely one of the following two cases occurs: (i) Q contains a unique point πQ(x) at
distance δ from x and d(x, y) = d(x, πQ(x)) + d(πQ(x), y) for every point y of Q; (ii)
Γδ(x)∩Q is an ovoid of Q. If case (i) occurs, then x is called classical with respect to Q.
If case (ii) occurs, then x is called ovoidal with respect to Q. If Q is a quad and δ ∈ N,
then we denote by Γδ,C(Q), respectively Γδ,O(Q), the set of points at distance δ from Q
which are classical, respectively ovoidal, with respect to Q.

A convex subspace F of a dense near polygon S is called classical in S if for every point
x of S, there exists a unique point πF (x) in F such that d(x, y) = d(x, πF (x))+d(πF (x), y)
for every point y of F . The point πF (x) is called the projection of x onto F . Classical
convex subspaces satisfy the following property:

Proposition 1.1 (Theorem 2.32 of [4]) Let H be a convex sub-2m-gon of a dense near
2d-gon S which is classical in S and let x be a point of H. If H ′ is a convex sub-2(d−m+δ)-
gon through x, then diam(H ∩ H ′) ≥ δ.

An important class of near polygons are the dual polar spaces (Cameron [3]). Suppose
Π is a nondegenerate polar space of rank n ≥ 2. Let ∆ be the incidence structure with
points, respectively lines, the maximal, respectively next-to- maximal, singular subspaces
of Π, with reverse containment as incidence relation. Then ∆ is a near 2n-gon, a so-called
dual polar space of rank n. If Π is a thick dual polar space, then ∆ is a dense near
2n-gon. There exists a bijective correspondence between the convex subspaces of ∆ and
the singular subspaces of Π: if α is a singular subspace of Π, then the set of all maximal
singular subspaces containing α is a convex subspace of ∆. Every convex subspace of ∆
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is classical in ∆. The dual polar spaces relevant for this paper are the dual polar spaces
DQ(2n, 2) and DH(2n − 1, 4) related to respectively a nonsingular parabolic quadric
Q(2n, 2) in PG(2n, 2) and a nonsingular hermitian variety H(2n− 1, 4) in PG(2n− 1, 4).

Let Q(2n, 2), n ≥ 2, be a nonsingular parabolic quadric in PG(2n, 2) and let π be a
hyperplane of PG(2n, 2) intersecting Q(2n, 2) in a nonsingular quadric Q+(2n−1, 2). The
generators of Q(2n, 2) define a dual polar space DQ(2n, 2). The generators of Q(2n, 2) not
contained in Q+(2n − 1, 2) form a subspace X of DQ(2n, 2). The set X is a hyperplane
of DQ(2n, 2), i.e., every line of DQ(2n, 2) is either contained in X or intersects X in a
unique point. The point-line incidence structure defined on the set X by the set of lines
of DQ(2n, 2) (contained in X) is a dense near 2n-gon which we will denote by In. The
generalized quadrangle I2 is isomorphic to the (3×3)- grid. For more details on the above
construction, we refer to Section 6.4 of [4].

Let S1 = (P1,L1, I1) and S2 = (P2,L2, I2) be two dense near polygons with respective
diameters d1 and d2 and respective distance functions d1(·, ·) and d2(·, ·). An isometric
full embedding θ of S1 into S2 is a map θ : P1 → P2 which satisfies the following properties:

• for all points x and y of P1, d2(θ(x), θ(y)) = d1(x, y);

• if L is a line of S1, then θ(L) := {θ(x) | x ∈ L} is a line of S2.

Two isometric full embeddings θ1 and θ2 of S1 into S2 are called isomorphic if there exists
an automorphism φ of S2 such that θ2 = φ◦θ1. If there exists an isometric full embedding
of S1 into S2, then obviously d2 ≥ d1. In view of the following proposition, we may restrict
the study of isometric full embeddings between dense near polygons to the case in which
both dense near polygons have the same diameter.

Proposition 1.2 If there exists an isometric full embedding θ of S1 into S2, then there
exists a convex subspace S ′

2 of diameter d1 in S2 containing all points θ(x), x ∈ P1.

Proof. Let x1 and x2 be two points of S1 at maximal distance d1 from each other. Then
d2(θ(x1), θ(x2)) = d1 and hence there exists a convex subspace S ′

2 of diameter d1 in S2

containing the points θ(x1) and θ(x2).
Suppose x is a point of S1 at distance d1 from x1. Then by Brouwer and Wilbrink

[2], there exists a path x2 = y0, y1, . . . , yk = x in Γd1(x1) connecting the points x2 and x.
We will prove by induction on i ∈ {0, . . . , k} that θ(yi) is a point of S ′

2. Obviously, this
holds if i = 0. So, suppose i ∈ {1, . . . , k}. The line yiyi−1 contains a point zi at distance
d1 − 1 from x1. Since θ is an isometric embedding, θ(zi) is a point collinear with θ(yi−1)
at distance d1 − 1 from θ(x1). By the induction hypothesis, θ(yi−1) is a point of S ′

2 at
distance d1 from θ(x1). Hence, also θ(zi) is a point of S ′

2. It follows that the point θ(yi)
of the line θ(zi)θ(yi−1) belongs to S ′

2.
Now, let x denote an arbitrary point of S1. Then by Brouwer and Wilbrink [2], x is

contained in a shortest path connecting x1 with a point x′ ∈ Γd1(x1). By the previous
paragraph, θ(x′) is a point of S ′

2 at distance d1 from θ(x1). Since θ(x) is on a shortest
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path between the points θ(x1) and θ(x′) of S ′
2, also θ(x) belongs to S ′

2. This proves the
proposition. �

Let S = (P,L, I) be a dense near polygon. A function f from P to N is called a
valuation of S if it satisfies the following properties (we call f(x) the value of x):

(V1) there exists at least one point with value 0;

(V2) every line L of S contains a unique point xL with smallest value and f(x) = f(xL)+1
for every point x of L different from xL;

(V3) every point x of S is contained in a convex subspace Fx such that the following
properties are satisfied for every y ∈ Fx:

(i) f(y) ≤ f(x);

(ii) if z is a point collinear with y such that f(z) = f(y) − 1, then z ∈ Fx.

One can show, see De Bruyn and Vandecasteele [8, Proposition 2.5], that the convex
subspace Fx in property (V3) is unique. If f is a valuation of S, then we denote by Of the
set of points with value 0. A quad Q of S is called special (with respect to f) if it contains
two distinct points of Of , or equivalently (see [8]), if it intersects Of in an ovoid of Q. We
denote by Gf the partial linear space with points the elements of Of and with lines the
special quads (natural incidence). An important notion is the one of induced valuation.

Proposition 1.3 (Proposition 2.12 of [8]) Let S be a dense near polygon and let F =
(P ′,L′, I′) be a dense near polygon which is fully and isometrically embedded in S. Let
f denote a valuation of S and put m := min{f(x) | x ∈ P ′}. Then the map fF : P ′ →
N, x 7→ f(x) − m is a valuation of F (a so-called induced valuation).

Valuations of dense near polygons have interesting and important applications in the fol-
lowing areas: (1) the classification of dense near polygons (e.g. [11]); (2) construction of
hyperplanes of dense near polygons, in particular of dual polar spaces ([9]); (3) classifica-
tion of hyperplanes of dual polar spaces ([5]); (4) the study of isometric full embeddings
between dual polar spaces ([6]). Valuations will be further discussed in Section 2.

1.2 Main results

Valuations are an indispensable tool for classifying dense near polygons (see e.g. [4]).
Of particular interest are the dense near polygons of order (2, t) which the authors are
trying to classify. At this moment, a complete classification of such dense near polygons
is available up to diameter 4 ([15], [1], [11]). In order to obtain new classification results
regarding dense near polygons of order (2, t), new classification results regarding valua-
tions seem to be necessary. The classification of the valuations of the dense near hexagons
of order (2, t) has been completed by the authors in [10]. The next cases to consider are
the near octagons. We start with the near octagon I4.
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The embedding of In in DQ(2n, 2) (n ≥ 2) described above is an isometric full embedding.
So, by Proposition 1.3, every valuation of the dual polar space DQ(2n, 2) induces a
valuation of In. In [10], the authors classified all valuations of I3. It turns out that all
these valuations are induced by a unique valuation of DQ(6, 2). In the present paper, we
prove a similar result for the near octagon I4:

Theorem 1.4 Every valuation f of the near octagon I4 is induced by a unique valuation
f ′ of DQ(8, 2).

Remark. In [7], it will be shown by one of the authors that also every valuation of In,
n ≥ 5, is induced by a unique valuation of DQ(2n, 2). The complete classification of the
valuations of I4 is however necessary to achieve this goal. Paper [7] will also contain a
discussion of the structure of the valuations of In.

We will see in Corollary 2.8, that there are three types of valuations in DQ(8, 2). We
will show in Section 4 that these valuations induce five types of valuations in I4. More
precisely, if f ′ is a valuation of DQ(8, 2) and if f is the valuation of I4 induced by f ′, then
one of the following cases occurs (we refer to Sections 2 and 3 for definitions):

(i) If f ′ is a classical valuation of DQ(8, 2) such that the unique point with f ′-value 0
belongs to I4, then f is a classical valuation of I4 and Of = Of ′.

(ii) If f ′ is a classical valuation of DQ(8, 2) such that the unique point with f ′-value 0
does not belong to I4, then Of is a so-called projective set.

(iii) Suppose f ′ is the extension of an ovoidal valuation f ′′ in a quad Q of DQ(8, 2) which
is contained in I4. Then the valuation f of I4 is also the extension (in I4) of the
ovoidal valuation f ′′ of Q. So, Of = Of ′.

(iv) Suppose f ′ is the extension of an ovoidal valuation f ′′ in a quad Q of DQ(8, 2) which
is not contained in I4. Then Of ⊂ Of ′ is an ovoid in the grid-quad Q ∩ I4 of I4.

(v) Suppose that f ′ is an SDPS-valuation of DQ(8, 2). Then |Of | = 75 and the linear
space Gf is isomorphic to the partial linear space W ′(4) obtained from the symplectic
generalized quadrangle W (4) by removing two orthogonal hyperbolic lines.

In Section 5, we will use the classification of the valuations of I3 and I4 to study
isometric full embeddings of In into the dual polar spaces DQ(2n, 2) and DH(2n− 1, 4).
We will show the following:

Theorem 1.5 (i) Up to isomorphism, there is a unique isometric full embedding of In,
n ≥ 2, into DQ(2n, 2).

(ii) Up to isomorphism, there is a unique isometric full embedding of In, n ≥ 2, into
DH(2n − 1, 4).
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2 Valuations: more advanced notions

2.1 Properties of valuations

Let S = (P,L, I) be a dense near 2n-gon.

We define four classes of valuations.
(1) For every point x of S, the map fx : P → N; y 7→ d(x, y) is a valuation of S. We

call f a classical valuation of S.
(2) Suppose O is an ovoid of S, i.e., a set of points of S meeting each line in a unique

point. For every point x of S, we define fO(x) = 0 if x ∈ O and fO(x) = 1 otherwise.
Then fO is a valuation of S, which we call an ovoidal valuation.

(3) Let x be a point of S and let O be a set of points of S at distance n from x such
that every line at distance n − 1 from x has a unique point in common with O. For
every point y of S, we define f(y) := d(x, y) if d(x, y) ≤ n − 1, f(y) := n − 2 if y ∈ O
and f(y) := n − 1 otherwise. Then f is a valuation of S, which we call a semi-classical
valuation.

(4) Suppose F = (P ′,L′, I′) is a convex subspace of S which is classical in S, and that
f ′ : P ′ → N is a valuation of F . Then the map f : P → N; x 7→ f(x) := d(x, πF (x)) +
f ′(πF (x)) is a valuation of S. We call f the extension of f ′. If P ′ = P, then we say that
the extension is trivial.

Applying Proposition 1.3 to classical valuations, we obtain:

Proposition 2.1 Let S be a dense near polygon and let F = (P ′,L′, I′) be a dense near
polygon which is fully and isometrically embedded in S. For every point x of S and for
every point y of F , we define fx(y) := d(x, y) − d(x, F ). Then fx is a valuation of F .

Proposition 2.2 Let S be a dense near 2n-gon and let F = (P ′,L′, I′) be a dense near
2n-gon which is fully and isometrically embedded in S. Let x be a point of S and let fx

be the valuation of F induced by x (see Proposition 2.1). Then d(x, F ) = n − M , where
M is the maximal value attained by fx.

Proof. We need to show that there is a point in F at distance n from x. Let y be a
point of F at maximal distance from x. Every line of F through x contains a point at
distance d(x, y) − 1 from x and hence is contained in the convex subspace 〈x, y〉 of S.
The intersection 〈x, y〉 ∩ F is a convex subspace of F containing all lines of F through y.
Hence, 〈x, y〉 ∩ F = F , i.e., F ⊆ 〈x, y〉. Since F has diameter n, also 〈x, y〉 must have
diameter n, i.e. d(x, y) = n. This was what we needed to show. �

In the following proposition, we collect some properties of valuations. We refer to [8] for
proofs.

Proposition 2.3 ([8]) The following holds for a valuation f of a dense near 2n-gon S.
(a) No two distinct special quads intersect in a line.
(b) f(x) = d(x, Of) for every point x of S with d(x, Of) ≤ 2.
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(c) f is a classical valuation if and only if there exists a point with value n.
(d) If x is a point such that f(y) = d(x, y) for every point y at distance at most n− 1

from x, then f is either classical or semi-classical.
(e) If S contains lines with s + 1 points and if mi, i ∈ N, denotes the total number of

points with value i, then
∑∞

i=0 mi(−1
s
)i = 0.

2.2 SDPS-valuations

Let ∆ be a thick dual polar space of rank 2n, n ∈ N. (We will take the following
convention: a dual polar space of rank 0 is a point and a dual polar space of rank 1 is
a line.) A set X of points of ∆ is called an SDPS-set of ∆ if it satisfies the following
properties.

(1) No two points of X are collinear in ∆.
(2) If x, y ∈ X such that d(x, y) = 2, then X ∩ 〈x, y〉 is an ovoid of the quad 〈x, y〉.
(3) The point-line geometry ∆̃ whose points are the elements of X and whose lines

are the quads of ∆ containing at least two points of X (natural incidence) is a dual polar
space of rank n.

(4) For all x, y ∈ X, d(x, y) = 2 · δ(x, y). Here, d(x, y) and δ(x, y) denote the distances

between x and y in the respective dual polar spaces ∆ and ∆̃.
(5) If x ∈ X and if L is a line of ∆ through x, then L is contained in a quad of ∆

which contains at least two points of X.

SDPS-sets were introduced by De Bruyn and Vandecasteele [9], see also [4, Section 5.6.7].
An SDPS-set of a dual polar space of rank 0 consists of the unique point of that dual polar
space. An SDPS-set of a thick generalized quadrangle Q is an ovoid of Q. For examples
of SDPS-sets in thick dual polar spaces of rank 2n ≥ 4, see De Bruyn and Vandecasteele
[9, Section 4] or Pralle and Shpectorov [16].

Proposition 2.4 (Theorem 4 of [9]; Section 5.8 of [4]) Let X be an SDPS-set
of a thick dual polar space ∆ of rank 2n ≥ 0. For every point x of ∆, we define f(x) :=
d(x, X). Then f is a valuation of ∆ with maximal value equal to n.

Any valuation which can be obtained from an SDPS- set as described in Proposition 2.4
is called an SDPS- valuation. In the following two propositions, we characterize SDPS-
valuations.

Proposition 2.5 (Theorem 5 of [9]; Section 5.9 of [4]) Let f be a valuation of a
thick dual polar space ∆ which is the possibly trivial extension of an SDPS-valuation in a
convex subspace of ∆, and let A be an arbitrary hex of ∆. Then the valuation induced in
A is either classical or the extension of an ovoidal valuation in a quad of A.

Proposition 2.6 (Theorem 6 of [9]; Section 5.10 of [4]) Let f be a valuation of
a thick dual polar space ∆ such that every induced hex-valuation is either classical or the
extension of an ovoidal valuation in a quad, then f is the possibly trivial extension of an
SDPS-valuation in a convex subspace of ∆.
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Proposition 2.7 (Section 6 of [10]) Every valuation of the dual polar space DQ(6, 2)
is either classical or the extension of an ovoidal valuation in a quad of DQ(6, 2).

Corollary 2.8 If f is a valuation of the dual polar space DQ(2n, 2), n ≥ 2, then f is the
possibly trivial extension of an SDPS-valuation in a convex subspace of DQ(2n, 2).

Proof. If f is a valuation of DQ(2n, 2), n ≥ 2, then by Proposition 2.7, every induced hex
valuation is either classical or the extension of an ovoidal valuation in a quad. By Propo-
sition 2.6, it then follows that f is the possibly trivial extension of an SDPS-valuation in
a convex subspace of DQ(2n, 2). �

3 Properties of the near 2n-gon In

3.1 The convex subspaces of In

Consider a nonsingular parabolic quadric Q(2n, 2), n ≥ 2, in PG(2n, 2) and a hyperplane
π of PG(2n, 2) intersecting Q(2n, 2) in a nonsingular hyperbolic quadric Q+(2n − 1, 2).
Let DQ(2n, 2) denote the dual polar space associated with Q(2n, 2) and let In be the
sub-2n-gon of DQ(2n, 2) defined on the set of generators of Q(2n, 2) not contained in
Q+(2n − 1, 2).

Let α be a subspace of dimension n − 1 − i, i ∈ {0, . . . , n}, on Q(2n, 2) which is not
contained in Q+(2n − 1, 2) if i ∈ {0, 1}. If Xα is the set of all maximal subspaces of
Q(2n, 2) through α not contained in Q+(2n − 1, 2), then Xα is a convex subspace of
diameter i of In. Conversely, every convex subspace of diameter i of In is obtained in
this way. Let Aα denote the point-line geometry on the set Xα induced by the lines of
DQ(2n, 2). If i ≥ 2 and if α is not contained in π, then Aα

∼= DQ(2i, 2). If i ≥ 2 and
α ⊆ π, then Aα

∼= Ii. Every convex subspace of In isomorphic to DQ(2i, 2) for some
i ≥ 2 is classical in In. If α1 and α2 are two subspaces of Q(2n, 2) such that αi 6⊆ π if
dim(αi) ∈ {n − 2, n − 1} (i ∈ {1, 2}), then Xα1 ⊆ Xα2 if and only if α2 ⊆ α1. Using this
fact, one can easily see that every line of In is contained in a unique grid- quad. (Recall
that I2 is isomorphic to the (3× 3)-grid.) For more details on the above-mentioned facts,
see Section 6.4 of [4].

An important notion is the one of a projective set. Suppose α is a point of DQ(2n, 2) not
contained in In, i.e., α is a generator of Q+(2n − 1, 2). Let Vα denote the set of points of
In collinear with α. Since In is a hyperplane of DQ(2n, 2), there is a unique point of Vα

on every line of DQ(2n, 2) through α. The set Vα satisfies the following properties, see
Section 8.2 of [10]:

(i) every two points of Vα lie at distance 2 from each other and the unique quad of In

containing them is a grid;
(ii) if x ∈ Vα and if Q is a grid-quad through x, then Q ∩ Vα is an ovoid of Q;
(iii) the incidence structure with points the elements of Vα and with lines the grid-

quads of In containing at least two points of Vα is isomorphic to the point-line system of
the projective space PG(n − 1, 2).
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Because of property (iii), the set Vα is called a projective set. Projective sets satisfy the
following properties, see again Section 8.2 of [10].

(a) Every point is contained in precisely two projective sets.
(b) If x and y are two points at distance 2 from each other such that 〈x, y〉 is a grid,

then there exists a unique projective set containing x and y.

3.2 The valuations of I3

We will use the same notations as in Section 3.1 but we suppose that n = 3. The
valuations of I3 were classified in Section 8.4 of [10]. The following holds:

Proposition 3.1 Every valuation f of I3 is induced by a unique valuation f ′ of DQ(6, 2).

There are two types of valuations f ′ in DQ(6, 2) (recall Proposition 2.7) giving rise to
four types of valuations f in I3.

(1) Suppose f ′ is a classical valuation of DQ(6, 2) such that the unique point x with
f ′-value 0 belongs to I3. Then f is a classical valuation of I3 and Of = {x}.
(2) Suppose f ′ is a classical valuation of DQ(6, 2) such that the unique point with f ′-value
0 does not belong to I3. Then Of is a projective set. We call f a valuation of Fano-type:
the set of grid-quads of I4 which are special with respect to f defines a Fano plane on the
set Of .

(3) Suppose f ′ is the extension of an ovoidal valuation in a quad Q of DQ(6, 2) which is
also a quad of I3. Then the valuation f of I3 is the extension of an ovoidal valuation in
Q. Moreover, Of = Of ′. We call f a valuation of extended type.

(4) Suppose f ′ is the extension of an ovoidal valuation in a quad Q of DQ(6, 2) which is
not a quad of I3. Then |Of | = 3 and the grid Q ∩ I3 is the unique quad of I3 which is
special with respect to the valuation f . We call f a valuation of grid-type.

Lemma 3.2 Let f be a valuation of I3 of grid-type and let G denote the unique special
grid-quad of I3 containing Of . Then there are 24 points in I3 at distance 2 from G. From
these 24 points, 16 have value 2 and 8 have value 1.

Proof. Let G denote the unique W (2)-quad of DQ(6, 2) containing G and let O denote
the unique ovoid of G containing Of . The points of I3 at distance 2 from G are precisely
the points x of I3 for which πG(x) 6∈ G. If y is a point of G \ G, then y is collinear with
four points of I3 \G. If y ∈ O, then each of these points has value 1. If y 6∈ O, then each
of these points has value 2. The lemma now readily follows from the fact that |O\Of | = 2
and |G \ G| = 6. �
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4 The valuations of I4

In this section, we will prove Theorem 1.4. We will regard the near octagon I4 as a sub-
near-polygon of DQ(8, 2), see Section 1. Convex subspaces of diameter 2 and 3 of I4 will
be called quads and hexes, respectively. Convex subspaces of diameter 2 and 3 of DQ(8, 2)
will be called QUADS and HEXES, respectively. Every W (2)-quad of I4 is a QUAD of
DQ(8, 2). A grid-quad of I4 is not a QUAD of DQ(8, 2).

4.1 Two lemmas

By Corollary 2.8, every valuation of DQ(8, 2) is either a classical valuation, the extension
of an ovoidal valuation in a quad of DQ(8, 2) or an SDPS-valuation. By Proposition 1.3,
each valuation of DQ(8, 2) induces a valuation of I4.

Lemma 4.1 Suppose the valuation f of I4 is induced by a valuation f ′ of DQ(8, 4).
(i) If f ′ is a classical valuation of DQ(8, 2) such that Of ′ ⊆ I4, then f is a classical

valuation of I4 and Of = Of ′.
(ii) If f ′ is a classical valuation of DQ(8, 2) such that Of ′ 6⊆ I4, then Of is a projective

set, and every quad of I4 which is special with respect to f is a grid.
(iii) If f ′ is a valuation of DQ(8, 2) which is the extension of an ovoidal valuation in

a QUAD Q of DQ(8, 2) which is also a quad of I4, then f is the extension of an ovoidal
valuation of Q and Of = Of ′.

(iv) If f ′ is a valuation of DQ(8, 2) which is the extension of an ovoidal valuation in
a QUAD Q of DQ(8, 2) which is not a quad of I4, then Of = Of ′ ∩ I4 is a set of 3 points
of Q.

(v) If f ′ is an SDPS-valuation of DQ(8, 2), then |Of | ≥ 10 and there exists a W (2)-
quad in I4 which is special with respect to f .

Proof. Claims (i), (ii), (iii) and (iv) are obvious. We now show claim (v). Let H1 and
H2 be two disjoint hexes of I4 isomorphic to DQ(6, 2). Then H1 and H2 are also HEXES
of DQ(8, 2). By the structure of SDPS-sets, see Lemma 8 of [9], H1 ∩ Of ′ and H2 ∩ Of ′

are ovoids in QUADS. Claim (v) follows from the fact that (H1 ∩Of ′)∪ (H2 ∩Of ′) ⊆ Of .
�

Lemma 4.2 If f is a valuation of I4, then d(x1, x2) is even for every two points x1 and
x2 of Of .

Proof. By property (V2) in the definition of valuation, d(x1, x2) 6= 1. Suppose d(x1, x3) =
3, let H denote the unique hex through x1 and x2 and let fH denote the valuation of H
induced by f . Then x1, x2 ∈ OfH

. The hex H is isomorphic to either DQ(6, 2) or I3. But
neither DQ(6, 2) nor I3 has a valuation for which there exist two points with value 0 at
distance 3 from each other. Hence, d(x1, x2) ∈ {0, 2, 4}. �

If f is a valuation of I4, then we will consider the following two cases:

(I) any two distinct points of Of lie at distance 2 from each other;
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(II) there exist two points in Of at distance 4 from each other.

4.2 Treatment of Case I

In this subsection, we suppose that f is a valuation of I4 such that any two distinct points
of Of lie at distance 2 from each other.

Lemma 4.3 If |Of | = 1, then the following holds:
(i) f is a classical valuation;
(ii) there exists a unique valuation f ′ in DQ(8, 2) inducing f ;
(iii) the valuation f ′ is classical and Of ′ = Of .

Proof. (i) Put Of = {x}. Let H denote an arbitrary hex through x and let fH denote
the valuation induced in H . Then OfH

= {x}. Regardless of whether H ∼= DQ(6, 2)
or H ∼= I3, fH is classical. It follows that f(y) = d(x, y) for every point y at distance
at most 3 from x. By Proposition 2.3 (d), f is classical or semi-classical. Suppose f is
semi-classical. Let y be a point at distance 1 from x and let H be a hex through y not
containing x. Then the valuation induced in H is semi- classical. But this is impossible,
because neither DQ(6, 2) nor I3 has semi-classical valuations.

(ii) + (iii) Obviously, f is induced by the classical valuation fx of DQ(8, 2) for which x
is the unique point with value 0. By Lemma 4.1, fx is the unique valuation of DQ(8, 2)
inducing f . �

Lemma 4.4 Suppose that the maximal distance between two points of Of is equal to 2
and that there exists a special W (2)-quad Q. Then:

(i) f is the extension of an ovoidal valuation in Q;
(ii) there exists a unique valuation f ′ in DQ(8, 2) inducing f ;
(iii) the valuation f ′ is the extension of an ovoidal valuation in Q and Of ′ = Of .

Proof. (i) We first prove that Q ∩ Of = Of . Suppose the contrary. Then there exists a
point x ∈ Of \ (Of ∩ Q). Since d(x, y) = d(x, πQ(x)) + d(πQ(x), y) = 2 for every point
y of Of ∩ Q, every point of Of ∩ Q has distance at most 1 from πQ(x), a contradiction.
Hence Q ∩ Of = Of .

If x is a point of I4 such that d(x, Q) ≤ 1 or (d(x, Q) = 2 and πQ(x) ∈ Of), then
d(x, Of) ≤ 2 and hence f(x) = d(x, Of) by Proposition 2.3 (b). Suppose now that x is
a point of I4 such that d(x, Q) = 2 and πQ(x) 6∈ Of . Let y be a point of Of collinear
with πQ(x), let H be the hex 〈x, y〉 and let fH be the valuation of H induced by f .
Then OfH

= {y} since H ∩ Of = {y}. Hence, fH is a classical valuation. It follows that
f(x) = 3 = d(x, Of).

Summarizing, we have f(x) = d(x, Of) = d(x, πQ(x)) + d(πQ(x), Of) for every point
x of I4. It follows that f is the extension of the ovoidal valuation of Q determined by the
ovoid Of .

the electronic journal of combinatorics 13 (2006), #R76 11



(ii) + (iii) If f ′ is the valuation of DQ(8, 2) which is the extension of the ovoidal valuation
of the QUAD Q determined by the ovoid Of , then f ′ induces the valuation f of I4. By
Lemma 4.1, f ′ is the unique valuation of DQ(8, 2) inducing f . �

Lemma 4.5 Suppose that the maximal distance between two points of Of is equal to 2
and that no special W (2)-quads exist. Then Of is either a projective set or an ovoid in a
grid-quad.

Proof. Let x denote an arbitrary point of Of . The incidence structure P with points
the grid-quads through x and with lines the I3- hexes through x (natural incidence) is
isomorphic to the Fano- plane. Let X denote the set of all special grid-quads through x.

Step 1: X is a subspace of P .
Proof. Let Q1 and Q2 denote two distinct special grid- quads through x and let Q3

denote the third grid-quad through x such that {Q1, Q2, Q3} is a line of P . Let H denote
the unique I3-hex containing Q1, Q2, Q3, and let fH be the valuation of H induced by f .
Since Q1 and Q2 are special quads with respect to fH , fH is a valuation of Fano- type.
So, also Q3 is special with respect to fH and hence also with respect to f .

Step 2: X is not a line of P .
Proof. Suppose the contrary and let H denote the unique I3-hex containing all points of
Of . Let H ′ denote a DQ(6, 2)- hex of I4 disjoint with H and let fH′ denote the valuation
of H ′ induced by f . Every point of πH′(Of) has f -value 1 and hence belongs to OfH′ .
It follows that |OfH′ | ≥ |πH′(Of)| = |Of | = 7, a contradiction, because a valuation of
DQ(6, 2) has at most five points with value 0. This proves the claim.

From Steps 1 and 2, it follows that X is either a point of P or the whole of P . In the
first case, Of is an ovoid in a grid-quad. In the second case, Of must be a projective set
since every two points of Of lie at distance 2 from each other. �

Lemma 4.6 If X is a projective set of I4, then there exists a unique valuation g of I4

such that X = Og. Moreover, g is induced by a unique valuation of DQ(8, 2).

Proof. (1) Suppose g is a valuation of I4 such that X = Og. Let x denote an arbitrary
point of I4 and let H denote a DQ(6, 2)-hex through x. Then H has a unique point in
common with Og. Hence, the valuation induced in H by g is classical. It follows that
g(x) = d(x, X ∩H). This proves that there exists at most one valuation g of I4 such that
Og = X.

(2) Let x denote the unique point of DQ(8, 2)\I4 such that X is the set of all points of
I4 collinear with x. Let fx denote the classical valuation of DQ(8, 2) such that fx(x) = 0
and let g denote the valuation of I4 induced by fx. Then Og = X.

(3) By Lemma 4.1, fx is the unique valuation of DQ(8, 2) inducing a valuation g of I4

with Og = X.

The lemma now follows from (1), (2) and (3). �

Lemma 4.7 Let G be a grid-quad of the near octagon I4, let x be a point of G and let O
be an ovoid of G. Then the following holds:
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(i) there are 128 points u in Γ2,C(G) for which πG(u) = x;

(ii) there are 96 points u in Γ3,O(G) for which Γ3(u) ∩ G = O.

Proof. Let G denote the unique QUAD of DQ(8, 2) containing G. Let y denote the
unique point of G \G for which y⊥ ∩G = O. The lines and QUADS of DQ(8, 2) through
any given point of DQ(8, 2) define a projective space isomorphic to PG(3, 2). So, every
point of G is contained in precisely 16 QUADS which intersect G in only one point.

The 16 QUADS through x intersecting G in only the point x are also quads of I4, since
G contains the unique line of DQ(8, 2) through x not contained in I4. In each such QUAD,
there are 8 points at distance 2 from x. If u is one of these 8 points, then u ∈ Γ2,C(G) and
πG(u) = x. Conversely, if u is a point of Γ2,C(G) such that πG(u) = x, then u is contained
in one of the 16 QUADS through x intersecting G in only the point x. Hence, there are
16 · 8 = 128 points u ∈ Γ2,C(G) for which πG(u) = x.

Each of the 16 QUADS through y intersecting G in only the point y intersects I4 in a
grid. In each such QUAD, there are 6 points of I4 at distance 2 from y. If u is one of these
6 points, then u ∈ Γ3,O(G) and Γ3(u)∩G = O. Conversely, if u is a point of Γ3,O(G) such
that Γ3(u) ∩ G = O, then u is contained in one of the 16 QUADS through y intersecting
G only in the point y. This proves that there are 16 · 6 = 96 points u ∈ Γ3,O(G) for which
Γ3(u) ∩ G = O. �

Lemma 4.8 If X is an ovoid in a grid-quad G of I4, then there exists a unique valuation
g of I4 such that X = Og. Moreover, g is induced by a unique valuation of DQ(8, 2).

Proof. (1) Suppose g is a valuation of I4 such that X = Og. We will count the number of
points with a certain g-value. Notice that there are no points with g-value 4 by Proposition
2.3 (c).

Consider first the points of G. In G, there are 3 points with value 0 and 6 points with
value 1.

Consider the set of points Γ1(G). Since there are 14 lines through each point of I4,
|Γ1(G)| = 9 · (14−2) ·2 = 216. If x ∈ Γ1(G), then d(x, Og) ≤ 2 and hence g(x) = d(x, Og)
by Proposition 2.3 (b). It follows that there are 72 points in Γ1(G) with value 1 and 144
points in Γ1(G) with value 2.

Now, consider the set Γ2,O(G). If x ∈ Γ2,O(G), then 〈x, G〉 is an I3-hex. Now, there are
three I3-hexes through G and the valuation induced in each such I3-hex is of grid-type.
By Lemma 3.2, in each I3-hex through G there are 8 points at distance 2 from G with
value 1 and 16 points at distance 2 from G with value 2. Hence, in Γ2,O(G) there are 24
points with value 1 and 48 points with value 2.

Now, consider the set Γ2,C(G). If x is one of the 128 · 3 = 384 points of Γ2,C(G) such that
πG(x) ∈ Og (see Lemma 4.7 (i)), then d(x, Og) = 2 and hence g(x) = 2 by Proposition
2.3 (b). Suppose x is one of the 128 · 6 = 768 points of Γ2,C(G) for which πG(x) 6∈ Og.
Let y be a point of Og collinear with πG(x). Then the valuation induced in the hex 〈x, y〉
is classical since Og ∩ 〈x, y〉 = {y}. It follows that g(x) = 3.
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Finally, suppose that x ∈ Γ3(G). Then Γ3(x) ∩ G is an ovoid of G. By Lemma 4.7 (ii),
there are 4 · 96 = 384 points x in Γ3(G) for which Γ3(x) ∩ G is an ovoid meeting Og and
there are 96 · 2 = 192 points in Γ3(x) ∩ G for which Γ3(x) ∩ G is an ovoid of G disjoint
from Og.

Suppose first that x ∈ Γ3(G) such that there exists a point y ∈ Og ∩ Γ3(x). Then the
valuation induced in 〈x, y〉 is classical since Og ∩ 〈x, y〉 = {y}. It follows that g(x) = 3.

Now, suppose Γ3(x) ∩ Og = ∅. We show that x cannot have value 1. Suppose the
contrary and let y denote a point of Γ3(x) ∩ G. Then the hex 〈x, y〉 does not contain
points of Og. Since g(y) = g(x) = 1, the valuation induced in 〈x, y〉 has two points with
value 0 at distance 3 from each other, which is impossible. Hence, x has value 2 or 3.
Suppose that among the 192 points x of Γ3(G) for which Γ3(x) ∩ G ∩ Og = ∅, there are
α points with value 3 and 192 − α points with value 2.

Now, let mi, i ∈ {0, 1, 2, 3}, denote the total number of points with value i. Summarizing
what has been said before, we can conclude that m0 = 3, m1 = 102, m2 = 768 − α and
m3 = 1152+α. By Proposition 2.3 (e), m0 − m1

2
+ m2

4
− m3

8
= −3α

8
= 0. So, α = 0 and the

valuation is completely determined by the set X, i.e., there exists at most one valuation
g of I4 for which Og = X.

(2) Let G denote the QUAD of DQ(8, 2) containing G, let O denote the unique ovoid
of G containing X and let f denote the valuation of DQ(8, 2) which arises as extension
of the ovoidal valuation of G with corresponding ovoid O. Let g denote the valuation of
I4 induced by f . Then Og = X.

(3) By Lemma 4.1, it is also clear that f is the unique valuation of DQ(8, 2) inducing
a valuation g in I4 such that Og = X.

The lemma now follows from (1), (2) and (3). �

4.3 Treatment of Case II

In this subsection, we suppose that f is a valuation of I4 containing two points of Of at
distance 4 from each other.

Lemma 4.9 Let x1 and x2 be two points of Of at distance 4 from each other. Then
through x1, there are 4 special W (2)-quads and a unique special grid-quad. These special
quads partition the set of lines through x1.

Proof. There are 14 hexes through x1 containing a point of Γ1(x2). Each of the 8
DQ(6, 2)-hexes through x1 is classical in I4 and hence contains a point of Γ1(x2). So,
from the 7 I3- hexes through x1 there are 6 which contain a point of Γ1(x2) and a unique
other one which does not contain a point of Γ1(x2).

Let H be an arbitrary DQ(6, 2)-hex through x1. Then f(x1) = 0, f(πH(x2)) = 1 and
d(x1, πH(x2)) = 3. It follows that the valuation induced in H is the extension of an ovoidal
valuation in a quad of H . Hence, H contains a unique special W (2)-quad. Conversely,
every special W (2)-quad is contained in precisely two DQ(6, 2)-hexes. As a consequence,
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there are precisely 8
2

= 4 special W (2)-quads through x1. By Proposition 2.3 (a), these
four special quads cover twelve lines through x1. Let L1 and L2 denote the remaining two
lines of I4 through x1.

Let H be one of the six I3 hexes through x1 containing a point collinear with x2.
Since f(x1) = 0, f(πH(x2)) = 1 and d(x1, πH(x2)) = 3, the valuation fH induced in H
cannot be classical. Suppose fH is a valuation of Fano-type. Then there exists a special
grid-quad through x1 meeting a special W (2)- quad in a line, contradicting Proposition
2.3 (a). Hence, fH is either of extended type or of grid-type.

As every special W (2)-quad through x1 is contained in a unique I3-hex, there are
precisely four I3-hexes H through x1 meeting Γ1(x2) for which fH is of extended type.
Hence, there exists an I3-hex H∗ through x1 meeting Γ1(x2) for which fH∗ is a valuation
of grid-type. Let Q∗ denote the unique special quad of H∗. By Proposition 2.3 (a), the
grid Q∗ cannot intersect any of the special W (2)-quads through x1 in a line. Hence, Q∗

coincides with the quad 〈L1, L2〉. This proves the lemma. �

Lemma 4.10 For every point y1 of Of , there exists a point y2 ∈ Of at distance 4 from
y1.

Proof. Suppose the contrary. Let x1 and x2 denote two points of Of at distance 4 from
each other. We necessarily have d(y1, x1) = 2 and d(y1, x2) = 2. Moreover the quads
〈y1, x1〉 and 〈y1, x2〉 are different. By Lemma 4.9, there exists a special W (2)-quad Q
through x1 different from 〈y1, x1〉. Let z denote a point of Of ∩Q different from x1. Since
the quads Q and 〈y1, x1〉 do not intersect in a line, the point z has distance 2 from 〈y1, x1〉.
If z is ovoidal with respect to 〈y1, x1〉, then 〈y1, x1, z〉 is a hex containing a W (2)-quad
which is not classical in 〈y1, x1, z〉 by Proposition 1.1 (Q and 〈y1, x1〉 do not intersect in a
line). This is impossible since every W (2)- quad is classical in 〈y1, x1, z〉. It follows that
z is classical with respect to 〈y1, x1〉 and that d(z, y1) = d(z, x1) + d(x1, y1) = 4. This
proves the lemma. �

From Lemmas 4.9 and 4.10, it readily follows:

Corollary 4.11 Every point of Of is contained in 4 special W (2)-quads and a unique
special grid-quad. �

Lemma 4.12 If Q is a special W (2)-quad and if x is a point of Of not contained in Q,
then d(x, Q) = 2 and πQ(x) ∈ Of .

Proof. If d(x, Q) = 1, then πQ(x) 6∈ Of and there exists a point y ∈ Q ∩ Of at distance
2 from πQ(x). Then d(x, y) = 3, contradicting Lemma 4.2. Hence, d(x, Q) = 2. If
πQ(x) 6∈ Of , then there exists a point y ∈ Of ∩Q collinear with πQ(x). Then d(x, y) = 3,
again contradicting Lemma 4.2. This proves the lemma. �

Lemma 4.13 If Q is a special grid-quad and if x is a point of Of not contained in Q,
then precisely one of the following cases occurs:

(i) there exists a unique point in Q ∩ Of at distance 2 from x and the remaining two
points in Q ∩ Of have distance 4 from x;
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(ii) all points of Q ∩ Of have distance 4 from x.

Proof. By Lemma 4.2, d(x, y) ∈ {2, 4} for every point y of Q ∩ Of . As in Lemma
4.12 one shows that d(x, Q) 6= 1. So, d(x, Q) ≥ 2. Suppose that there exist two points
y1, y2 ∈ Q ∩ Of at distance 2 from x. Then 〈x, Q〉 is a hex and the two special quads
〈x, y1〉 and 〈x, y2〉 are grids since they intersect Q in only points. (Recall Proposition 1.1
and the fact that every W (2)-quad is classical in 〈x, Q〉.) So, the point x is contained in
two special grid-quads which contradicts Corollary 4.11. The lemma now follows. �

Lemma 4.14 It holds |Of | = 75.

Proof. Let Q denote a special W (2)-quad, let Q ∩ Of = {x1, . . . , x5}. For every i ∈
{1, 2, 3, 4, 5}, let Gi denote the unique special grid-quad through xi and let Q

(i)
1 , Q

(i)
2 and

Q
(i)
3 denote the three special W (2)-quads through xi different from Q. By Lemma 4.12,

every point of Of \Q is contained in precisely one of the quads Q
(i)
j , Gi (i ∈ {1, 2, 3, 4, 5},

j ∈ {1, 2, 3}). It follows that |Of | = 5 + 5 · 2 + 15 · 4 = 75. �

From Corollary 4.11 and Lemma 4.14, it readily follows:

Corollary 4.15 There are 75·4
5

= 60 special W (2)-quads and 75·1
3

= 25 special grid-quads.

Now, for every grid-quad G of I4, let G denote the unique QUAD of DQ(8, 2) containing
G. For every special grid-quad G, let OG denote the unique ovoid of the QUAD G
containing G∩Of . Now, let Of denote the union of all sets OG, where G is a special grid-
quad. Notice that Of ⊆ Of by Corollary 4.11.

Lemma 4.16 If x1 and x2 are points of Of , then d(x1, x2) is even.

Proof. We distinguish the following cases:

Case I: x1, x2 ∈ Of .
The claim has already been shown in Lemma 4.2.

Case II: (x1 ∈ Of , x2 ∈ Of \ Of) or (x2 ∈ Of , x1 ∈ Of \ Of).
By symmetry, we only need to consider the case x1 ∈ Of , x2 ∈ Of \ Of . Let G denote a
special grid-quad such that:

(i) x2 ∈ Q := G;

(ii) for every i ∈ {1, 2, 3}, d(x2, ai) = 2 where {a1, a2, a3} = G ∩ Of .

Let OG denote the unique ovoid of Q containing the points a1, a2 and a3. Then OG =
{a1, a2, a3, x2, x

′
2} for a certain point x′

2 of Q. We distinguish three cases (see Lemma
4.13):

(a) x1 ∈ {a1, a2, a3}. Then d(x1, x2) = 2.
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(b) d(x1, ai) = 2 for a certain i ∈ {1, 2, 3} and d(x1, aj) = 4 for all j ∈ {1, 2, 3} \ {i}.
Then d(x1, Q) = 2 and πQ(x1) = ai. It follows that d(x1, x2) = 4.

(c) d(x1, ai) = 4 for all i ∈ {1, 2, 3}. Then d(x1, Q) = 2 and d(πQ(x1), ai) = 2 for
all i ∈ {1, 2, 3}. Hence, either πQ(x1) = x2 or πQ(x1) = x′

2. In the first case,
d(x1, x2) = 2 and in the latter case d(x1, x2) = 4.

Case III: x1, x2 ∈ Of \ Of .
Let G1 and G2 denote two special grid-quads such that:

(i) xi ∈ Qi := Gi for every i ∈ {1, 2};
(ii) for every i ∈ {1, 2, 3}, xi belongs to the ovoid Oi of Qi containing Gi ∩ Of =

{a(i)
1 , a

(i)
2 , a

(i)
3 }.

Put Oi := {xi, x
′
i, a

(i)
1 , a

(i)
2 , a

(i)
3 } for every i ∈ {1, 2}.

Suppose d(x2, Q1) ∈ {0, 2}. Since d(x2, a
(1)
i ) is even for all i ∈ {1, 2, 3} (see Case II),

d(πQ1(x2), a
(1)
i ) ∈ {0, 2} for all i ∈ {1, 2, 3}. Hence, d(πQ1(x2), x1) ∈ {0, 2} and d(x1, x2) ∈

{0, 2, 4}. In a similar way, one shows that d(x1, x2) ∈ {0, 2, 4} if d(x1, Q2) ∈ {0, 2}.
So, suppose d(x1, Q2) = 1 and d(x2, Q1) = 1. If d(x1, x2) ∈ {2, 4}, then we are done.

Suppose d(x1, x2) = 1. Then d(x1, a
(2)
i ) = d(x1, x2)+d(x2, a

(2)
i ) is odd for all i ∈ {1, 2, 3},

contradicting Case II. So, suppose d(x1, x2) = 3.
Suppose the quads Q1 and Q2 intersect in a line L. The line L contains at most 1

point of G2 ∩ Of . So, without loss of generality, we may suppose that a
(2)
1 6∈ L. By cases

(I) and (II), every point of O1 is collinear with πQ1(a
(2)
1 ), a contradiction. So, Q1 and Q2

are two disjoint QUADS. Now, x1 and πQ1(x2) are two points of Q1 at distance 2 from
each other collinear with the respective points πQ2(x1) and x2 of Q2. It follows that Q1

and Q2 are two QUADS at distance 1 from each other.
Now, d(a

(1)
1 , a

(2)
i ) is even for all i ∈ {1, 2, 3}. It follows that πQ2(a

(1)
1 ) is the unique point

of Q2 collinear with a
(2)
1 , a

(2)
2 and a

(2)
3 . Similarly, πQ2(a

(1)
2 ) and πQ2(a

(1)
3 ) must coincide

with the unique point of Q2 collinear with a
(2)
1 , a

(2)
2 and a

(2)
3 . From πQ2(a

(1)
1 ) = πQ2(a

(1)
2 ) =

πQ2(a
(1)
3 ), it follows that a

(1)
1 = a

(1)
2 = a

(1)
3 , a contradiction. �

Let Ω denote the set of 85 QUADS of DQ(8, 2) consisting of all 60 special W (2)-quads
and all 25 QUADS G, where G is some special grid-quad (see Corollary 4.15).

Lemma 4.17 If Q ∈ Ω, then Q ∩ Of is an ovoid of Q.

Proof. Obviously, this holds if Q is a special W (2)-quad. So, suppose that Q = G for
some special grid-quad G. Let O denote the unique ovoid of Q containing G ∩ Of . Then
obviously, O ⊆ Q ∩ Of . By Lemma 4.16, Q ∩ Of cannot contain points outside O. �

Lemma 4.18 No two QUADS of Ω intersect in a line.
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Proof. Suppose that Q1 and Q2 are two QUADS of Ω intersecting in a line L. Let y1

and y2 denote the two points of L not contained in Of . Let xi, i ∈ {1, 2}, denote a point
of (Qi ∩ Of) \ L collinear with yi. Then d(x1, x2) = 3, contradicting Lemma 4.16. �

Corollary 4.19 Every point of Of \ Of is contained in at most five QUADS of Ω.

Proof. This follows from Lemma 4.18 and the fact that there are precisely 15 lines
through every point of DQ(8, 2). �

Lemma 4.20 Let Q denote a QUAD of Ω and let x be a point of Of not contained in
Q. Then d(x, Q) = 2 and πQ(x) ∈ Of .

Proof. The proof is similar to the proof of Lemma 4.12. �

Lemma 4.21 It holds |Of | = 85.

Proof. Let Q denote a special W (2)-quad. Put Q ∩ Of = {x1, x2, x3, x4, x5}. For every

i ∈ {1, 2, 3, 4, 5}, let Q
(i)
1 , Q

(i)
2 , Q

(i)
3 , Q

(i)
4 denote the four QUADS of Ω through xi different

from Q (see Corollary 4.11). By Lemma 4.18, the QUADS Q, Q
(i)
1 , Q

(i)
2 , Q

(i)
3 , Q

(i)
4 partition

the set of lines through xi. By Lemma 4.20, the 20 QUADS Q
(i)
j , i ∈ {1, 2, 3, 4, 5} and

j ∈ {1, 2, 3, 4}, give rise to 80 distinct points of Of not contained in Q. Together with
the points of Q∩Of this gives rise to 85 points of Of . We will show that these are all the
points of Of . Suppose that x is a point of Of which we have not yet counted. Without
loss of generality, we may suppose that x1 is the unique point of Q at distance 2 from x
and that the QUAD Q

(1)
1 intersects 〈x, x1〉 in a line. It is easily seen that there exists a

point in Q
(1)
1 ∩Of at distance 3 from x, which is impossible by Lemma 4.16. So, |Of | = 85.

�

Lemma 4.22 Every point x of Of is contained in precisely five QUADS of Ω. These five
QUADS partition the set of lines through x.

Proof. There are 25 QUADS of Ω which are of the form G, where G is a special grid-
quad. Each such quad contains two points of Of \Of . On the other hand, |Of \Of | = 10
and each point of Of \Of is contained in at most 5 QUADS of Ω by Corollary 4.19. Since
25 · 2 = 10 · 5, it readily follows that every point of Of \ Of is contained in precisely five
QUADS of Ω. By Corollary 4.11, also every point of Of is contained in five quads of Ω.

By Lemma 4.18, the five QUADS through a point x of Of partition the set of lines
through x. �

Lemma 4.23 The incidence structure Q with point set Of and with line set Ω is isomor-
phic to the symplectic generalized quadrangle W (4).

Proof. We will show that Q is a generalized quadrangle of order 4. The lemma then
follows from a well-known result of Payne ([13], [14]) with a gap filled by Tits (see [15])
stating that W (4) is the unique generalized quadrangle of order 4.
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By Lemma 4.17, every line of Q contains five points and by Lemma 4.22, every point
of Q is incident with precisely five lines. From Lemma 4.20, it readily follows that for
every line L of Q and every point x of Q not incident with L, there exists a unique point
on L collinear with x. So, Q is a generalized quadrangle of order 4. �

Corollary 4.24 The set Of is an SDPS-set of DQ(8, 2).

Let f denote the valuation of DQ(8, 2) associated with the SDPS-set Of , i.e., f(x) =
d(x, Of) for every point x of DQ(8, 2).

Lemma 4.25 For every point x of I4, f(x) = f(x) = d(x, Of) = d(x, Of).

Proof. Let H denote a DQ(6, 2)-hex through x. By properties of SDPS- sets and SDPS-
valuations (see Lemmas 8 and 9 of [9]), we have (i) f(x) = d(x, Of) = d(x, Of ∩ H) and
(ii) H ∩ Of is an ovoid in a quad of H . Since H ∩ Of = H ∩ Of , d(x, Of) ≤ 2 and hence
f(x) = d(x, Of) by Proposition 2.3 (b). So, we have

f(x) = d(x, Of) ≤ d(x, Of ∩ H) = d(x, Of ∩ H) = f(x) = d(x, Of) ≤ d(x, Of),

from which the lemma readily follows. �

Clearly, the set Of is the unique SDPS-set containing Of , So, by Lemmas 4.1 and 4.25,
we have

Corollary 4.26 Let f be a valuation of I4 such that Of contains two points at distance
4 from each other. Then f is induced by a unique valuation f ′ of DQ(8, 2). Moreover, f ′

is an SDPS-valuation.

Definition. Let x and y be two points of W (4) at distance 2 from each other. Since the
pair (x, y) is regular (see Payne and Thas [15] for definitions), |{x, y}⊥| = |{x, y}⊥⊥| = 5.
Here, {x, y}⊥ denotes the set of points of W (4) collinear with x and y, and {x, y}⊥⊥

denotes the set of points of W (4) collinear with every point of {x, y}⊥. Let W ′(4) denote
the incidence structure derived from W (4) by removing all points of {x, y}⊥ ∪ {x, y}⊥⊥.

Lemma 4.27 It holds Gf
∼= W ′(4).

Proof. The incidence structure Gf is obtained from Gf = Q ∼= W (4) by removing all

points of Of \Of . Let x1 denote an arbitrary point of Of \Of , let y1, y2, y3, y4, y5 denote the
five points of Of \Of collinear with x1 (in Gf ) and let x2, x3, x4, x5 denote the remaining

points of Of \ Of . Since Gf is a generalized quadrangle, yi 6∼ yj for all i, j ∈ {1, . . . , 5}
with i 6= j. Since every yj is collinear with five points of Of \ Of , we have xi ∼ yj for all
i, j ∈ {1, . . . , 5}. As before, we then have xi 6∼ xj for all i, j ∈ {1, . . . , 5} with i 6= j. The
lemma now readily follows. �
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5 Isometric full embeddings of In into DQ(2n, 2) and

DH(2n − 1, 4)

It is well-known that the dual polar space DQ(2n, 2), n ≥ 2, has an isometric full em-
bedding into the dual polar space DH(2n − 1, 4). In De Bruyn [6], it was shown that
such an embedding is unique up to isomorphism. In Section 1, we described an isometric
full embedding of In into DQ(2n, 2), which we refer to as the natural embedding of In in
DQ(2n, 2). Composing both isometric embeddings, we obtain an isometric full embedding
of In into the dual polar space DH(2n− 1, 4). The natural embedding of In in DQ(2n, 2)
can be completely described in terms of the near 2n-gon In. For this, we need to give a
description (in terms of objects of In) of the points and lines of DQ(2n, 2) which are not
contained in In. This is realized as follows.

(i) The points of DQ(2n, 2) \ In are in bijective correspondence with the projective
sets of In. If x ∈ DQ(2n, 2) \ In, then x⊥ ∩ In is a projective set of In.

(ii) In view of (i), we need to describe the lines of DQ(2n, 2) not contained in In as
sets of size 3 whose elements are either points or projective sets of In. The set of lines of
DQ(2n, 2) not contained in In are in bijective correspondence with the sets {x, P1, P2},
where x is a point of In and where P1 and P2 are the two projective sets through x.

We will now prove Theorem 1.5. This theorem is a consequence of the uniqueness of the
isometric full embedding of DQ(2n, 2) into DH(2n− 1, 4) and the following proposition.

Proposition 5.1 Let ∆ be one of the dual polar spaces DQ(2n, 2) or DH(2n − 1, 4),
n ≥ 2. If θ is an isometric full embedding of In into ∆, then θ = θ2 ◦ θ1, where θ1 is the
natural embedding of In into DQ(2n, 2) and θ2 is an isometric full embedding of DQ(2n, 2)
into ∆.

Proof. Obviously, the proposition holds if n = 2. So, we will suppose that n ≥ 3. We
will regard In as a subgeometry of ∆, i.e., we will regard θ as an inclusion map. By
Proposition 1.2, every convex subspace A of In is contained in a unique convex subspace
A of ∆ of the same diameter.

Claim 1. For every projective set P of In, there exists a unique point xP ∈ ∆ \ In such
that x⊥

P ∩ In = P .
Proof. Let x∗ denote an arbitrary point of P and let G1 and G2 denote two distinct
grid-quads of In through x∗. Then |G1 ∩ P | = |G2 ∩ P | = 3 and there exists a unique
I3-hex H in In containing G1 and G2. Since H is a hex of ∆ containing the quads G1 and
G2, G1 and G2 intersect in a line L∗. Let xP denote the unique point of L∗ \ {x∗} such
that x⊥

P ∩G1 = G1 ∩P . Then also x⊥
P ∩G2 = G2 ∩P , since every point of (G2 ∩P ) \ {x∗}

has distance 2 from every point of (G1 ∩ P ) \ {x∗}. Let G3 denote the third grid-quad of
H through x∗. By Proposition 2.1, the map f : H → N; y 7→ d(xP , y) − 1 is a valuation
of H . Since the quads G1 and G2 are special with respect to f , the valuation must be of
Fano-type. Hence, also G3 is special with respect to f . So, x⊥

P ∩G3 is an ovoid of G3 which
necessarily coincides with G3∩P , since every point of (G3∩P )\{x∗} has distance 2 from
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any point of (G1 ∩ P ) \ {x∗}. Now, suppose G4 is a grid-quad of In through x∗ different
from G1, G2 and G3. Then there exists a convex suboctagon F ∼= I4 in In containing G1,
G2, G3 and G4. By Proposition 2.1, the map f ′ : F → N; y 7→ d(xP , y) − 1 is a valuation
of F having G1, G2 and G3 as special grid-quads. By the classification of the valuations
of I4, we know that Of ′ is a projective set of F . Hence, x⊥

P ∩ G4 is an ovoid of G4 which
necessarily coincides with G4∩P , since every point of (G4∩P )\{x∗} has distance 2 from
every point of (G1 ∩ P ) \ {x∗}.

By the above, we know that P ⊆ x⊥
P ∩In. We will now show that P = x⊥

P ∩In. Suppose
the contrary. Then there exists a point u ∈ (x⊥

P ∩ In) \ P . Since d(x∗, u) = 2, there exists
a quad Q in In containing x∗ and u. Then x⊥

P ∩Q is an ovoid of Q. Now, the grid- quads
of In through x∗ determine a partition of the lines of In through x∗. Hence, there exists a
grid-quad G of In through x∗ which intersects Q in a line. Since x⊥

P ∩ G is an ovoid of G
and Q ∩ x⊥

P is an ovoid of Q, it is easily seen that there exists a point v1 ∈ Q ∩ x⊥
P and a

point v2 ∈ G ∩ x⊥
P at distance 3 from each other. But this is impossible, since every two

points of x⊥
P ∩ In lie at distance 2 from each other.

Hence, P = x⊥
P ∩ In as claimed.

Claim 2. Let x be a point of In and let P1 and P2 denote the two projective sets through
x. Then {x, xP1 , xP2} is a line of ∆.
Proof. Let y denote the point of the line xxP1 different from x and xP1 . For every
grid-quad G of In through x, x⊥

P1
∩G and y⊥∩G are the two ovoids of G through x. Since

x⊥
P1

∩G = P1 ∩G, we have y⊥ ∩G = P2 ∩G. Since this holds for every grid-quad G of In

through x, xP2 = y. This proves the claim.

Now, consider the following substructure ∆′ of ∆. The points of ∆′ are of two types: (i)
the points of In; (ii) the points xP , where P is a projective set of In. The lines of ∆′ are
of two types: (i) the lines of In, (ii) the lines {x, xP1, xP2}, where x is a point of In and
where P1 and P2 are the two projective sets of In through x.

By the discussion preceding this proposition, the incidence structure ∆′ is isomorphic
to DQ(2n, 2). Moreover, the embedding of In in ∆′ is isomorphic to the natural embedding
of In in DQ(2n, 2). It remains to show that ∆′ is isometrically embedded in ∆. By the
main result of Huang [12], it suffices to show that there exist two opposite points x1 and
x2 in ∆′ which are also opposite in the geometry ∆. But this holds as we can take for x1

and x2 two opposite points in In. Then x1 and x2 are also opposite points in ∆ as In is
isometrically embedded in ∆. �

We now take a closer look at the case n = 4. Suppose F1 := I4 is fully and isometrically
embedded in F2 := DQ(8, 2) which itself is also fully and isometrically embedded in
F3 := DH(7, 4). By Proposition 2.1, every point x of F3 induces a valuation fx : F1 →
N; y 7→ d(x, y) − d(x, F1) of F1. So, we can distinguish the points of F3 by means of the
type of valuation of F1 they induce. From this point of view, there are five possible types
of points x ∈ F3:

(I) Ofx is a singleton, or equivalently, fx is a classical valuation;
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(II) Ofx is a projective set of F1;

(III) Ofx is an ovoid in a W (2)-quad of F1;

(IV) Ofx is an ovoid in a grid-quad of F1;

(V) Ofx is a set of 75 points.

We can make the following conclusions (recall Proposition 2.2 and Lemma 4.1):
The points of type (I) are precisely the points of F1. There are precisely 2025 such

points.
The points of type (II) are the points of F2 \ F1. There are precisely 270 such points.
The points of type (III) belong to Γ1(F2) ∩ Γ1(F1). If x is a point of type (III), then

Γ1(x) ∩ F2 = Γ1(x) ∩ F1 is an ovoid in a W (2)-quad of F2 which is also a quad of F1.
There are 45360 points of type (III).

The points of type (IV) belong to Γ1(F2) ∩ Γ1(F1). If x is a point of type (IV), then
Γ1(x) ∩ F2 is an ovoid in a W (2)-quad of F2 and Γ1(x) ∩ F1 is an ovoid in a grid-quad of
F1. There are 18900 points of type (IV).

The points of type (V) belong to Γ2(F2) ∩ Γ2(F1). If x is a point of type (V), then
Γ2(x) ∩ F2 is a set of 85 points which carries the structure of a generalized quadrangle of
order 4, and Γ2(x) ∩ F1 is a set of 75 points which carries the structure of a generalized
quadrangle of order 4 in which two orthogonal hyperbolic lines have been removed. There
are 48384 points of type (V).
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