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Abstract

We give a new derivation of the threshold of appearance of the k-core of a
random graph. Our method uses a hybrid model obtained from a simple model of
random graphs based on random functions, and the pairing or configuration model
for random graphs with given degree sequence. Our approach also gives a simple
derivation of properties of the degree sequence of the k-core of a random graph, in
particular its relation to multinomial and hence independent Poisson variables. The
method is also applied to d-uniform hypergraphs.

1 Introduction

We introduce a model of random graphs which provides advantages when analysing algo-
rithms that recursively delete vertices of low degree. It is obtained by combining a model
of random graphs via pseudographs (graphs with loops and multiple edges) with the stan-
dard model of random graphs with given degrees. We use it to re-derive the threshold
of emergence of the k-core (defined below) of a random graph, which was first obtained
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in [13]. It also enables us easily to give sharp estimates on the distribution of degrees
in the k-core of a random graph. Our method will also have advantages in forthcoming
work.

An approach similar to the one of this paper was also used by Aronson et al. [1] to find
maximum matchings in random graphs. Study of the k-core appears to be important,
and different approaches have, simultaneously with the present work, been developed by
Kim [8] (which is not very unlike our approach, but uses a different model), Molloy [11]
and Cooper [5] for graphs with given degree sequences.1 One feature emphasised by our
approach is the very strong relation between the degrees of vertices in the k-core, and the
multinomial distribution (Corollary 1).

The k-core of a graph or hypergraph is the largest subgraph of minimum degree at least
k.  Luczak [9] proved that for every fixed k ≥ 3, the k-core of the random graph G(n, m)
a.a.s. (asymptotically almost surely, as n → ∞) either is empty or has at least 0.0002n
vertices (regardless of m). Work after that on the k-core of G(n, m), such as in [13],
essentially focussed on the following vertex deletion algorithm. Throughout this paper,
for given k we call a vertex light if its degree is less than k, and heavy otherwise. The
algorithm repeatedly deletes light vertices until no light vertices remain. This algorithm
always terminates with the k-core of the graph, which is possibly empty. Note that we
may equivalently use an edge deletion algorithm: repeatedly delete edges incident with
light vertices; then the final graph consists of the k-core of G together with some isolated
vertices.

For k ≥ 0 integer and λ a positive real, define

fk(λ) = eλ −
k−1
∑

i=0

λi

i!
=

∑

i≥k

λi

i!
.

Let hk(µ) = µ
e−µfk−1(µ)

and define

ck = inf{hk(µ) : µ > 0}. (1)

Take k ≥ 3. Then ck is a positive real because hk(µ) tends to ∞ if µ tends to 0 or ∞.
It is easily checked that for c > ck the equation hk(µ) = c has two positive roots (and
just one for c = ck). Define µk,c to be the larger one. Also define c2 = 1. The following
was proved for k ≥ 3 in Pittel et al. [13], although in that paper the result about edges
requires some searching through the proof. Sharper error terms are also obtained in [13],
and also an “explosion” result that we do not obtain here. The case k = 2 was also not
explicitly stated in [13], but the proof also works for c > c2, and in this case the result on
number of vertices was first found by Pittel [12].

Theorem 1 Let c > 0 and integer k ≥ 2 be fixed. Suppose that m ∼ cn/2, and G ∈
G(n, m). For c < ck and k ≥ 3, G has empty k-core a.a.s. For c > ck, the k-core of G
a.a.s. has e−µk,cfk(µk,c)n(1 + o(1)) vertices and 1

2
µk,ce

−µk,cfk−1(µk,c)n(1 + o(1)) edges.

1Since submission of this article, two more approaches emerged: Janson and  Luczak [7], and Rior-
dan [15].
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Here, and for similar statements, we say a function h(G) = o(1) a.a.s. if there is a property
H that is a.a.s. true, such that maxG∈H h(G) = o(1) (as n → ∞).

We give a simpler proof of Theorem 1 in Section 4. Partly, our proof is simpler
because we aim for a less sharp result. But the use of the new model in the present case
provides a distinct simplification that with a bit more effort would (we claim) give the
full results of [13]. It avoids the use of some asymptotic enumeration formulae and some
other arguments.

We obtain as an offshoot of our method several results concerning the k-core of a
random graph in G(n, m), and in particular its degree sequence. The k-cores with this
distribution form a probability space of graphs, naturally with all vertex degrees at least
k, which we denote by K(n, m, k). The set of vertices occurring is a random subset of [n]
of random cardinality n̂ (where [x] denotes {1, 2, . . . , x} throughout this paper). When
considering the degree sequence of a graph in such a space, we simply take the degrees
of the vertices in order of increasing label (i.e. compress the n̂ vertices to the interval [n̂]
without disturbing their order).

Let Multi(n, s) be the probability space of nonnegative integer vectors (X1, . . . , Xn)
summing to s such that for any vector (d1, . . . , dn) of the same type,

P(Xi = di for 1 ≤ i ≤ n) =
s!

ns
∏n

i=1 di!
.

We will be interested in particular in heavy vertices, and accordingly define

Hn,s,k := {(h1, . . . , hn) :
∑

hi = s and hi ≥ k for all i}, (2)

and let Multi(n, s)|≥k be the probability space obtained by restricting Multi(n, s) to
elements of Hn,s,k. We will find the k-core G of a certain random pseudograph, and set
I = 1 if G is simple, to obtain the pairs (G, I) in the following theorem. In particular, G
will have minimum degree at least k.

Theorem 2 Fix k ≥ 1. For all positive n and m ≥ kn/2, there is a probability space
consisting of ordered pairs (G, I) where G is a random pseudograph and I ∈ {0, 1}, with,
marginally, P(I = 1) = Ω(1) if m = O(n), such that

(i) the distribution of G conditional upon I = 1 is identical to that of the random core
K(n, m, k) (so in particular, G is simple if I = 1);

(ii) in the marginal distribution of G conditioned on |V (G)| = n̂ and |E(G)| = m̂, the
degree sequence of G is distributed precisely as Multi(n̂, 2m̂)|≥k.

This theorem, proved in Section 3, has consequences when combined with distributional
results on the numbers of vertices and edges in the random k-core, such as the main
theorem in [13].
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Corollary 1 Let k ≥ 2 and c > ck be fixed, m ∼ cn/2, and consider the the probabil-
ity space defined by the random vector distributed as the degree sequence of K(n, m, k).
Let Hn be any event in this space, and write PMulti(n̂,2m̂)|≥k

(Hn) for the probability that
a random vector in Multi(n̂, 2m̂)|≥k lies in Hn. If n̂ ∼ e−µk,cfk(µk,c)n and 2m̂ ∼
µk,ce

−µk,cfk−1(µk,c)n imply that

PMulti(n̂,2m̂)|≥k
(Hn) < Pn

then P(Hn) = O(Pn)+o(1).

Proof. This is immediate from Theorems 1 and 2, with the o(1) error appearing because
the conclusion of Theorem 1 includes the “a.a.s.” qualification.

One can state sharper but more complicated results immediately by restricting the
range of n̂ and m̂ to the narrower range that was shown in [13] to contain them a.a.s., and
using the sharper bounds on probabilities proved there. We consider in detail the number
of vertices of a given degree. For k ≥ 1 denote by Z(k, λ) a random variable which has a
k-truncated Poisson distribution with a parameter λ, that is

P
(

Z(k, λ) = j
)

=







λj

j!fk(λ)
, j ≥ k

0, j < k

(3)

where f is as defined as above. Let λb denote the positive root of the equation

EZ(k, λ) =
λfk−1(λ)

fk(λ)
= b. (4)

It is easily seen that λb exists provided b > k.
Statements similar to Theorem 2 and Corollary 1 hold for n independent copies of

Z(k, λ) for appropriate λ, in place of Multi(n, s)|≥k, and Ω(1) replaced by Ω(1/
√

n),
due to a connection between independent Poisson variables and multinomials. Exploiting
this connection, we will obtain the following result in Section 2, assuming the truth of
Theorems 1 and 2. (Direct computations with multinomials can give even more precise
results.)

Corollary 2 Fix j ≥ k ≥ 2, and let m = m(n) ∼ cn/2 where c > ck is fixed. Let N̂
and M̂ be the (random) numbers of vertices and edges of K(n, m, k), and let Yj be the
number of vertices having degree j. Then for sufficiently small ε > 0, conditional upon
M̂ − kN̂ > εn and N̂ > εn, we have

P
(

|Yj − np2M̂/N̂ ,k,j| > a
√

N̂
)

= O(
√

n)e−2a2

for all a > 0, where, with λb as in (4),

pb,k,j =
λj

b

j!fk(λb)
. (5)
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This corollary combined with Theorem 1 immediately implies distributional results on the
number of vertices of given degree in a large core of a random graph. A (weak) example
is the following.

Corollary 3 Fix j ≥ k ≥ 2, and let m = m(n) ∼ cn/2 where c > ck. The number of
vertices of degree j in K(n, m, k) is a.a.s. npc̃,k,j + o(n), where c̃ = µk,cfk−1(µk,c)/fk(µk,c).

Note Similar results can also be obtained fairly easily from the results in [14] giving the
relation between independent truncated Poisson variables and enumeration of graphs with
minimum degree at least k. Another approach, mentioned in [13], would be to model the
random k-core using the random pseudograph model described in the first paragraph of
Section 3 conditioned on minimum degree at least k, and again use asymptotic enumer-
ation computations to eliminate loops and multiple edges. However, these results would
require some work to obtain a result as sharp as our Corollary 1. Fountoulakis [6] also
obtained similar results by following the argument of the main results in [13], keeping
track of degree information.

We finish by pointing out that our results generalise easily to hypergraphs. For d ≥
3 let G(d, n, m) be the uniform probability space of d-uniform n-vertex m-edge simple
hypergraphs and let K(d, n, m, k) be the probability space of the k-cores of G(d, n, m).
For k ≥ 2, let hd,k(µ) = µ

(e−µfk−1(µ))d−1 and define

cd,k = inf{hd,k(µ) : µ > 0}.
As for hk(µ), hd,k(µ) tends to ∞ if µ tends to 0 or ∞, so cd,k is a positive real (and
this applies even when k = 2). Define µd,k,c to be the larger solution of hd,k(µ) = c for
c > cd,k. The result on number of vertices in the following theorem was also independently
derived in [5], [11] and first stated for k = 2 by Majewski et al. [10] with an application
to constructing minimal perfect hash functions.

Theorem 3 Let c > 0 and integers d ≥ 3, k ≥ 2 be fixed. Suppose that m ∼ cn/d, and
G ∈ G(d, n, m). For c < cd,k, G has empty k-core a.a.s. For c > cd,k, the k-core of G a.a.s.
has e−µd,k,cfk(µd,k,c)n(1+o(1)) vertices and 1

d
µd,k,ce

−µd,k,cfk−1(µd,k,c)n(1+o(1)) hyperedges.
Moreover, let j ≥ k be fixed, and assume c > cd,k. Then the number of vertices of degree
j in K(d, n, m, k) is a.a.s. npc̃,k,j + o(n), where c̃ = µd,k,cfk−1(µd,k,c)/fk(µd,k,c).

The proof is in Section 4.
We note that by incorporating some of the techniques in [13, Section 6], we can

obtain much sharper estimates on the numbers of vertices and edges in the k-core than in
Theorems 1 and 3 — with errors of size O(n1/2+ε) — but we do not pursue this; Kim [8]
claims a slightly sharper result.

2 Multinomial and Poisson

Lemma 1 Let k ≥ 0 be fixed, and s − nk = Ω(n). For (X1, . . . , Xn) ∈ Multi(n, s)|≥k

put Yj = |{i : Xi = j}|. Then for all a > 0

P
(

|Yj − npc,k,j| > a
√

n
)

= O(
√

n)e−2a2

.
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and
P(Xn = j) ∼ pc,k,j, (6)

where c = s/n and pc,k,j is defined in (5).

Proof. Let λ = λc in the following. Let Z1, Z2, . . . be independent copies of Z(k, λ), and
write Z(k,t) for (Z1, . . . , Zt). Then

P(Zi = di for i = 1, . . . , n) =

n
∏

i=1

λdi

fk(λ)di!
=

λs

fk(λ)n

n
∏

i=1

1

di!
.

It follows that the restriction of Z(k,n) to Hn,s,k (defined in (2)) has the distribution of
Multi(n, s)|≥k. We have P(Zi = j) = pc,k,j, and so the variable Yj defined for Z(k,n)

has the distribution of Bin(n, pc,k,j). So by Chernoff’s bound, for Z(k,n) we have P(|Yj −
npc,k,j| > a

√
n) < 2e−2a2

. The first statement now follows because P(Z(k,n) ∈ Hn,s,k) =
Ω(1/

√
n); see [14, Theorem 4(a)] for a short proof. The first claim of the lemma follows.

To obtain (6) from the first part of the lemma, first put a = log n for example,
showing Yj ∼ npc,k,j with probability at least 1−o(1/n). Thus EYj ∼ npc,k,j. By linearity
of expectation, EYj =

∑

i P(Xi = j) = nP(Xn = j) by symmetry, and this yields (6).

Proof of Corollary 2 For m as in the statement of the corollary, we have by Theorem 1
that the k-core is a.a.s. nonempty and N̂ and M̂ are large: a.a.s. at least εn for sufficiently
small ε > 0. For the claim about edges, this relies on the fact that µk,cfk−1(µk,c)/fk(µk,c) >
k, which is clear because EZ(k, µ) > k, c.f. (4). Hence, the event conditioned on in the
corollary holds a.a.s. The corollary now follows from Theorem 2 and the first part of
Lemma 1.

3 The pairing-allocation model and proof of Theo-

rem 2

The model of random pseudographs used by Bollobás and Frieze [3] and Chvátal [4] can
be described as follows. Given positive integers n and m, define the probability space
A(n, m) of functions a : [2m] → [n], all functions equiprobable. We call such functions
allocations. A random pseudograph (i.e. graph with loops and multiple edges permitted),
G(a), on vertex set [n] is obtained from an allocation a ∈ A(n, m) by including an edge
between vertices a(2i − 1) and a(2i) for 1 ≤ i ≤ m. Clearly G(a) has precisely m edges.
Let M(n, m) denote the probability space of pseudographs obtained in this way.

Not all pseudographs are equiprobable in M(n, m). However, by considering all the
permutations of [2m], we see that there are m!2m allocations which give rise to each simple
graph, which yields the following lemma immediately. Here N =

(

n
2

)

.

Lemma 2 (Chvátal [4]) For a ∈ M(n, m), all simple n-vertex, m-edge graphs are
equiprobable as G(a). Furthermore, for c = 2m/n,

P(G(a) is simple) =

(

N
m

)

m!2m

n2m
= exp(−c/2 − c2/4) + o(1).

the electronic journal of combinatorics 13 (2006), #R81 6



We next define another model that is a sort of hybrid between the allocation model
and the standard model for random graphs with given degree sequence introduced by
Bollobás (see [2]). The parameters of this model are k, m, `, and t ≥ 0, such that

2m ≥ kt + `. (7)

The model contains a set M of points with even cardinality 2m arranged into m disjoint
unordered pairs which we technically call edges of M , and disjoint sets L and V of car-
dinality ` and t respectively. The pairing-allocation model P(M, L, V, k) is the uniform
probability space of all functions h : M → L ∪ V (called pairing-allocations) such that
|h−1(v)| = 1 if v ∈ L, and |h−1(v)| ≥ k if v ∈ V . Provided (7) holds, such functions exist.

Associated with each pairing-allocation h, there is a pseudograph G(h) with vertex set
V , and with an edge joining h(a) and h(b) for each edge {a, b} of M with h(a), h(b) ∈ V .
We define

s = 2m − `,

the total number of points allocated to vertices in V . From (7), s ≥ kt.
The connection between the pairing-allocation model and M(n, m) is given next.

First, given a pseudograph G, let H(G) denote the sub-pseudograph induced by its heavy
vertices.

Lemma 3 Fix k, m, n, t and s with s ≥ kt. Let V ⊆ [n] with |V | = t, and take any M
and L disjoint from [n] with |M | = 2m and |L| = 2m− s. The conditional distribution of
H(G(a)) for a ∈ M(n, m), given the set V of heavy vertices of G(a) and the total degree
s of those vertices, is identical to the distribution of G(h) for h ∈ P(M, L, V, k).

Note here that if 2m− s > (k− 1)(n− t) the event conditioned on cannot occur, in which
case the lemma is intended to say nothing.
Proof. The choice of a random allocation a conditional upon V and s can be done in
three steps. First choose which s elements of [2m] are mapped by a to V . Then allocate
those to V such that each v ∈ V receives at least k of them. Then allocate the remaining
2m − s elements to [n] \ V such that none receives more than k − 1 elements. Each step
is done u.a.r. (uniformly at random), and H(G(a)) is determined by the first two steps.

Without loss of generality, take M = [2m], and {{2i− 1, 2i} : i ∈ [m]} for the edges of
M . The choice of h ∈ P(M, L, V, k) can then be done in three steps, with the first two steps
identical to the ones for a. (Thirdly, allocate the remaining 2m − s elements bijectively
to L.) Since G(h) is also determined by the first two steps, the lemma follows.

Since the k-core of G(a) must equal the k-core of H(G(a)), Lemmas 2 and 3 tell us
that we may concentrate on the (random) k-core of G(h) for h ∈ P(M, L, V, k), in a
way to be made precise shortly. The second part of the proof of Lemma 3 also gives the
following, where (dG(h)(v))v∈V denotes the degree sequence of G(h).

Lemma 4 For h ∈ P(M, L, V, k) the random vector (dG(h)(v))v∈V is distributed precisely
as a vector in Multi(t, s)|≥k.
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For any h ∈ P(M, L, V, k) with M = [2m], and j ∈ M , define g(j) to be the other
point in the same edge as t, so g is an involution. We will see that the following algorithm
is equivalent to the edge deletion algorithm given in Section 1. In each iteration of the
repeat loop, which we call a step of the algorithm, this procedure effectively deletes an
edge {j, g(j)} from M that cannot be contained in the k-core of G(h). The u.a.r. choice
of a light vertex in the procedure ensures that its choice does not depend on h.

Light(k):

repeat

choose j ∈ h−1(L) u.a.r.

delete j and g(j) from M and delete h(j) from L
set v := h(g(j))
if v ∈ L, then delete v from L
if v ∈ V and in addition |h−1(v)| = k, then delete v from V ,

insert k − 1 new elements into L, and redefine the action

of h on h−1(v) \ {g(j)} as a bijection to the new elements

if v ∈ V and |h−1(v)| > k, do nothing

until h−1(L) = ∅.

Let hi, Mi, Li, and Vi be the values of h, M , L, and V after i steps of Light(k). Also
let ifin denote the number of steps before Light(k) terminates. This is clearly finite.

Lemma 5 G(hifin
) is the k-core of the initial pseudograph G(h0).

Proof. No edge of M with an endpoint mapped by hi to Li can be mapped to an edge
of the k-core of G(hi). When the other end of such an edge is mapped to v ∈ V with
h−1(v) = k, it is impossible for v to be in the k-core; that is, the k-core of G(hi) is equal
to the k-core of G(hi) − v. It is then clear that the k-core of G(hi+1) is the same as the
k-core of G(hi). The lemma follows by induction on i, since G(hifin

) is its own k-core.

Lemma 6 Beginning with h ∈ P(M, L, B, k), conditional upon the values of Mi, Li and
Vi, the pairing-allocation hi is distributed precisely as in P(Mi, Li, Vi, k).

Proof. This is immediate for i = 0. For i ≥ 1 it is enough to show the statement
holds conditional upon the random sets Mi, Vi, Li, Mi−1, Vi−1 and Li−1. By the in-
ductive hypothesis, conditioning on the latter three alone, hi−1 is distributed u.a.r. as
in P(Mi−1, Li−1, Vi−1, k). Further conditioning on Mi, Vi, Li is equivalent to specifying
whether hi−1 maps the edge {j, g(j)} of M to two elements of L (in which case, which pair
is mapped to which pair is also determined), and, if not, specifying whether hi−1(g(j)) is
heavy of degree k and becomes light, in which case the values of hi−1(g(j)) and its inverse
image under hi−1 are also determined. It is easy to see that, given this information, hi is
distributed u.a.r. subject to the conditions required for P(Mi, Li, Vi, k), as required.

Proof of Theorem 2 For a ∈ M(n, m), let G denote the k-core of G(a) and set the
indicator variable I = 1 iff G(a) is simple. This defines a distribution on the pairs (G, I).
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Lemma 2 implies that P(I = 1) = Ω(1) if m = O(n), and also gives part (i) of the
theorem. From Lemmas 3 and 5, the distribution of G, given the set V of heavy vertices
of G(a) and the total degree s of those vertices, is identical to the distribution of G(hifin

)
for h0 ∈ P(M, L, V, k) (with suitable definition of L and M). Conditioning further on the
numbers of vertices n̂ and edges m̂ of G, Lemmas 6 and 4 imply that its vertex degrees
are distributed as Multi(n̂, 2m̂)|≥k. As this distribution is independent of V and s, the
same result holds without conditioning on V and s. This is part (ii) of the theorem.

4 Proof of Theorem 1

Let yi(G) denote the number of vertices of degree i in a graph G and write

t(G) =
∑

i≥k

yi(G), s(G) =
∑

i≥k

iyi(G). (8)

Let a be a random allocation in A(n, m). We will prove the claims about G(a); the
theorem then follows for G ∈ G(n, m) by Lemma 2.

First, note that by the second moment method, it is easily seen that the number of
vertices of G(a) of degree i (i fixed) is a.a.s.

ne−cci/i! + o(n)

and hence the sum of degrees of vertices of degree less than k is a.a.s. asymptotic to

ne−c
k−1
∑

i=1

ci/(i − 1)! = cn(1 − e−cfk−1(c))

with f as in Section 1. It follows that a.a.s. t(G(a)) = t̂cn + o(n) and s(G) = ŝcn + o(n)
where

t̂c = e−cfk(c), ŝc = ce−cfk−1(c).

So it suffices to restrict consideration to those a with t(G(a)) = t0 and s(G(a)) = s0, for
some

t0 ∼ t̂cn, s0 ∼ ŝcn. (9)

By Lemma 3, it suffices to consider G(h) for h ∈ P(M, L, V, k), with |V | = t0 and
|L| = 2m− s0. By Lemma 5, we just have to show that when Light(k) is applied to such
h, for c < ck, G(hfin) is a.a.s. empty, whilst for c > ck, G(hfin) a.a.s. has the number of
vertices and edges claimed of the k-core of G in Theorem 1.

We will study the sequence of random values of (Ti, Si) =
(

t(G(hi)), s(G(hi))
)

for i =
0, . . . , ifin. Initially, (T0, S0) = (t0, s0). On the ith step of the algorithm, the probability
that v := hi−1(g(j)) ∈ V (which, in itself, decreases S by 1 in this step) is by Lemma 6

Si−1

2m − 2i + 1
(10)
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because the cardinality of the domain of hi−1 is 2m − 2i + 2. Furthermore, conditional
upon this event, the probability that v has degree k (which causes S to decrease by a
further k − 1 and T by 1) is k/Si−1 times the number of vertices in V of degree k, and
hence by Lemmas 6 and 4 and (6) is asymptotic to

k

Si−1
× Ti−1λ

k
i−1

fk(λi−1)k!
= 1 − λi−1Ti−1

Si−1
(1 + o(1))

where λi−1 = λSi−1/Ti−1
as defined in (4). Here, we used λk−1/(k−1)! = fk−1−fk and (4);

we also assume that
Si−1 − Ti−1k → ∞, (11)

which also immediately implies 2m− 2i → ∞, and we also assume that |h−1
i−1(L)| > 0, i.e.

2m − 2i + 2 − Si−1 > 0. (12)

It follows, assuming (11), that if |h−1
i−1(L)| > 0,

E(Ti − Ti−1 | Mi−1, Li−1, Bi−1, hi−1) ∼ − Si−1

2m − 2i

(

1 − λi−1Ti−1

Si−1

)

,

E(Si − Si−1 | Mi−1, Li−1, Bi−1, hi−1) ∼ − Si−1

2m − 2i

(

1 + (k − 1)

(

1 − λi−1Ti−1

Si−1

))

.

We may now apply [16, Theorem 1] to show that the trajectory of S and T throughout the
algorithm is a.a.s. close to the solution of the deterministic differential equations suggested
by these equations. For ε > 0, define the domain D = D(ε) to be

{(x, y, z) : y − kz > ε, c − 2x − y > 0, z > −ε/2k,−ε < x < c, |y| < c + ε}. (13)

(Here x, y and z represent approximate values of i, Si and Ti, all divided by n.) The first
and second constraints in D arise from (11) and (12) respectively. The third is included
so that, combined with the first, we have y > ε/2 in D and hence c− 2x > ε/2. Inclusion
of the last two constraints is just a convenient way to make the domain bounded. The
conclusion of [16, Theorem 1] now gives that a.a.s.

Si = ny(i/n) + o(n) and Ti = nz(i/n) + o(n) (14)

uniformly for all i ≤ nσ, where

z′ = − y

c − 2x

(

1 − µz

y

)

, (15)

y′ = − y

c − 2x

(

k − (k − 1)
µz

y

)

= (k − 1)z′ − 1, (16)

µ denotes λy/z and σ is the supremum of those x for which the solution of these differential
equations, with initial conditions y(0) = s0/n, z(0) = t0/n, remains in D.
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To analyse σ, we need to determine which constraint is violated when the solution
reaches the boundary of D. It cannot be any of the last three constraints in (13), be-
cause (14) must give asymptotically feasible values of Si and Ti up until the boundary is
approached. This eliminates the third and fourth constraints immediately, and the fifth
is similar because the maximum possible value of Si is asymptotically cn. It remains to
determine which of the first two constraints is violated when x = σ.

To proceed, we will assume that t0 = t̂cn and s0 = ŝcn. The result then implies the
general case, where these are asymptotically correct given by (9), due to standard stability
properties of differential equations with respect to initial conditions.

We want to find integrals of the equations above. It is perhaps easier to change the
variable of differentiation from x to x̃ where dx̃

dx
= y/(c − 2x). (Incidentally, x̃ represents

the number of times that v ∈ V ). Then (15) and (16) become

z′ = −
(

1 − µz

y

)

, (17)

y′ = (k − 1)z′ − 1. (18)

From (4) we have
y

z
= µr where r =

fk−1(µ)

fk(µ)
, (19)

and we deduce that µ(0) = c. This also gives

(y

z

)′

= (µr)′ = µ′(r + µr′) = µ′
(

(r − 1)(k − 1 − µr) + r
)

after some algebra involving the definition of r and fk. On the other hand,

y
(y

z

)′

=
y

z
y′ − y2

z2
z′ = µr

(

(k − 1 − µr)z′ − 1
)

= µ
(

(k − 1 − µr)(1 − r) − r
)

using (19), (17) and (18). Putting these two equations together, yµ′ = µ and hence,
returning to differentiation with respect to x,

dµ

dx
=

−µ

c − 2x
. (20)

From this it follows that the derivative of µ2/(c − 2x) is 0, i.e. this is a constant, and
similarly that zeµ/fk(µ) is constant (c.f. [13, (5.7) and (5.8)]).

Substituting in the initial conditions determines the constants and gives

µ2 = c(c − 2x), (21)

z = e−µfk(µ), (22)

and using (19),
y = µe−µfk−1(µ). (23)
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In the closure of D, c− 2x and hence µ are positive. So by (21) and (23) and recalling
that hk(µ) = µeµ/fk−1(µ), we have

c − 2x − y = 0 iff c = hk(µ). (24)

So first consider c < ck, where k ≥ 3. Then by the definition of ck in (1), there is no
solution for µ in (24). So the boundary reached is determined by y − kz = ε. Setting
y − kz = ε using (22) and (23) forces µ = O(ε), and so by (22) z = O(ε). The result (14)
then implies that for this value of i, the number of vertices of degree at least k is O(εn).
Hence the k-core of G(f) is a.a.s. of size at most O(εn). Lemma 2 and  Luczak’s result
stated in the introduction then imply that the k-core of G(n, m) is a.a.s. empty.

Now take c > ck, where k ≥ 3. Then by (24), the second constraint is violated when
µ = µk,c as defined after (1) (noting that µ(0) = c and there is no solution to hk(µ) = c for
µ > c). By (21) this occurs before µ approaches 0, so for sufficiently small ε the solution
leaves (13) at the boundary c − 2x − y = 0. At this point, c − 2x − y goes negative,
since there are two distinct solutions to hk(µ) = c as mentioned after (1). So we apply
instead [17, Theorem 6.1] with D̂ for that theorem defined as the domain (13), and the
domain D replaced by D̃, which is the same as D except that the constraint c−2x−y > 0
is omitted. Then this theorem gives the convergence in (14) up until the solution leaves
D̃ or (12) is violated, whichever occurs first. Since c − 2x − y begins to go negative,
from (14) it follows that (12) must be violated a.a.s., and h−1(L) becomes zero at some
i ∼ σcn a.a.s. where σc is the value of σ with the initial conditions t0 = t̂cn and s0 = ŝcn.
Thus the k-core is nonempty a.a.s., and here

z = e−µk,cfk(µk,c),

and
y = µk,ce

−µk,cfk−1(µk,c)

as required. Finally, the case k = 2 and c > 1 is similar.

Proof of Theorem 3 This is almost identical to the proof of Theorem 1 and Corollary 3,
so we just sketch the proof, pointing out differences.

We use a modification of P(M, L, V, k) in which |M | = dm and M is partitioned into
sets of cardinality d to define the edges in the corresponding hypergraph. We also use
the straightforward generalization of M(n, m) to a probability space of d-uniform pseudo-
hypergraphs. We use a modification of Light(k) which treats each of the other points
in the same hyperedge as j independently like v in the graph version (a total of (d − 1)
times). Using dx̃

dx
= (d − 1)y/(c − dx), we (of course) again obtain (17) and (18). The

formula for dµ/dx in (20) is multiplied by (d − 1)(c − 2x)/(c − dx). The equations are
just as easily solved to find

µd = c(c − dx)d−1,

and (22) and (23) are the same for z and y. Using (13) for D but with the second
constraint changed to c − dx − y > 0, and repeating the differential equation argument
in the proof of Theorem 1 gives the conclusion on the size of the random core. The
modifications required for the proof of the other conclusion, on the number of vertices of
given degree, are obvious.
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Corrigendum – submitted December 3, 2006

In Corollary 2, np2M̂/N̂,k,j should be N̂p2M̂/N̂ ,k,j. As a consequence of this adjustment, in

Corollary 3 and Theorem 3, npc̃,k,j should be ne−µµj/j!, where µ = µk,c in Corollary 3,
and µ = µd,k,c in Theorem 3. The proofs remain unchanged.

The corrected results thus read as follows.

Corollary 2 Fix j ≥ k ≥ 2, and let m = m(n) ∼ cn/2 where c > ck is fixed. Let N̂
and M̂ be the (random) numbers of vertices and edges of K(n, m, k), and let Yj be the
number of vertices having degree j. Then for sufficiently small ε > 0, conditional upon
M̂ − kN̂ > εn and N̂ > εn, we have

P
(

|Yj − N̂p2M̂/N̂ ,k,j| > a
√

N̂
)

= O(
√

n)e−2a2

for all a > 0, where, with λb as in (4),

pb,k,j =
λj

b

j!fk(λb)
. (5)

Corollary 3 Fix j ≥ k ≥ 2, and let m = m(n) ∼ cn/2 where c > ck. The number of
vertices of degree j in K(n, m, k) is a.a.s. ne−µµj/j! + o(n), where µ = µk,c.

Theorem 3 Let c > 0 and integers d ≥ 3, k ≥ 2 be fixed. Suppose that m ∼ cn/d,
and G ∈ G(d, n, m). For c < cd,k, G has empty k-core a.a.s. For c > cd,k, the k-core of
G a.a.s. has e−µd,k,cfk(µd,k,c)n(1 + o(1)) vertices and 1

d
µd,k,ce

−µd,k,cfk−1(µd,k,c)n(1 + o(1))
hyperedges. Moreover, let j ≥ k be fixed, and assume c > cd,k. Then the number of
vertices of degree j in K(d, n, m, k) is a.a.s. ne−µµj/j! + o(n), where µ = µd,k,c.
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