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Abstract

We define incidence matrices to be zero-one matrices with no zero rows or
columns. We are interested in counting incidence matrices with a given number
of ones, irrespective of the number of rows or columns. A classification of incidence
matrices is considered for which conditions of symmetry by transposition, having
no repeated rows/columns, or identification by permutation of rows/columns are
imposed. We find asymptotics and relationships for the number of matrices with n

ones in some of these classes as n → ∞.

1 Introduction

In this paper we address the problem: How many zero-one matrices are there with exactly
n ones? Note that we do not specify in advance the number of rows or columns of the
matrices. In order to make the answer finite, we assume that no row or column of such a
matrix consists entirely of zeros. We call such a matrix an incidence matrix.

Rather than a single problem, there are many different problems here, depending on
what symmetries and constraints are permitted. In general, we define Fijkl(n) to be the
number of zero-one matrices with n ones and no zero rows or columns, subject to the
conditions

• i = 0 if matrices differing only by a row permutation are identified, and i = 1 if not;

• j = 0 if matrices with two equal rows are forbidden, and j = 1 if not;

• k = 0 if matrices differing only by a column permutation are identified, and k = 1
if not;

• l = 0 if matrices with two equal columns are forbidden, and l = 1 if not.
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The notation is chosen so that Fijkl(n) is a monotonic increasing function of each of the
arguments i, j, k, l.

By transposition, it is clear that Fklij(n) = Fijkl(n) for all i, j, k, l, n. So, of the sixteen
different functions defined above, only ten are distinct. However, among the problems
with k = i and l = j, we may decide that matrices which are transposes of each other are
identified, leading to four further counting problems Φij(n), for i, j ∈ {0, 1}.

For example, there are four matrices with n = 2, as shown:

( 1 1 ) ,

(

1
1

)

,

(

1 0
0 1

)

,

(

0 1
1 0

)

.

The first has repeated columns and the second has repeated rows. The third and fourth
are equivalent under row permutations or column permutations, while the first and second
are equivalent under transposition.

Table 1 gives some values of these functions. The values of F1111(n) are taken from the
On-Line Encyclopedia of Integer Sequences [15], where this appears as sequence A101370
and F0101(n) appears as sequence A049311, while the values of F0011(n) and F0111(n) are
obtained from a formula in Corollary 3.3 in [9] using MAPLE. Other computations were
done with GAP [8].

Table 1: Some values of the fourteen functions

n 1 2 3 4 5 6 7 8 9
F0000(n) 1 1 2 4 7 16
F0010(n) 1 1 3 11 40 174
F1010(n) 1 2 10 72 624 6522
F0001(n) 1 2 4 9 18 44
F0011(n) 1 2 7 28 134 729 4408 29256 210710
F1001(n) 1 2 6 20 73 315
F1011(n) 1 3 17 129 1227 14123
F0101(n) 1 3 6 16 34 90 211 558 1430
F0111(n) 1 3 10 41 192 1025 6087 39754 282241
F1111(n) 1 4 24 196 2016 24976 361792 5997872 111969552
Φ00(n) 1 1 2 3 5 11
Φ10(n) 1 2 8 44 340 3368
Φ01(n) 1 2 4 10 20 50
Φ11(n) 1 3 15 108 1045 12639 181553 3001997 55999767

The counting problems can be re-interpreted in various ways:
Counting hypergraphs by weight: Given a hypergraph on the vertices x1, . . . , xr,

with edges E1, . . . , Es (each a non-empty set of vertices), the incidence matrix A = (aij)
is the matrix with (i, j) entry 1 if xi ∈ Ej, and 0 otherwise. The weight of the hypergraph
is the sum of the cardinalities of the edges. Thus F0101(n) is the number of hypergraphs
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of weight n with no isolated vertices, up to isomorphism; and F1101(n) is the number
of (vertex)-labelled hypergraphs of weight n. Putting k = 1 corresponds to labelling
the edges, a less usual notion. Moreover, putting l = 0 corresponds to counting simple
hypergraphs (those without repeated edges). The condition j = 0 is less natural in this
respect, but corresponds to forbidding “repeated vertices” (pairs of vertices which lie in
the same edges).

Counting bipartite graphs by edges: Given a zero-one matrix A = (Aij), there is
a (simple) bipartite graph whose vertices are indexed by the rows and columns of A, with
an edge from ri to cj if Aij = 1. The graph has a distinguished bipartite block (consisting
of the rows). Thus, F0101(n) and F1111(n) count unlabelled and labelled bipartite graphs
with n edges and a distinguished bipartite block, respectively (where, in the labelled case,
we assume that the labels of vertices in the distinguished bipartite block come first);
Φ01(n) counts unlabelled bipartite graphs with n edges and a distinguished bipartition.

Counting pairs of partitions, or binary block designs: A block design is a set
of plots carrying two partitions, the treatment partition and the block partition. It is said
to be binary if no two distinct points lie in the same part of both partitions; that is, if the
meet of the two partitions is the partition into singletons. Thus, F0101(n) is the number
of binary block designs with n plots. Putting i = 1 or k = 1 (or both) corresponds to
labelling treatments or blocks (or both). Combinatorialists often forbid “repeated blocks”
(this corresponds to putting l = 0) although this is not natural from the point of view of
experimental design. Similarly j = 0 corresponds to forbidding “repeated treatments”.
The functions Φij(n) count block designs up to duality (interchanging treatments and
blocks), without or with treatment and block labelling and/or forbidding repeated blocks
and treatments.

Counting orbits of certain permutation groups: A permutation group G on
a set X is oligomorphic if the number F ∗

n(G) of orbits of G on Xn is finite for all n.
Equivalently, the number Fn(G) of orbits on ordered n-tuples of distinct elements is
finite, and the number fn(G) of orbits on n-element subsets of X is finite, for all n. These
numbers satisfy various conditions, including the following:

• F ∗
n(G) =

n
∑

k=1

S(n, k)Fk(G), where S(n, k) are Stirling numbers of the second kind;

• fn(G) ≤ Fn(G) ≤ n!fn(G), where the right-hand bound is attained if and only if
the group induced on a finite set by its setwise stabiliser is trivial.

For example, let S be the symmetric group on an infinite set X, and A the group of all
order-preserving permutations of the rational numbers. Then Fn(S) = fn(S) = fn(A) = 1
and Fn(A) = n! .

Now if H and K are permutation groups on sets X and Y , then the direct product
H × K acts coordinatewise on the Cartesian product X × Y . It is easy to see that
F ∗

n(H ×K) = F ∗
n(H)F ∗

n(K).
Let (x1, y1), . . . , (xn, yn) be n distinct elements of X×Y . If both X and Y are ordered,

then the set of n pairs can be described by a matrix with n ones in these positions, where
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the rows and columns of the matrix are indexed by the sets {x1, . . . , xn} and {y1, . . . , yn}
respectively (in the appropriate order). Moreover, if X is not ordered, then we can
represent the set of pairs as the equivalence class of this matrix under row permutations,
and similarly for columns. Thus

F0101(n) = fn(S × S), F1101(n) = fn(S × A), F1111(n) = fn(A× A).

Moreover, the wreath product H wr C2 is the permutation group on X2 generated
by H × H together with the permutation τ : (x1, x2) 7→ (x2, x1). The effect of τ is to
transpose the matrix representing an orbit. So

Φ01(n) = fn(S wr C2), Φ11(n) = fn(A wr C2).

Discussion of this “product action” can be found in [5] and [13].
It is not clear how forbidding repeated rows or columns can be included in this inter-

pretation.

2 The asymptotics of F1111(n)

We will use both F (n) and F1111(n) to denote the number of incidence matrices with n
ones. This is the largest of our fourteen functions, so its value gives an upper bound for all
the others. Indeed, we will see later that Fijkl(n) = o(F1111(n)) for (i, j, k, l) 6= (1, 1, 1, 1).

It is possible to compute this function explicitly. For fixed n, let mij be the number
of i × j matrices with n ones (and no zero rows or columns). We set m0,0(0) = 1 and
F (0) = 1. Then

∑

i≤k

∑

j≤l

(

k

i

)(

l

j

)

mij =

(

kl

n

)

, (1)

so by Möbius inversion,

mkl =
∑

i≤k

∑

j≤l

(−1)k+l−i−j

(

k

i

)(

l

j

)(

ij

n

)

, (2)

and then
F1111(n) =

∑

i≤n

∑

j≤n

mij. (3)

For sequence an, bn, we use the notation an ∼ bn to mean limn→∞ an/bn = 1. It is
clear from the argument above that

F1111(n) ≤
(

n2

n

)

∼ 1√
2πn

(ne)n,

and of course considering permutation matrices shows that

F1111(n) ≥ n! ∼
√

2πn
(n

e

)n

.
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Theorem 2.1

F1111(n) ∼ n!

4
e−

1
2
(log 2)2 1

(log 2)2n+2
.

We remark that for n = 10, the asymptotic expression is about 2.5% less than the
actual value of 2324081728.

We have three different proofs of Theorem 2.1. One proof will be given in its entirety
and the other two will be briefly sketched. Their full details can be found in [6]. We use
the method of the first proof to bound F1101 in Section 5. The ideas behind the third
proof lead to a random algorithm for generating incidence matrices counted by F1111(n)
and by Φ11(n). The random algorithm provides an independent proof of the expression
for F1111(n) used in the first proof.

First proof This proof uses a procedure which, when successful, generates an incidence
matrix uniformly at random from all incidence matrices. The probability of success can
be estimated and the asymptotic formula for F1111(n) results.

Let R be a binary relation on a set X. We say R is reflexive if (x, x) ∈ R for all
x ∈ X. We say R is transitive if (x, y) ∈ R and (y, z) ∈ R implies (x, z) ∈ R. A partial
preorder is a relation R on X which is reflexive and transitive. A relation R is said to
satisfy trichotomy if, for any x, y ∈ X, one of the cases (x, y) ∈ R, x = y, or (y, x) ∈ R
holds. We say that R is a preorder if it is a partial preorder that satisfies trichotomy. The
members of X are said to be the elements of the preorder.

A relation R is antisymmetric if, whenever (x, y) ∈ R and (y, x) ∈ R both hold, then
x = y. A relation R on X is a partial order if it is reflexive, transitive, and antisymmetric.
A relation is a total order, if it is a partial order which satisfies trichotomy. Given a
partial preorder R on X, define a new relation S on X by the rule that (x, y) ∈ S if and
only if both (x, y) and (y, x) belong to R. Then S is an equivalence relation. Moreover,
R induces a partial order R on the set of equivalence classes of S in a natural way: if
(x, y) ∈ R, then (x, y) ∈ R, where x is the S-equivalence class containing x and similarly
for y. We will call an S-equivalence class a block. If R is a preorder, then the relation
R on the equivalence classes of S is a total order. See Section 3.8 and question 19 of
Section 3.13 in [4] for more on the above definitions and results. Random preorders are
considered in [7].

A preorder on X with k parts can also be described as a surjective mapping from X
to {1, . . . , k}, where (x, y) ∈ R if and only if f(x) ≤ f(y). The blocks are the sets f−1(i)
for i ∈ {1, . . . , k}.

The generating function and asymptotics of the number of preorders on {1, . . . , n} is
given by Lovász [11, Exercise 1.15]. See also Section 3.8 and question 19 of Section 3.13
in [4] for more on the above definitions and results. Random preorders are considered in
[7].
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Given a preorder on elements [n] := {1, 2, . . . , n} with K blocks, let B1, B2, . . . , BK

denote the blocks of the preorder. Generate two random preorders uniformly at random
B1, B2, . . . , BK and B′

1, B
′
2, . . . , B

′
L. For each 1 ≤ i < j ≤ n, define the event Di,j to be

Di,j = {for each of the two preorders i and j are in the same block}.

Furthermore, define

W =
∑

1≤i<j≤n

IDi,j
,

where the indicator random variables are defined by

IDi,j
=
{

1 if Di,j occurs;
0 otherwise.

If W = 0, then the procedure is successful, in which case Bk ∩ B′
l consists of either 0 or

1 elements for each 1 ≤ k ≤ K and 1 ≤ l ≤ L. If the procedure is successful, then we
define the corresponding K × L incidence matrix A by

Ak,l =

{

1 if Bk ∩B′
l 6= ∅;

0 if Bk ∩B′
l = ∅.

It is easy to check that the above definition of A in fact produces an incidence matrix and
that each incidence matrix occurs in n! different ways by the construction. It follows that

F1111(n) =
P (n)2

P(W = 0)

n!
,

where P (n) is the number of preorders on n elements if n ≥ 1 and P (0) = 1.
It is known (see [1], for example) that the exponential generating function of P (n) is

∞
∑

n=0

P (n)

n!
zn =

1

2 − ez
. (4)

The preceding equality implies that P (n) has asymptotics given by

P (n) ∼ n!

2

(

1

log 2

)n+1

, (5)

where, given sequences an, bn the notation an ∼ bn means that limn→∞ an/bn = 1. It
remains to find the asymptotics of P(W = 0).

The rth falling moment of W is

E(W )r = EW (W − 1) · · · (W − r + 1)

= E

(

∑

pairs (is,js) different

Ii1,j1 · · · Iir ,jr

)

(6)

= E

(

∑

all is and js different

Ii1,j1 · · · Iir ,jr

)

+ E

(

∑∗
Ii1,j1 · · · Iir ,jr

)

, (7)
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with
∑∗

defined to be the sum with all pairs (is, js) different, but not all is, js different.

First we find the asymptotics of the first term in (7). For given sequences i1, i2, . . . , ir,
j1, j2, . . . , jr, the expectation E(Ii1,j1 · · · Iir ,jr

) is the number of ways of forming two pre-
orders on the set of elements [n] \ {j1, j2, . . . , jr} and then for each s adding the element
js to the block containing is in both preorders (which ensures that Dis,js

occurs for each
s) and dividing the result by P (n)2. Since the number of ways of choosing i1, i2, . . . , ir,
j1, j2, . . . , jr equals n!

2r(n−2r)!
, This gives

E

(

∑

all is and js different

Ii1,j1 · · · Iir ,jr

)

=
n!

2r(n− 2r)!

P (n− r)2

P (n)2

∼
(

(log 2)2

2

)r

,

where we have used (5).
The second term is bounded in the following way. For each sequence (i1, j1), (i2, j2), . . .,

(is, js) in the second term we form the graph G on vertices
⋃r

s=1{is, js} with edges
⋃r

s=1{{is, js}}. Consider the unlabelled graph G′ corresponding to G consisting of v
vertices and c components. The number of ways of labelling G′ to form G is bounded by
nv. The number of preorders corresponding to this labelling is P (n − v + c) because we
form a preorder on n− v+ c vertices after which the vertices in the connected component
of G containing a particular vertex get added to that block. Therefore, we have

E

(

∑∗
Ii1,j1 · · · Iir ,jr

)

≤
∑

G′

nvP (n− v + c)2

P (n)2

=
∑

G′

O
(

n2c−v
)

,

where the constant in O (n2c−v) is uniform over all G′ because v ≤ 2r. Since at least
one vertex is adjacent to more than one edge, the graph G is not a perfect matching.
Furthermore, each component of G contains at least two vertices. It follows that 2c < v
and, as a result,

E

(

∑∗
Ii1,j1 · · · Iir ,jr

)

= O
(

n−1
)

.

The preceding analysis shows that

E(W )r ∼
(

(log 2)2

2

)r

for each r ≥ 0. The method of moments implies that the distribution converges weakly
to the distribution of a Poisson((log 2)2/2) distributed random variable and therefore

P(W = 0) ∼ exp

(

−(log 2)2

2

)

. (8)

�
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Second proof (Sketch) First, the following expression for F1111(n) is given in terms of
the number of preorders on k elements as an alternating sum different from and simpler
than (2):

F1111(n) =
1

n!

n
∑

k=1

s(n, k)P (k)2,

where and s(n, k) and S(n, k) are Stirling numbers of the first and second kind respectively.
As in the first proof, the number of pairs of preorders for which the meets of the blocks
form a given k-partition of [n] is k!F (k), so

P (n)2 =

n
∑

k=1

S(n, k)k!F (k),

and we obtain the result by inversion. Next, P (k) is replaced by its asymptotic expression
(5) with negligible error. Let

F ′(n) =
1

4
· 1

n!

n
∑

k=1

s(n, k)(k!)2ck+1,

where c = 1/(log 2)2 is as in the statement of the theorem. As we have argued, F (n) ∼
F ′(n).

Now, (−1)n−ks(n, k) is the number of permutations in the symmetric group Sn which
have k cycles. So we can write the formula for F ′(n) as a sum over Sn, where the term
corresponding to a permutation with k cycles is (−1)n−k(k!)2ck+1. In particular, the
identity permutation gives us a contribution

g(n) =
1

4
n! cn+1.

To show that F ′(n) ∼ Cg(n) as n → ∞, where C = exp(−(log 2)2/2), we write F ′(n) =
F ′

1(n) + F ′
2(n) + F ′

3(n), where the three terms are sums over the following permutations:

F ′
1: all involutions (permutations with σ2 = 1);

F ′
2: the remaining permutations with k ≥ dn/2e;

F ′
3: the rest of Sn.

A further argument shows that F ′
1(n) ∼ Cg(n), while F ′

2(n) = o(g(n)) and F ′
3(n) =

o(g(n)). �

Third proof (Sketch) If one is interested in asymptotic enumeration of F (n), the for-
mula (2), being a double sum over terms of alternating sign, is on first sight rather unsuit-
able for an asymptotic analysis. We present a derivation of the asymptotic form of F (n)
based on the following elegant and elementary identity. (This identity and equation (2)
were also derived in [13].)
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Proposition 2.2

F (n) =
∞
∑

k=0

∞
∑

l=0

1

2k+l+2

(

kl

n

)

. (9)

Proof Insert

1 =
∞
∑

k=i

1

2k+1

(

k

i

)

=
∞
∑

l=j

1

2l+1

(

l

j

)

(10)

into (3) and resum using (1). �

The sum in (9) is dominated by terms where kl � n. In this regime, using
(

kl

n

)

∼ (kl)n

n!
e−

n2

2kl

and approximating the sum in (9) by an integral (cf. Euler-Maclaurin) leads to

F (n) ∼ 1

4n!

∫

dk

∫

dl
(kl)n

2k+l
e−

n2

2kl

=
n2n+2

4n!

∫

dκ

∫

dλ en(log κ−κ log 2)en(log λ−λ log 2)e−
1

2κλ

For n large, the integrals are dominated by a small neighborhood around their respective
saddles. As e−

1
2κλ is independent of n, we can treat the integrals separately. Using

w(κ) = log κ − κ log 2, the saddle κs = 1
log 2

is determined from w′(κs) = 0 (λs = 1
log 2

analogously). Approximating the integrals by a Gaussian around the saddle point gives

F (n) ∼ n2n+2

4n!
enw(κs)

√

2π

n|w′′(κs)|
enw(λs)

√

2π

n|w′′(λs)|
e−

1
2κsλs

=
n2n+2

4n!

(

en(log log 2−1)

√

2π

n(log 2)2

)2

e−
1
2
(log 2)2

which simplifies to the desired result. �

3 Generating random incidence matrices

It is easily shown that (4) implies that

P (n) =

∞
∑

k=0

kn

2k+1
.

Hence, the distribution πk on the natural numbers defined by

πk =
kn

P (n)2k+1

is a probability distribution. The following way of generating preorders uniformly at
random was given in [12].
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Theorem 3.1 (Maassen, Bezembinder) Let A be a set of n elements, n ≥ 1. Let a
random preorder R be generated by the following algorithm:

(i) Draw an integer-valued random variable K according to the probability distribution
πk.

(ii) To each a ∈ A assign a random score Xa according to the uniform distribution on
{1, 2, . . . , K}.

(iii) Put (a, b) ∈ R if and only if Xa ≤ Xb.

Then all of the P (n) possible preorders on A are obtained with the same probability 1/P (n).

A referee remarked that a defect of this algorithm is the need to know P (n) in advance
in order to calculate the probability distribution in Step (i), and suggested that there
might be a Metropolis-type Markov chain whose limiting distribution is uniform. The
same comment applies to our algorithm below for a random incidence matrix. This would
be desirable if one is interested in practical applications.

Incidence matrices counted by F1111(n) can be generated uniformly at random by a
similar algorithm. Define a integer valued joint probability distribution function ρk,l by

ρk,l =
1

F1111(n)

(

kl

n

)

2−k−l−2.

Theorem 3.2 The following algorithm generates a random incidence matrix counted by
F1111(n).

(i) Draw integer-valued random variables K and L according to the joint probability
distribution ρk,l.

(ii) Choose a 0-1 matrix with K rows, L columns, n 1’s and KL − n 0’s uniformly at
random.

(iii) Delete all rows and columns for which all entries are 0.

Proof Denote a 0-1 matrix with k rows, l columns, and n 1’s a (k, l)-matrix. Denote an
incidence matrix with i rows, j columns, and n 1’s a (i, j)-incidence matrix. Now, every
(k, l)-matrix is generated with equal probability

ρk,l
(

kl
n

) =
2−k−l−2

F1111(n)

and every (i, j)-incidence matrix is generated from
(

k
i

)(

l
j

)

(k, l)-matrices. Averaging over

the probability distribution, it follows that every (i, j)-incidence matrix is generated with
probability

p(i, j) =

(

kl

n

)−1
∑

k,l

(

k

i

)(

l

j

)

ρk,l

Using (10), this sum simplifies to p(i, j) = 1/F1111(n). �
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4 Counting symmetric matrices

In this section we find the asymptotics for Φ11(n) and show:

Proposition 4.1 Φ11(n) ∼ 1
2
F1111(n).

Proof Clearly we have Φ11(n) = 1
2
(F1111(n) + S11(n)), where S11(n) is the number of

symmetric matrices with n ones having no zero rows or columns, where repeated rows or
columns are allowed and row or column permutations are not permitted. So it suffices to
show that S11(n) = o(F1111(n)).

Now let I(n) be the number of solutions of σ2 = 1 in the symmetric group Sn. Then
we have

I(n) ≤ S11(n) ≤ I(n)P (n)/n!.

The lower bound is clear by considering symmetric permutation matrices. For the upper
bound, our analysis of F1111(n) shows that n!S11(n) is the number of pairs (R1, R2) of
preorders on {1, . . . , n} such that no two points i and j lie in the same block for both
preorders, and additionally such that R1 and R2 are interchanged by some involution σ
of {1, . . . , n} (corresponding to transposition of the matrix). So instead of choosing R1

and R2, we can choose R1 and σ and let R2 = Rσ
1 ; there are P (n)I(n) choices, and this is

an overcount because of the extra condition that must hold on (R1, R2).
Now I(n) is just a little larger than

√
n!: in fact,

I(n) ∼ nn/2

√
2 en/2−√

n+1/4

(see [3, p. 347]). We have seen that P (n)/n! ∼ A(1/ log 2)n. So the conclusion follows
from Theorem 2.1. �

It is possible to show that the upper bound for S11(n) is correct, apart from a constant
factor:

Proposition 4.2 S11(n) ∼ Cs · I(n)P (n)/n!, where Cs = 1
2
e−(log 2)2/4 ≈ 0.44341. In other

words, if we choose randomly a preorder R and an involution σ ∈ Sn, the probability that
no two points lie in the same part in both R and Rσ tends to Cs as n→ ∞.

Proof Let µi = µi(n) be the number of i× i symmetric incidence matrices with n ones.
Let sk be the number of k × k symmetric matrices with n ones, given by

sk =

bn/2c
∑

j=0

(
(

k
2

)

j

)(

k

n− 2j

)

, (11)

where j represents the number of ones off of the diagonal. Then

sk =

k
∑

i=1

(

k

i

)

µi
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and

S11(n) =

n
∑

i=1

µi =

∞
∑

k=1

sk

2k+1

by (10), leading to

S11(n) =

∞
∑

k=0

1

2k+1

∞
∑

j=0

(
(

k
2

)

j

)(

k

n− 2j

)

.

To compute this sum asymptotically, we approximate for m� l � 1
(

m

l

)

∼ ml

l!
e−l2/2m .

The sums are dominated near k ≈ n/ log 2 and j ≈ (n − √
n)/2, so that we can justify

replacing the binomial coefficients by this approximation. We get

S11(n) ∼
∞
∑

k=0

1

2k+1

∞
∑

j=0

(

k
2

)j

j!

kn−2j

(n− 2j)!
e−j2/2(k

2)−(n−2j)2/2k

∼
∞
∑

k=0

kn

2k+1

∞
∑

j=0

1

j!(n− 2j)!2j
e−j/k−j2/k2−(n−2j)2/2k ,

where in the last step we also replaced (1 − 1/k)j ∼ e−j/k. Due to the concentration of
the sum near k ≈ n/ log 2 and j ≈ (n − √

n)/2, the argument of the exponential can be
replaced by

e−j/k−j2/k2−(n−2j)2/2k ∼ e− log 2−(log 2/2)2 = 1
2
e−(log 2)2/4 = Cs,

where Cs is as in the Proposition. Identifying

P (n) =
∞
∑

k=0

kn

2k+1

and

I(n) =
∞
∑

j=0

n!

j!(n− 2j)!2j
,

we arrive at
S11(n) ∼ Cs · I(n)P (n)/n! .

�

One may also generate matrices from S11 uniformly at random.
Define an integer valued probability distribution function ψk by

ψk =
sk2

−k−1

S11(n)
.
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Theorem 4.3 The following algorithm generates a random incidence matrix counted by
S11(n).

(i) Draw integer-valued random variables K according to the probability distribution ψk.

(ii) Choose a K×K symmetric zero-one matrix with n ones and K2−n zeros uniformly
at random.

(iii) Delete all rows and columns for which all entries are zero.

The proof of Theorem 4.3 is similar to the proof of Theorem 3.2.

In general, we have Φij(n) = 1
2
(Fijij(n) + Sij(n)), where

• if i = 1, then Sij(n) is the number of symmetric matrices with n ones and no zero
rows, where repeated rows are forbidden if j = 0 and permitted if j = 1;

• if i = 0, then Sij(n) is the number of classes of matrices with n ones and no zero
rows (up to row and column permutations) which are closed under transposition,
with the same interpretation of j as in the other case.

We do not yet have asymptotics for these. It seems likely that, in all four cases,
Sij(n) = o(Fijij(n)), so that Φij(n) ∼ 1

2
Fijij(n). Table 2 gives some values of these

functions.

Table 2: Some counts for symmetric matrices and classes

n 1 2 3 4 5 6 7 8 9 10
S00(n) 1 1 2 2 3 6
S01(n) 1 1 2 4 6 10
S10(n) 1 2 6 16 56 214 866 3796 17468
S11(n) 1 2 6 20 74 302 1314 6122 29982 154718

5 The function F1011(n)

Recall that the number of incidence matrices with n ones, no repeated rows and matrices
equal by row or column permutations unidentified is denoted by F1011(n). In this section
we will show

Theorem 5.1 We have
F1011(n) = o (F1111(n)) .
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Proof We will use the probabilistic method and the notation used in the proof of The-
orem 2.1. The idea behind the proof is to show that the probability tends to 0 that a
randomly chosen incidence matrix counted by F1111(n) does not have two rows with each
containing all zeroes except for a single one in the same column.

Define Ei,j, 1 ≤ i, j ≤ n, to be the event that both {i} and {j} are blocks in the first
preorder and that i and j belong to the same block of the second preorder. When W = 0,
Ei,j corresponds to the event that the rows corresponding to the blocks containing i and
j in the incidence matrix are different and contain unique ones appearing in the same
column.

Let P (n, k) be the number of preorders on n elements with k blocks. Given a power
series f(z) =

∑∞
n=0 fnz

n, define [zn]f(z) = fn. We find that for any 1 ≤ i < j ≤ n,

P(Ei,j) =

n−2
∑

k=1

P (n− 2, k)

P (n)
(k + 2)(k + 1) · P (n− 1)

P (n)

=
P (n− 1)

P (n)2

n−2
∑

k=1

(k + 2)(k + 1)P (n− 2, k) (12)

Using Lemma 1.1 of [7], we find that

n−2
∑

k=1

(k + 2)(k + 1)P (n− 2, k) = (n− 2)![zn−2]

( ∞
∑

n=0

(n + 2)(n+ 1)(ez − 1)n

)

= (n− 2)![zn−2]
d2

du2

(

u2

1 − u

∣

∣

∣

u=ez−1

)

.

When singularity analysis (see Section 11 of [14]) can be applied, as in this case, the
asymptotics of the coefficients of a generating function are determined by the degree of
its pole of smallest modulus. Therefore,

n−2
∑

k=1

(k + 2)(k + 1)P (n− 2, k) ∼ (n− 2)![zn−2]

(

2(ez − 1)2

(2 − ez)3

)

.

The singularity of smallest modulus of (2 − ez)−1 occurs at z = log 2 with residue

lim
z→log 2

(

z − log 2

2 − ez

)

= lim
z→log 2

(

1

−ez

)

= −1

2
,

by l’Hôpital’s rule. Hence,

n−2
∑

k=1

(k + 2)(k + 1)P (n− 2, k) ∼ (n− 2)!

4
[zn−2](log 2 − z)−3

from which singularity analysis and (5) give

n−2
∑

k=1

(k + 2)(k + 1)P (n− 2, k) ∼ (n− 2)!

8
(log 2)−n−1n2. (13)
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The result of using (13) in (12) is

P(Ei,j) ∼
log 2

4n
. (14)

Define X to be
X =

∑

1≤i<j≤n

IEi,j
,

so that, conditional on the event {W = 0}, the event {X > 0} implies that the incidence
matrix produced by the algorithm has repeated rows. The expectation of X is

E(X) =

(

n

2

)

P(Ei,j) ∼
log 2

8
n (15)

We will next show that

E ((W )r ∩ Ei,j) ∼
(

(log 2)2

2

)r
log 2

4n
. (16)

The analog of (6) is

E ((W )r ∩ Ei,j) = E

(

∑

pairs (is,js) different

is 6=i, js 6=j

Ii1,j1 · · · Iir ,jr
IEi,j

)

= E

(

∑

all is and js different

is 6=i, js 6=j

Ii1,j1 · · · Iir ,jr
IEi,j

)

+ E

(

∑∗∗
Ii1,j1 · · · Iir ,jr

IEi,j

)

with
∑∗∗

defined to be the sum with all pairs (is, js) different, but not all is, js different.

The first term corresponds to two preorders formed in the following way. The is, js
are first selected. One preorder is formed from the set of elements [n]\{i, j, j1, j2, . . . , jr},
the element js is added to the block containing is for each s, and then blocks {i} and
{j} are inserted in the preorder. Another preorder is formed from the set of elements
[n] \ {j, j1, j2, . . . , jr}, the element js is added to the block containing is for each s, and
then the element j is added to the block containing i. As a result,

E

(

∑

pairs (is,js) different

is 6=i, js 6=j

Ii1,j1 · · · Iir ,jr

)

=
(n− 2)!

2r(n− 2 − 2r)!

n−2−r
∑

k=1

P (n− 2 − r, k)

P (n)
(k + 2)(k + 1)

P (n− 1 − r)

P (n)

∼
(

(log 2)2

2

)r
log 2

4n
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where we have used (5) and the asymptotic form (13).

The second term is bounded using the same method that was used to bound
∑∗

in

the proof of Theorem 2.1. Letting G′′ be an index over graphs on n vertices with two
labelled disconnected vertices i and j and n−2 unlabelled vertices which is not a matching
on the unlabelled vertices, we have

E

(

∑∗∗
Ii1,j1 · · · Iir ,jr

IEi,j

)

≤
∑

G′′

(n− 2)v
∑

k

P (n− 2 − v + c, k)

P (n)
(k + 1)(k + 2)

P (n− 1 − v + c)

P (n)

=
∑

G′′

O
(

n2c−v−1
)

= O(n−2).

Consequently we have shown (16).
The asymptotics (14) and (16) and method of moments argument giving (8) imply

that

P(W = 0 | Ei,j) ∼ exp

(

−(log 2)2

2

)

and therefore an application of Bayes’ Theorem with (8) and (14) results in

P(Ei,j | W = 0) ∼ log 2

4n
.

The observations above result in

E(X | W = 0) ∼ log 2

8
n. (17)

Comparison of (15) and (17) makes it clear that that conditioning on the event {W = 0}
does not asymptotically affect the expectation of X.

In a similar way we can find the asymptotics of the conditional second falling moment
E(X(X − 1) | Y = 0). The unconditioned second moment equals

E(X(X − 1)) =
∑

(i1,j1)6=(i2,j2)

P(Ei1,j1 ∩ Ei2,j2)

=
∑

{i1,j1}∩{i2,j2}=∅
P(Ei1,j1 ∩ Ei2,j2) +

∑

|{i1,j1}∩{i2,j2}|=1

P(Ei1,j1 ∩ Ei2,j2)

=
n!

4(n− 4)!

n−4
∑

k=1

P (n− 4, k)

P (n)
(k + 1)(k + 2)(k + 3)(k + 4)

P (n− 2)

P (n)

+O

(

n3

n−4
∑

k=1

P (n− 3, k)

P (n)
(k + 1)(k + 2)(k + 3)

P (n− 2)

P (n)

)
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An application of singularity analysis as used to derive (13) produces

E(X(X − 1)) =
(log 2)2

64
n2 +O(n).

Arguing as we did for E(X |W = 0) shows that

E(X(X − 1) | W = 0) =
(log 2)2

64
n2 +O(n);

we omit the details.
The variance of X conditioned on W = 0 is

Var(X |W = 0) = E(X(X − 1) |W = 0) + E(X |W = 0) − (E(X |W = 0))2

= o(n2). (18)

Chebyshev’s inequality applied with (17) and (18) now gives

P(X = 0 | W = 0) = o(1).

Hence, an asymptotically insignificant fraction of incidence matrices do not have repeated
rows which implies that F1011(n) = o (F1111(n)). �

6 The functions F0011(n) and F0111(n)

The function F0111(n) counts vertex-labelled hypergraphs on n vertices, while F0011(n)
counts the simple vertex-labelled hypergraphs. For completeness, we include the formulae
from the work of Martin Klazar [9].

Theorem 6.1 (a) For all n, we have

F0011(n) =
∑

λ`n

n
∑

j=l

l
∏

i=1

(
(

j
i

)

ai

) n
∑

m=j

(−1)m−j

(

m

j

)

,

F0111(n) =
∑

λ`n

n
∑

j=l

l
∏

i=1

(
(

j
i

)

+ ai − 1

ai

) n
∑

m=j

(−1)m−j

(

m

j

)

,

where λ = 1a12a2 · · · lal is a partition of n with al > 0.

(b) For all n, we have
F0011(n) ≤ F0111(n) ≤ 2F0011(n). �

Part (b) raises the question of whether F0011(n)/F0111(n) tends to a limit as n → ∞,
and particular, whether the limit is 1 (that is, whether almost all labelled hypergraphs
are simple).
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The paper [9] also gives recurrence relations for the two functions. Klazar subsequently
showed [10] that both functions are asymptotically

(1/ log 2 + o(1))nb(n),

where b(n) is the nth Bell number (the number of partitions of {1, . . . , n}). Details of the
asymptotics of b(n) can be found in [14]. In particular, since b(n)/n! = (1 + o(1))n, we
see that F0111(n) = o(F1111(n)), and in fact

F0111(n) = (log 2 + o(1))nF1111(n).

This and the result of the last section, together with the facts that F1101(n) = F0111(n)
and F1110(n) = F1011(n) and that Fijkl(n) is monotone increasing in each of i, j, k, l, justify
our earlier claim that Fijkl(n) = o(F1111(n)) for (i, j, k, l) 6= (1, 1, 1, 1).

7 A rough lower bound for F0001(n)

The number F0101(n) of unlabelled hypergraphs with weight n is not smaller than the
number of graphs with n/2 edges and no isolated vertices. We show that this number
grows faster than exponentially. In fact, our argument applies to F0001, since we use simple
graphs.

Consider simple graphs with m vertices and n edges, where m = o(n) and n = o(m2).
The number of such graphs, up to isomorphism, is at least

(

m(m−1)/2
n

)

m!
>

(cm2)n

n!m!
>
cnm2n

nnmm

for some constant c. Put F equal to the logarithm of the right-hand side:

F = c′n+ 2n logm− n logn−m logm

for some constant c′. Putting m = c′′n/ logn, for some constant c′′, we get

F = n log n− 2n log log n+O(n).

We conclude:

Proposition 7.1 For any ε > 0, we have

F0001(n) ≥
(

n

(log n)2+ε

)n

for n ≥ n0(ε).

Remark The asymptotics of the number of graphs with no isolated vertices, having a
given number of vertices and edges, has a long history: see [16] for an early paper on this
topic, and [2] for a recent result.
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