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Abstract

We present a decomposition formula for the weighted zeta function of an irregular
covering of a graph by its weighted L-functions. Moreover, we give a factorization
of the weighted zeta function of an (irregular or regular) covering of a graph by
equivalence classes of prime, reduced cycles of the base graph. As an application,
we discuss the structure of balanced coverings of signed graphs.

1 Introduction

In our previous paper [11], we defined the weighted zeta function and the weighted L-
function of a graph, and presented their determinant expressions. Furthermore, we ex-
pessed the weighted zeta function of a regular covering of a graph by a product of its
weighted L-functions. In this paper, we study a decomposition formula for the weighted
zeta function of an irregular covering of a graph by its weighted L-functions. Moreover,
we treat a factorization of the weighted zeta function of an (irregular or regular) covering
of a graph by equivalence classes of prime, reduced cycles of the base graph. By using the
second result, we discuss the structure of balanced coverings of signed graphs.

Graphs and digraphs treated here are finite and simple. Let G = (V (G), E(G)) be a
connected graph with vertex set V (G) and edge set E(G), and D the symmetric digraph
corresponding to G. Set D(G) = {(u, v), (v, u) | uv ∈ E(G)}. For e = (u, v) ∈ D(G), let
o(e) = u and t(e) = v. The inverse arc of e is denoted by e−1. A path P of length n in G
is a sequence P = (v0, v1, · · · , vn−1, vn) of n + 1 vertices and n arcs such that consecutive
vertices share an arc (we do not require that all vertices are distinct). Also, P is called
a (v0, vn)-path. If ei = (vi−1, vi) for i = 1, · · · , n, then we can write P = (e1, · · · , en). We
say that a path has a backtracking if a subsequence of the form · · · , x, y, x, · · · appears.
A (v, w)-path is called a v-cycle (or v-closed path) if v = w. The inverse cycle of a cycle
C = (v, v1, · · · , vn, v) is the cycle C−1 = (v, vn, · · · , v1, v).
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We introduce an equivalence relation between cycles. Two cycles C1 = (v1, · · · , vm)
and C2 = (w1, · · · , wm) are called equivalent if wj = vj+k for all j. Let [C] be the equivalnce
class which contains a cycle C. Let Br be the cycle obtained by going r times around a
cycle B. Such a cycle is called a multiple of B. A cycle C is called reduced if both C and
C2 have no backtracking. A cycle C is prime if C 6= Br for any r ≥ 2 and any other cycle
B. Note that each equivalence class of prime, reduced cycles of a graph G corresponds to
a unique conjugacy class of the fundamental group π1(G, v) of G at a vertex v of G.

The (Ihara) zeta function of a graph G is defined to be a function of u ∈ C with | u |
sufficiently small, by

Z(G, u) = ZG(u) =
∏

[C]

(1 − u|C|)−1,

where [C] runs over all equivalence classes of prime, reduced cycles of G, and | C | is the
length of C.

Zeta functions of graphs started from zeta functions of regular graphs by Ihara [8].
In [8], he showed that their reciprocals are explicit polynomials. A zeta function of a
regular graph G associated to a unitary representation of the fundamental group of G
was developed by Sunada [17,18]. Hashimoto [7] treated multivariable zeta functions of
bipartite graphs. Bass [1] generalized Ihara’s result on the zeta function of a regular graph
to an irregular graph, and showed that its reciprocal is a polynomial:

Z(G, u)−1 = (1 − u2)r−1 det(I − uA(G) + u2(D − I)),

where r and A(G) are the Betti number and the adjacency matrix of G, respectively, and
D = (dij) is the diagonal matrix with dii = deg vi(V (G) = {v1, · · · , vn}).

Stark and Terras [14] gave an elementary proof of Bass’ Theorem, and discussed three
different zeta functions of any graph. Furthermore, various proofs of Bass’ Theorem were
given by Foata and Zeilberger [3], Kotani and Sunada [9]. Stark and Terras [15], and,
independently, Mizuno and Sato [10] showed that the zeta function of a regular covering
of G is a product of L-functions of G. Stark and Terras [16] treated zeta functions of
bipartite coverings of graphs. Feng, Kwak and Kim [2] gave a decomposition formula for
zeta functions of irregular coverings of graphs.

Let G be a connected graph and V (G) = {v1, · · · , vn}. Then we consider an n × n
matrix W = (wij)1≤i,j≤n with ij entry the complex variable wij if (vi, vj) ∈ D(G), and
wij = 0 otherwise. Furthermore, assume that w−1

ji = wij if (vi, vj) ∈ D(G). The matrix
W = W(G) is called the weighted matrix of G. For each path P = (vi1 , · · · , vir) of G,
the norm w(P ) of P is defined as follows: w(P ) = wi1i2wi2i3 · · ·wir−1ir . Furthermore, let
w(vi, vj) = wij, vi, vj ∈ V (G), and let w(e) = w(vi, vj), e = (vi, vj) ∈ D(G).

Let Γ a finite group and α : D(G) −→ Γ an ordinary voltage assignment. Furthermore,
let ρ be a representation of Γ and d its degree. For each path P = (v1, · · · , vr) of G, let
α(P ) = α(v1, v2)α(v2, v3) · · · α(vr−1, vr). This is called the net voltage of P . Then the
weighted L-function of G associated to ρ and α is defined by

Z(u, ρ, α, w) = ZG(u, ρ, α, w) =
∏

[C]

det(Id − ρ(α(C))w(C)u|C|)−1,
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where [C] runs over all equivalence classes of prime, reduced cycles of G.
If ρ = 1 is the identity representation of Γ, then the weighted L-function of G associ-

ated to 1 and α is the (vertex) weighted zeta function of G:

ZG(w, u) =
∏

[C]

(1 − w(C)u|C|)−1,

where [C] runs over all equivalence classes of prime, reduced cycles of G(see [11]). If
w(vi, vj) = 1 for each (vi, vj) ∈ D(G), then the weighted zeta function of G is the (Ihara)
zeta function of G.

Mizuno and Sato [11] presented a determinant expression for the weighted zeta function
and the weighted L-function of a graph G.

Let W = W(G) be a weighted matrix of G.
The Kronecker product A

⊗

B of square matrices A and B is considered as the matrix
A having the element aij replaced by the matrix aijB.

Theorem 1 (Mizuno and Sato) Let G be a connected graph with n vertices and m
edges, Γ a finite group and α : D(G) −→ Γ an ordinary voltage assignment. Furthermore,
let ρ be a representation of Γ, and d the degree of ρ. Suppose that Gα is connected. Then
the reciprocal of the weighted L-function of G associated to ρ and α is

ZG(u, ρ, α, w)−1 = (1 − u2)(m−n)d det(Idn − u(
∑

g∈Γ

ρ(g)
⊗

Wg) + u2(d ◦ Q)),

where the matrix Wg = (w(g)
uv )u,v∈V (G) is given by

w(g)
uv =

{

w(u, v) if (u, v) ∈ D(G) and α(u, v) = g,
0 otherwise,

and Q = D − I, d ◦ Q = Id
⊗

Q.
Specially, in the case of ρ = 1, the reciprocal of the weighted zeta function of G is

given by
ZG(w, u)−1 = (1 − u2)m−n det(I − uW(G) + u2Q).

Mizuno and Sato [11] showed that the weighted zeta function of a regular covering of
G is a product of weighted L-functions of G. We are interested in factorizing the weighted
zeta function of an irregular covering of a graph by its weighted L-functions. In this paper,
we prove the following theorem.

Main Theorem 1 Let G be a connected graph, Sn the symmetric group on N = {1, 2, . . .,
n}, α : D(G) −→ Sn a permutation voltage assignment and W = W(G) a weighted matrix
of G. Then the weighted zeta function of Gα is given by

ZGα(w̃, u) =
∏

ρ

ZG(u, ρ, α, w)mρ,

where ρ runs over all inequivalent irreducible representations of Γ =< {α(u, v) | (u, v) ∈
D(G)} >, and mρ is the multiplicity of ρ in the permutation representation of Γ.
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Furthermore, we express the weighted zeta function of an (irregular or regular) covering
of a graph in the Euler product in terms of equivalence classes of prime, reduced cycles
of the base graph(c.f., [12]).

In the case that Γ = {1,−1, } is the cyclic group of order 2, the ordinary voltage
graph (G, w) for an ordinary voltage assignment w : D(G) −→ Z2 is a signed graph. A
balanced signed graph is a generalization of a bipartite graph. The factorization of the
weighted zeta function of a covering by equivalence classes of prime, reduced cycles of the
base graph might be used to study the structure of a balanced covering of a signed graph.
Actually, Stark and Terras [16] studied the location of the poles of zeta and L-functions of
graphs, and obtained the following result on the structure of bipartite coverings of graphs.

Theorem 2 (Stark and Terras) Let X be a finite connected graph with rank k ≥ 1
and Y a bipartite covering of X.

1. When X is bipartite, every intermediate covering X̃ to Y/X is bipartite.

2. When X is not bipartite, there is a unique quadratic covering X2 intermediate to
Y/X such that any intermediate covering X̃ to Y/X is bipartite if and only if X̃ is
intermediate to Y/X2.

We present an analogue of Theorem 2 for balanced coverings of signed graphs.
In Section 2, we present a decomposition formula for the weighted zeta function of

an irregular covering of a graph G by weighted L-functions of G. Furthermore, we give
another decomposition formula for the weighted zeta function of an irregular or a regular
covering of a graph G by using equivalence classes of prime, reduced cycles of G. In Section
3, we discuss the structure of balanced coverings of G by using the second decomposition
formula for the weigthed zeta function of a covering of G.

For a general theory of the representation of groups and graph coverings, the reader
is referred to [13] and [5], respectively.

2 Decomposition formulas for weighted zeta func-

tions of graph coverings

Let G be a connected graph, and let N(v) = {w ∈ V (G) | (v, w) ∈ D(G)} denote the
neighbourhood of a vertex v in G. A graph H is called a covering of G with projection
π : H −→ G if there is a surjection π : V (H) −→ V (G) such that π|N(v′) : N(v′) −→ N(v)

is a bijection for all vertices v ∈ V (G) and v′ ∈ π−1(v). The projection π : H −→ G is
an n-fold covering of G if π is n-to-one. When a finite group Π acts on a graph G, the
quotient graph G/Π is a simple graph whose vertices are the Π-orbits on V (G), with two
vertices adjacent in G/Π if and only if some two of their representatives are adjacent in G.
A covering π : H −→ G is said to be regular if there is a subgroup B of the automorphism
group Aut H of H acting freely on H such that the quotient graph H/B is isomorphic
to G.
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Let G be a graph, Γ a finite group and Sn the symmetric group on the set N =
{1, 2, · · · , n}. Then a mapping α : D(G) −→ Sn (α : D(G) −→ Γ) is called a permutation
voltage assignment (an ordinary voltage assignment) if α(v, u) = α(u, v)−1 for each (u, v) ∈
D(G). The pair (G, α) is called a permutation voltage graph (an ordinary voltage graph) for
a permutation voltage assignment (an ordinary voltage assignment) α. The derived graph
Gα of the permutation (ordinary) voltage graph (G, α) is defined as follows: V (Gα) =
V (G)×N (V (Gα) = V (G)× Γ ) and ((u, h), (v, k)) ∈ D(Gα) if and only if (u, v) ∈ D(G)
and k = α(u, v)(h) (k = hα(u, v)). The natural projection πα : Gα −→ G is defined by
πα(u, h) = u. The graph Gα is called a derived graph covering of G with voltages in Sn

(or Γ) or an n-covering (or a Γ-covering) of G. Note that the n-covering (Γ-covering)
Gα is an n-fold (regular) covering of G. Futhermore, every n-fold (regular) covering of a
graph G is an n-covering (Γ-covering) Gα of G for some permutation (ordinary) voltage
assignment α : D(G) −→ Sn (α : D(G) −→ Γ)(see [4,5]).

Let G be a connected graph, Sn the symmetric group on N = {1, 2, · · · , n} (Γ a finite
group) and α : D(G) −→ Sn a permutation voltage assignment (α : D(G) −→ Γ an
ordinary voltage assignment). In the Γ-covering Gα, set vg = (v, g) and eg = (e, g), where
v ∈ V (G), e ∈ D(G), 1 ≤ g ≤ n(g ∈ Γ). For e = (u, v) ∈ D(G), the arc eg emanates from
ug and terminates at vα(e)(g)(vgα(e)). Note that e−1

g = (e−1)α(e)(g) (e−1
g = (e−1)gα(e)).

Let W = W(G) be a weighted matrix of G. Then we define the weighted matrix
W̃ = W(Gα) = (w̃(xg, yh)) of Gα derived from W as follows: w̃(xg, yh) = w(x, y) if
(x, y) ∈ D(G), h = α(x, y)(g)(h = gα(x, y)) and w̃(xg, yh) = 0 otherwise. Furthermore,
let w̃Gα = w̃.

The permutation matrix Pγ = (p
(γ)
ij )1≤i,j≤n of γ ∈ Sn over N is defined as follows:

p
(γ)
ij =

{

1 if γ(i) = j,
0 otherwise.

Let M1 ⊕ · · · ⊕ Ms be the block diagonal sum of square matrices M1, · · · ,Ms. If M1 =
M2 = · · · = Ms = M, then we write s ◦ M = M1 ⊕ · · · ⊕ Ms.

We present a decomposition formula for the weighted zeta function of an irregular
covering of a graph by a product of its weighted L-functions.

Theorem 3 Let G be a connected graph with ν vertices and ε edges, Sn the symmetric
group on N = {1, 2, · · · , n}, α : D(G) −→ Sn a permutation voltage assignment and
W = W(G) a weighted matrix of G. Let Γ =< {α(u, v) | (u, v) ∈ D(G)} > be the
subgroup of Sn generated by {α(u, v) | (u, v) ∈ D(G)}. Furthermore, let ρ1 = 1, ρ2, · · · , ρk

be the irreducible representations of Γ, and fi the degree of ρi for each i, where f1 = 1.
Let P : Γ −→ GL(n,C) be the permutation representation of Γ such that P (γ) = Pγ

for γ ∈ Γ. Suppose that Gα is connected, and mi is the multiplicity of ρi in P for each
i = 1, · · · , k, that is, P is equivalent to a representation 1⊕m2 ◦ ρ2 ⊕ · · ·⊕mk ◦ ρk. Then
the weighted zeta function of Gα is

ZGα(w̃, u) =
k

∏

i=1

ZG(u, ρi, α, w)mi
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Proof . Let V (G) = {v1, · · · , vν}. Arrange arcs of Gα in m blocks: (v1, 1), · · · , (vν, 1);
(v1, 2), · · · , (vν, 2); · · · ; (v1, n), · · · , (vν, n). We consider the weighted matrix W(Gα) under
this order.

Let γ ∈ Γ. Suppose that p
(γ)
ij = 1, i.e., j = γ(i). If (u, v) ∈ D(G) and α(u, v) = γ,

then j = α(u, v)(i) = γ(i), i.e., ((u, i), (v, j)) ∈ D(Gα) Thus we have

W(Gα) =
∑

γ∈Γ

Pγ

⊗

Wγ,

where the matrix Wγ = (w(γ)
uv )u,v∈V (G) is given as follows: w(γ)

uv = w(u, v) if (u, v) ∈ D(G)
and α(u, v) = γ, and w(γ)

uv = 0 otherwise.
Let P : Γ −→ GL(n,C) be the permutation representation of Γ such that P (γ) = Pγ.

Then there exists a nonsingular matrix P such that P−1P (γ)P = (1)⊕m2 ◦ ρ2(γ)⊕ · · ·⊕
mk ◦ ρk(γ) for each γ ∈ Γ(see [13]). Putting B = (P−1 ⊗

Iν)W(Gα)(P
⊗

Iν), we have

B =
∑

γ∈Γ

{(1) ⊕ m2 ◦ ρ2(γ) ⊕ · · · ⊕ mk ◦ ρk(γ)}
⊗

Wγ.

Note that W(G) =
∑

γ∈Γ Wγ and 1 + m2f2 + · · ·+ mkfk = n. Therefore it follows that

ZGα(w̃, u)−1 = (1 − u2)(ε−ν)n det(Iνn − uW(Gα) + (In

⊗

(D − Iν)u
2))

= (1 − u2)ε−ν det(Iν − uW(G) + (D − Iν)u
2)

×
k

∏

i=2

{(1 − u2)(ε−ν)fi det(Iνfi
− u

∑

γ∈Γ

ρi(γ)
⊗

Wγ + u2(Ifi

⊗

(D − Iν))}
mi.

By Theorem 1, the result follows. Q.E.D.
If α(e), e ∈ D(G) is considered as a permutation of SΓ by the right multiplication

α(e)(g) = gα(e), g ∈ Γ, then the Γ-covering Gα of G is considered as a | Γ |-covering of
G. The group {α(e) ∈ SΓ | e ∈ D(G)} coincides with Γ. Furthermore, the permutation
representation P : Γ → GL(| Γ |,C) of Γ is the right regular representation of Γ. If
ρ1 = 1, ρ2, · · · , ρk are inequivalent irreducible representations of Γ, then the multiplicity
mi of ρi for P is equal to its degree fi for each i = 1, · · · , k.

Then we obtain a decomposition formula for the weighted zeta function of a regular
covering of a graph by Mizuno and Sato [11].

Corollary 1 (Mizuno and Sato) Let G be a connected graph, Γ a finite group, α :
D(G) −→ Γ an ordinary voltage assignment and W = W(G) a weighted matrix of G.
Suppose that the Γ-covering Gα of G is connected. Then we have

ZGα(w̃, u) =
∏

ρ

ZG(u, ρ, α, w)deg ρ,

where ρ runs over all inequivalent irreducible representations of Γ.
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Let η be a permutation in the symmetric group Sn. Any permutation has a unique
decomposition as a product of disjoint cyclic permutations. For j = 1, · · · , n, let cj denote
the number of j-cycles (cyclic permutations with length j) in the decomposition of η. Then
(c1, · · · , cn) is called the cycle structure of η.

Theorem 4 Let G be a connected graph, N = {1, 2, · · · , n} and α : D(G) −→ Sn a
permutation voltage assignment. Let W = W(G) be a weighted matrix of G. Then the
reciprocal of the weighted zeta function of Gα is

ZGα(w̃, u)−1 =
∏

[C]

n
∏

j=1

(1 − w(C)ju|C|j)cj ,

where [C] runs over all equivalence classes of prime, reduced cycles of G, and (c1, · · · , cn)
is the cycle structure of α(C).

Proof. Let C be any prime, reduced cycle of Gα and π(C) = Ck
0 , where C0 is a prime,

reduced cycle of G and π : Gα −→ G is the natural projection. Let (c1, · · · , cn) be the
cycle structure of α(C0). By [5, Theorem 2.4.3], the preimage π−1(C0) of C0 in Gα is the
union of cj disjoint cycles with length j | C0 | for each j = 1, · · · , n, and so k = j for some
j such that cj 6= 0. Therefore, it follows that

ZGα(w̃, u)−1 =
∏

[C0]

n
∏

j=1

(1 − w(C0)
ju|C|j)cj ,

where [C0] runs over all equivalence classes of prime, reduced cycles of G. Q.E.D.
Let wij = 1 unless wij = 0. Then we obtain the following result.

Corollary 2 Let G be a connected graph, N = {1, 2, · · · , n} and α : D(G) −→ Sn a
permutation voltage assignment. Let W = W(G) be a weighted matrix of G. Then the
reciprocal of the zeta function of Gα is

Z(Gα, u)−1 =
∏

[C]

n
∏

j=1

(1 − u|C|j)cj ,

where [C] runs over all equivalence classes of prime, reduced cycles of G.

We denote the order of an element g of a finite group Γ by ord(g). A similar result to
Theorem 4 for a regular covering of a graph is given as follows:

Theorem 5 Let G be a connected graph, Γ a finite group with n elements, and α :
D(G) −→ Γ an ordinary voltage assignment. Let W = W(G) be a weighted matrix of G.
Then the reciprocal of the weighted zeta function of Gα is

ZGα(w̃, u)−1 =
∏

[C]

(1 − w(C)ord(α(C))u|C|ord(α(C)))n/ord(α(C)),

where [C] runs over all equivalence classes of prime, reduced cycles of G.
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Proof. Let C be any prime, reduced cycle of Gα and π(C) = Ck
0 , where C0 is a prime,

reduced cycle of G and π : Gα −→ G is the natural projection. Let m = ord(α(C0)). By
[5, Theorem 2.1.3], the preimage π−1(C0) of C0 in Gα is the union of n/m disjoint cycles
with length m | C0 |, and so k = m. Therefore, it follows that

ZGα(w̃, u)−1 =
∏

[C0]

(1 − w(C0)
ord(α(C0))u|C0|ord(α(C0)))n/ord(α(C0)),

where [C0] runs over all equivalence classes of prime, reduced cycles of G. Q.E.D.
Let wij = 1 unless wij = 0. Then we obtain a disconnected version of Theorem 1 in

[12].

Corollary 3 (Sato) Let G be a connected graph, Γ a finite group with n elements, and
α : D(G) −→ Γ an ordinary voltage assignment. Then the reciprocal of the zeta function
of Gα is

Z(Gα, u)−1 =
∏

[C]

(1 − u|C|ord(α(C)))n/ord(α(C)),

where [C] runs over all equivalence classes of prime, reduced cycles of G.

3 An application of weighted zeta functions of graphs

We give another notation of a path of a graph G. Let P = (v0, v1, · · · , vn−1, vn) =
(e1, · · · , en) be a path of length n in G, where ei = (vi−1, vi) for i = 1, · · · , n. Then
we also write P = (v0, e1, v1, e2, v2, · · · , vn−1, en, vn). Furthermore, v0, v1, · · · , vn−1, vn are
called vertices of P . A cycle C = (v0, e1, v1, · · · , vn−1, en, vn) (v0 = vn) is called essential
if all vertices of C except v0, vn are distinct. An essential cycle is the same as a cycle in
standard books on graph theory. Note that any essential cycle is a prime, reduced cycle,
and any prime, reduced cycle is a union of disjoint essential cycles.

Let G be a connected graph and w : D(G) −→ Z2 = {±1} a function such that
w(e−1) = w(e) for any e ∈ D(G). Then the pair (G, w) is called a signed graph and w is
called a sign of G(see [6]). An arc e is called positive(negative) if w(e) = 1(w(e) = −1).
For a path P = (e1, · · · , en) of G, the sign w(P ) of P is defined as follows:

w(P ) = w(e1) · · ·w(en).

A signed graph (G, w) is balanced if w(C) = 1 for any essential cycle C of G. Otherwise
(G, w) is called unbalanced. Note that a signed graph (G, w) is balanced if w(C) = 1 for
any prime, reduced cycle C of G.

Harary [6] gave a characterization for a signed graph to be balanced.

Theorem 6 (Harary) Let G be a connected graph and w : D(G) −→ Z2 = {±1} a sign.
Then the following two conditions are equivalent:

1. A signed graph (G, w) is balanced.
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2. Its vertex set can be divided into two sets (possibly empty), X and Y , so that each
edge between the sets is negative and each edge within a set is positive.

For a signed graph (G, w), we can consider the weighted zeta function ZG(w, u) of G
associated with w. The following result is clear.

Proposition 1 Let G be a connected graph and w : D(G) −→ Z2 = {±1} a sign. If a
signed graph (G, w) is balanced, then the weighted zeta funtion of G associated with w is
equal to the (Ihara) zeta function of G: ZG(w, u) = Z(G, u).

We do not know whether the converse of Proposition 1 holds. By the definition of
balanced signed graphs, it is clear that a signed graph (G, w) is balanced if and only if
W(G) = SA(G)S−1 for some diagonal matrix S = (sij), where sii = ±1 for each i.

By Bass’ Theorem and Theorem 1, we propose the following conjecture.

Conjecture 1 Let (G, w) be a signed graph. Suppose that Gw is connected. If

det(I − uA(G) + u2Q) = det(I − uW(G) + u2Q),

then (G, w) is balanced.

Since a sign w : D(G) −→ Z2 is an ordinary voltage assignment, Gw is a Z2-covering
of G. By Corollary 2 of [5, Theorem 2.5.1], Gw is connected if and only if the local voltage
group Z2(x) at a fixed vertex x of G is equal to Z2, where Z2(x) is defined as the set of
net voltages w(C) on x-cycles C in G(see [5]). Thus, Gw is connected if and only if there
exists a cycle C such that w(C) = −1.

Now, let (G, w) be a signed graph of G and π : H −→ G a finite covering of G. Then
we define the sign w̃H : D(H) −→ {±1} of H derived from w as follows:

w̃H(ẽ) = w(e) if ẽ ∈ π−1(e), e ∈ D(G).

We denote the minimum degree of G by δ(G).

Theorem 7 Let G be a connected graph with δ(G) ≥ 2, w : D(G) −→ Z2 = {±1} a sign
and π : H −→ G any finite covering of G. Then the following two results hold:

1. A signed graph (H, w̃H) is balanced if (G, w) is balanced.

2. In the case that (G, w) is unbalanced and (H, w̃H) is balanced, there exists a unique
quadratic covering G2 of G such that (K, w̃K) is balanced for any intermediate cov-
ering K to H/G if and only if K is intermediate covering to H/G2.

Proof. 1: If G is blanced, then the partition V (G) = V1 ∪ V2 lifts a partition of H so
H is balanced.

2: At first, we consider the double covering Gw of G. By Theorem 5, we have

ZG(w, u)−1 =
∏

[C]

(1 − w(C)ord(w(C))u|C|ord(w(C)))2/ord(w(C)),
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where [C] runs over all equivalence classes of prime, reduced cycles of G. If w(C) = −1,
then ord(w(C)) = 2, and so w(C)ord(w(C)) = 1. Thus, (Gw, w̃Gw) is balanced. Futhermore,
a partition of V (Gw) satisfying the condition of Theorem 6 is given as follows:

V1 = {v1 = (v, 1) | v ∈ V (G)} and V2 = {v−1 = (v,−1) | v ∈ V (G)}.

Now, let V (H) = Ṽ1∪ Ṽ2 be a partition of V (H) satisfying the condition of Theorem 6.
Let H be an n-fold covering of G. Since any regular n-fold covering is an n-fold covering,
we assume that H is irregular. Then there exists a permutation voltage assignment
α : D(G) −→ Sn such that H = Gα. By Theorem 4 and Corollary 2, we have

∏

[C]

n
∏

j=1

(1 − w(C)ju|C|j)cj =
∏

[C]

n
∏

j=1

(1 − u|C|j)cj ,

where [C] runs over all equivalence classes of prime, reduced cycles of G, and (c1, · · · , cn)
is the cycle structure of α(C).

Let C be any prime, reduced cycle of G such that W (C) = −1. Then j is even if
cj 6= 0 (1 ≤ j ≤ n). By [5, Theorem 2.4.3], every lift of C( component of π−1(C)) in H is
a prime, reduced cycle of length which is even times | C |. Note that n is even.

Now, we choose a particular vertex x such that w(e) = −1 for some arc e with o(e) = x,
and then consider a path from x to any vertex z in G. Let C = (e1, e2, · · · , em) be a x-cycle
of G such that w(e1) = −1, where e1 = (x, y). For any j = 1, · · · , n, let C̃xj

be a lift of
C in H which is a xj-cycle. Since each lift of C has length even times | C |, we can let
| C̃xj

|= 2k | C |. Then we have

C̃xj
= (xj, yα(e1)(j), · · · , xα(C)(j), · · · , xα2(C)(j), · · · , xα2k−1(C)(j), · · · , xj).

Now, let xj ∈ Ṽ1 and P = (xj, yα(e1)(j), · · · , xα(C)(j)) the subpath of C̃xj
with length

| C |. Since w(C) = −1, C has odd negative arcs in G, and so P has odd negative arcs in
H. Thus, we have xα(C)(j) ∈ Ṽ2. Since | C̃xj

|= 2k | C |, we have

| Ṽ1 ∩ {xj, xα(C)(j), · · · , xα2k−1(C)(j)} |=| Ṽ2 ∩ {xj, xα(C)(j), · · · , xα2k−1(C)(j)} | .

Therefore, it follows that

| Ṽ1 ∩ π−1(x) |=| Ṽ2 ∩ π−1(x) | .

Next, let z 6= x be any vertex of G. Since G is connected, there is a shortest (x, z)-path
Q = (x, · · · , z) in G. By [5, Theorem 2.4.1], there are exactly n lifts Q̃x1

, · · · , Q̃xn
such

that Q̃xj
is a (xj, zα(Q)(j))-path for each j = 1, · · · , n.

The path Q has either even or odd negative arcs in G. In either case, we have

| Ṽ1 ∩ π−1(z) |=| Ṽ2 ∩ π−1(z) | .

Therefore, it follows that

| Ṽ1 ∩ π−1(v) |=| Ṽ2 ∩ π−1(v) | (1)
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for any v ∈ V (G).
Now, we construct a covering projection π2 : H −→ G2. We project all vertices of

Ṽ1 ∩ π−1(v) and Ṽ2 ∩ π−1(v) to a vertex v1 and v−1 of G2, respectively.
Let e = (x, y) ∈ D(G) such that w(e) = −1. By the above fact (1), there are n/2 arcs

ẽ1, · · · , ẽn/2 from Ṽ1 to Ṽ2 and n/2 arcs ẽn/2+1, · · · , ẽn from from Ṽ2 to Ṽ1 as lifts of e in
H, where H is an n-fold covering of G. Then, let

π2(ẽj) =

{

ex1
= (x1, y−1) if j = 1, · · · , n/2,

ex−1
= (x−1, y1) if j = n/2 + 1, · · · , n.

Next, we consider an e = (x, y) ∈ D(G) such that w(e) = 1. Then there are n/2 arcs
ẽ1, · · · , ẽn/2 from Ṽ1 to Ṽ1 and n/2 arcs ẽn/2+1, · · · , ẽn from from Ṽ2 to Ṽ2 as lifts of e in
H. Then, let

π2(ẽj) =

{

ex1
= (x1, y1) if j = 1, · · · , n/2,

ex−1
= (x−1, y−1) if j = n/2 + 1, · · · , n.

Therefore, it follows that π2 is a covering projection from H to G2.
Let K be any intermediate covering to H/G such that (K, w̃K) is balanced. Then K

is a covering of G2, and so is an intermediate covering to H/G2.
Conversely, let K be an intermediate covering to H/G2. Then, by 1, (K, w̃K) is

balanced, and K is intermediate to H/G. Q.E.D.
If (G, w) is balanced and w−1(1) = φ(the empty set), then G is a bipartite graph with

partite sets V1, V2, where V1∪V2 is a partition of V (G) satisfying the condition of Theorem
6. By Theorem 7, we obtain the simple graph version of Theorem 4 in Stark and Terras
[16].

Corollary 4 Let G be a simple connected graph with δ(G) ≥ 2. Suppose that H is a
connected bipartite covering of G. Then we have the following facts:

1. When G is bipartite, every intermediate covering G̃ to H/G is bipartite.

2. When G is not bipartite, there is a unique quadratic covering G2 intermediate to
H/G such that any intermediate covering G̃ to H/G is bipartite if and only if G̃ is
intermediate to H/G2.
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