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Abstract

We investigate the existence of edge-magic labellings of countably infinite graphs

by abelian groups. We show for that for a large class of abelian groups, including the

integers Z, there is such a labelling whenever the graph has an infinite set of disjoint

edges. A graph without an infinite set of disjoint edges must be some subgraph of

H + I, where H is some finite graph and I is a countable set of isolated vertices.

Using power series of rational functions, we show that any edge-magic Z-labelling

of H + I has almost all vertex labels making up pairs of half-modulus classes. We

also classify all possible edge-magic Z-labellings of H +I under the assumption that

the vertices of the finite graph are labelled consecutively.

1 Introduction.

By countable we mean countably infinite. Our graphs have no loops and no multiple edges.
The vertex set is non-empty and is denoted V . The edge set E is a (possibly empty) set of
unordered pairs of vertices. An edge {x, y} is usually denoted xy (or yx). The set V ∪ E
is the set of graph elements. When we say a graph is countable we mean that the set of
graph elements is countable, and hence that the vertex set is countable and the edge set
is finite or countable.
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In this paper the group A is always a countable abelian group. Since we are often
considering the integers, Z, it is convenient to consider our groups additively. For a
countable graph G, an A-labelling of G, or a labelling of G over A, is a bijection from
V ∪ E to A. For any group, and any graph (finite or infinite) an injective labelling is an
injection from the set of graph elements to the group.

Let λ be a labelling of G over a group A. Then λ defines a weight ω = ωλ on the edges.
For xy ∈ E, the weight is the sum of the label of xy and the labels of x and y. That is,

ω(xy) = λ(x) + λ(xy) + λ(y).

The labelling λ is an edge-magic A-labelling of G if there is an element k of A such that
for every xy ∈ E, ω(xy) = k. The element k is the edge constant.

There are many different types of graph labellings which have been considered in
recent years. Some are labelling the vertices, some the edges, and some, like those we are
considering, are total labellings of all the graph elements. A detailed survey of many types
of graph labellings can be found in the dynamic survey by Gallian [4]. The set of labels is
commonly a subset of the integers, and a labelling can be used to define a weight on the
edges (or the vertices). A magic labelling of a finite graph with v vertices and e edges is a
total labelling of the graph by the integers 1, 2, 3, . . . , v + e with constant edge (or vertex)
weights. There is an extensive list of references about magic labellings of finite graphs in
the book on Magic Graphs by Wallis [7]. Combe, Nelson and Palmer [2] generalised this
to magic labellings of finite graphs, where the labels are the elements of an abelian group.
This was extended to labellings of countably infinite graphs by countably infinite abelian
groups by Beardon [1] and Combe and Nelson [3].

We are interested in this paper in edge-magic labellings of countable graphs by count-
able groups, and our emphasis is mainly on Z-labellings. We are concerned with deter-
mining which graphs have labellings over which groups, what are the possible values of the
magic constant, and also, since a total labelling of a graph partitions the group elements
into vertex-labels and edge-labels, we are interested in properties of these partitions.

We denote by I the countable empty graph (a countable set of isolated vertices), by
Kn the complete graph with n vertices, by Pn the finite path of length n and by Tn the
star with n rays. If H and K are graphs, we denote by H +K the join which is the graph
which can be constructed by taking a copy of H and a copy of K (with no vertices in
common) and adding all edges {hk : h ∈ H, k ∈ K}.

When a countable graph has an infinite set of independent edges, or has only finitely
many edges, we show that there exists an edge-magic labelling over any countable sub-
group of the additive real numbers (for example, the integers). A countable graph which
does not contain an infinite set of independent edges is equal to a subgraph of H + I
where H is some finite graph (see Lemma 6). We call the graph H + I an H-burr and
examine some examples for small H in Section 3. In Section 4 we show that any an edge-
magic Z-labelling of an H-burr has almost all vertex labels lying in half-modulus classes
(increasing or decreasing arithmetic progressions). In Section 5 we find exact necessary
and sufficient conditions for an edge-magic Z-labelling of an H-burr to exist for which the
vertices of H are labelled with consecutive integers.
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2 Edge-magic labellings over Z and other groups.

For a wide variety of countable graphs there are many edge-magic Z-labellings, for example
when there is an infinite set of mutually disjoint edges.

Theorem 1. Let G be countable graph with an infinite set of mutually disjoint edges.
Then, for any k ∈ Z, there is an edge-magic Z-labelling of G with edge constant k.

Proof. Let G be countable graph which has an infinite set of mutually disjoint edges and
let k ∈ Z. Fix a listing of the integers, Z = {z1, z2, . . . }. Fix a listing of the vertices,
V = {v1, v2, . . . }. Let e1, e2, . . . be an infinite sequence of mutually disjoint edges. Then
for each i, ei = vαi

vβi
, where αi < βi, and we define define Gi to be the (finite) subgraph

of G induced by the vertices {v1, v2, . . . , vβi
}.

Step 1: Take the first edge, e1 = vα1
, vβ1

.
We define an injective map from the integers to the graph elements of G1 which has a

constant edge weight of k. Choose a ∈ Z, a 6= 0,±k. Map e1 7→ k, vα1
7→ a and vβ1

7→ −a.
If β1 > 2 then there are β1 − 2 vertices in G1 which are yet to be labelled. (Our plan is to
label them with positive integers which are very much larger than any integer which has
previously been used as a label. We choose labels for the vertices which are successively
much larger than each other, so that they are distinct and so that the labels forced on any
edges between them are all distinct.) Set m = 2 + |k| + |a| + | − a|. Label the vβ1

− 2

vertices by the first vβ1
− 2 terms of the sequence 2m, 22m

, 222
m

. . . . All vertices of G1 are
now labelled. If there is any edge in G1 which is as yet unlabelled, label it with the unique
integer which gives a constant edge weight of k. Observe that any integers which arise as
edge labels are distinct from any labels already used, and that no two edges can require
the same label.

Step 2: Let L denote the set of integers which have been used as labels so far. Take
the first unlabelled edge in the sequence of mutually disjoint edges, ej, say. Then we have
ej = vαj

, vβj
. We extend the injective Z-labelling of G1 to an injective Z-labelling of Gj

which defines a constant edge weight of k. Let bj ∈ Z, bj /∈ L, be the first integer in the
list which has not been used as a label. Map ej 7→ bj. Set mj = 2 + |bj| +

∑

l∈L
|l|. Map

vαj
7→ 2mj and vβj

7→ k − bj − 2mj . Now if vβj
> 2 + vβ1

then there are vβj
− vβ1

− 2
vertices in Gj which are yet to be labelled. Label these by the first vβj

− vβ1
− 2 terms of

the sequence 22
mj

, 222
mj

, . . . .
All vertices of Gj are now labelled. Label any edges in Gj which were not in G1 with

the unique integer which gives a constant edge weight of k.
How can we be sure that this is an injective labelling of Gj? To see this, set M =

{2mj , 22
mj

, 222
mj

, . . . }. Vertices are labelled with distinct elements of L∪{k−bj−2mj}∪M,
where mj >> |l| for any l ∈ L (including k ∈ L). The labels on the additional edges in
Gj are all of the form of one of the following:

k − x − y, x ∈ L, y ∈ M,

k − y − z, y, z ∈ M, y 6= z,
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2mj + bj − x, x ∈ L,

2mj + bj − y, y ∈ M, y 6= 2mj .

Note that for distinct x ∈ L and y, z ∈ M, these integers are distinct and are distinct
from any of the vertex labels. Therefore this is an injective Z-labelling of Gj which defines
a constant edge weight of k.

Step n+1: Let L denote the set of integers which have been used as labels so far.
Take the next as-yet-unlabelled edge in the sequence of mutually disjoint edges. In the
same manner as above extend the injective Z-labelling.

Note that by step n the vertices v1, v2, . . . vn have been labelled and the integers
z1, z2, . . . zn have been used as labels. Therefore, this recursively defines an edge-magic
Z-labelling of G which has constant edge weight of k.

In the proof above we could have had labels over the rational numbers, Q, or any
countable subgroup of the real numbers which included the number 2. Only a small
modification of the proof is required for any countable subgroup of real numbers which
does not include 2. For let g be an element of the group such that g ≥ 2. In the
definition of m and mj, replace 2 with g, and replace the various expressions of the form

2m, 22m

, 222
m

, . . . 2mj , 22
mj

, 222
mj

, . . . with gm, ggm

, gggm

, . . . gmj , gg
mj

, ggg
mj

, . . . Therefore
it follows that:

Theorem 2. Let G be countable graph which has an infinite set of mutually disjoint edges
and let A be isomorphic to a countable subgroup of the additive real numbers. Let k ∈ A.
Then there is an edge-magic A-labelling of G which has edge constant k.

Note this includes any A which is a direct sum of a finite or countably many copies of
Z or Q, and more generally any countable torsion-free abelian group.

It is not the case that every countable graph which has an infinite set of mutually dis-
joint edges will necessarily have edge-magic labellings over an arbitrary countable group.
For example the graph which consists precisely of an infinite set of mutually disjoint edges
does not have any isolated vertices and the following result shows that it does not have
edge-magic labellings over all countable groups.

Theorem 3. Let G be a countable graph with no isolated vertices and let A be a countable
group with 2A = {0}, then there are no edge-magic A-labellings of G.

Proof. Suppose there is an edge-magic A-labelling of G which has edge constant k. For
each edge, we obtain an equation a+ b+ c = k, where a, b and c are (necessarily distinct)
labels on the edge and its two end vertices. For at least one edge, one of these labels (say
c) must equal k, so that a + b + k = k. But, for this group, this means a = b, which is a
contradiction. Hence there are no edge-magic A-labellings of G.
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3 Edge-magic Z-labellings of H-burrs.

Definition 4. A countable graph G is called a burr if it does not have an infinite set of
mutually disjoint edges.

For example, if G has only finitely many edges, then G is a burr.

Theorem 5. If a countable graph G has only finitely many edges, and A is isomorphic
to a countable subgroup of the additive real numbers, then, for any k ∈ A, there is an
edge-magic A-labelling of G which has edge constant k.

Proof. In this case the edges involve only a finite set of the vertices, v1, v2, . . . , vN , say,
and there are infinitely many isolated vertices. Here we can use a similar argument to
that in Theorem 1. Label v1, v2, . . . , vN with successively larger group elments, so that
the labels forced on any edges are all distinct. Finally, label isolated vertices with the
remaining group elements.

More generally, burrs can be characterised as follows:

Lemma 6. Suppose that G is a burr. Then there is finite subgraph H (possibly not unique)
of G such that all the edges of the graph have at least one vertex in H. That is, for some
finite graph H, G is (isomorphic to) a subgraph of H + I.

Proof. Take a maximal set of disjoint edges of G. Let V be the set of vertices incident to
these edges and let H be the subgraph induced by V .

Definition 7. Suppose that G is a burr with a finite subgraph, H say, such that all
vertices outside H have edges to all vertices inside H and there are no edges between
any vertices outside H. Then we say G is an H-burr. Clearly a countable graph G is an
H-burr if (and only if) it has a finite subgraph H such that G ∼= H + I.

For the remainder of the paper we are particularly interested in edge-magic Z-labellings
of H-burrs. We often use the following lemma from [3]:

Lemma 8. Let G be a countable graph with an edge-magic Z-labelling, then

(i) There is an edge-magic Z-labelling of G with edge constant k = 0 or 1.

(ii) If G has an edge-magic Z-labelling with edge constant k = 0, then G has an edge-
magic Z-labelling with constant k for all k ≡ 0 mod 3.

(iii) If G has an edge-magic Z-labelling with constant k = 1, then G has an edge-magic
Z-labelling with edge constant k for any k 6≡ 0 mod 3.
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3.1 Some examples: Pn-burrs and Kn-burrs.

Example 9. A P0-burr is just a countable star. From [3], when G is a P0-burr, then

(i) G has an edge-magic Z-labelling with constant k if and only if k ≡ 0 mod 3.

(ii) G has no edge-magic labellings over a group containing an element of order 2.

Example 10. Let G be a P1-burr. Then for each k ∈ Z then there is an edge-magic Z-
labelling of G with edge constant k. We can assume that V = {u, v, v1, v2, . . . } and E =
{uv, uv1, vv1, uv2, vv2, . . . }. It is sufficient to find edge-magic labellings with constants 0
and 1. In each case we choose integers to label the elements of P1 and extend this to a
labelling of the P1-burr.

(i) k = 0. Define λ(u) = 1, λ(v) = −1, λ(uv) = 0. This can be extended in only one way
to an edge-magic Z-labelling of G with constant k = 0. For each i ≥ 1, λ(v2i−1) =
−3i, λ(v2i−1u) = 3i − 1, λ(v2i−1v) = 3i + 1, λ(v2i) = 3i, λ(v2i−1u) = −3i − 1 and
λ(v2iv) = −3i + 1. Note that for i = 1, 2, . . . , the set of labels on the vertices
{u, v, vi, . . . v2i} and all edges connecting them in G is the set {0,±1,±2, . . . ,±3i}.
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Figure 1: The P1-burr

The labels of the vertices are

{±1} ∪ {z | z < 0, z ≡ 0 mod 3} ∪ {z | z > 0, z ≡ 0 mod 3}.

This is a union of a finite set and two “half-modulus classes mod 3”.
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Another solution is to define λ(u) = 0, λ(v) = −1, λ(uv) = 1. Then there is exactly
of one way of extending this to an edge-magic Z-labelling of G with constant k = 0.
In this case the vertex labels are

{0, 1} ∪ {z | z 6= −1, z ≡ 2 mod 3}.

(ii) k = 1. Define λ(u) = −1, λ(v) = 2, λ(uv) = 0. There is only one way to extend this
to an edge-magic Z-labelling with k = 1: for i = 0, 1, 2, . . .

λ(v6i+1) = −2 − 9i, λ(v6i+1u) = 9i + 4, λ(v6i+1v) = 9i + 1,

λ(v6i+2) = −4 − 9i, λ(v6i+2u) = 9i + 6, λ(v6i+2v) = 9i + 3,

λ(v6i+3) = 5 + 9i, λ(v6i+3u) = −9i − 3, λ(v6i+3v) = −9i − 6

λ(v6i+4) = 7 + 9i, λ(v6i+4u) = −9i − 5, λ(v6i+4v) = −9i − 8,

λ(v6i+5) = 9 + 9i, λ(v6i+5u) = −9i − 7, λ(v6i+5v) = −9i − 10,

λ(v6i+6) = −9 − 9i λ(v6i+6u) = 9i + 11, λ(v6i+6v) = 9i + 8.

It is straightforward to verify that λ is injective. For i = 1, 2, . . . , the set of labels on
the vertices {u, v, v1, . . . v6i} and all edges connecting them in the graph G is the set
{−(9i + 1), 9i + 2} ∪ {0,±1± 2,±3, . . . ,±9i}. So λ is a surjection. It is immediate
that λ defines a constant edge weight of 1. Note that the integers which are labels
of the vertices are

{−1, 2} ∪ {z | z ≡ 7 mod 9} ∪ {z | z ≡ 5 mod 9} ∪ {z | z 6= 0, z ≡ 0 mod 9}.

Another solution is to define λ(u) = 0, λ(v) = 2, λ(uv) = −1. Then there is exactly
one way to extend this to an an edge-magic Z-labelling of G. In this case the vertex
labels are

{0, 2} ∪ {z | z ≡ 4 mod 6} ∪ {z | z 6= −1, z ≡ 5 mod 6}.

Note the choice of initial injective labelling of P1 with constant edge weight is crucial.
Suppose we begin begin by defining λ(u) = 0, λ(v) = −1, λ(uv) = 2. Then there is no
way to extend this to an edge-magic Z-labelling of G, for the label 1 can not be used.

Example 11. Let G be P2-burr. Then, for any k ∈ Z, there is an edge-magic Z-labelling
of G which has edge constant k.

Proof. Let G be a P2-burr, then we can assume that V = {u, v, w, v1, v2, v3, . . . } and
E = {uv, vw, uv1, vv1, wv1, uv2, vv2, wv2, . . . }. It is sufficient to find edge-magic labellings
with constants 0 and 1. It is straightforward to show that the following define appropriate
edge-magic labellings.
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(i) k = 0.
Define λ(u) = 2, λ(v) = 0, λ(w) = 1, λ(uv) = −2, λ(vw) = −1.
For i = 0, 1, 2, . . . , define λ(v2i−1) = 3 + 4i and λ(v2i) = −6 − 4i.
Label the edges to give a constant edge weight of k = 0.

(ii) k = 1.
Define λ(u) = 1, λ(v) = 2, λ(w) = −1, λ(uv) = −2, λ(vw) = 0.
For i = 1, 2, . . . , define λ(v2i−1) = −4i and λ(v2i) = 1 + 4i.
Label the edges to give a constant edge weight of k = 1.

An edge-magic Z-labelling of P5 + I is given later in Example 48. In general, the
problem of determining an edge-magic Z-labelling of Pn + I and Kn + I for arbitrary n
appears difficult. Even the case K3 + I remains open.

4 Edge-magic integer labellings of H-burrs and half-

modulus classes of vertex labels.

Throughout this section we assume that G is an H-burr. That is, G = H + I for a finite
graph H with m vertices. If m = 1 then G is a countable star. However, stars were dealt
with in [3]. So we are interested here in the case m > 1. We assume that there is an
edge-magic Z-labelling of G. We introduce the following notation:

• HV denotes the set of labels of the Vertices of H.

• HE denotes the set of labels of the Edges of H.

• BE denotes the set of labels of the Edges Between H and I.

• IV denotes the set of labels of the Vertices of I.

Thus HV , HE, BE and IV partition Z, and HE is the only one of the sets which may be
empty. Note that HV determines HE, that HV and IV together determine BE.

Let d be a positive integer. A positive half-modulus class modulo d is the set of terms
of an arithmetic progression with common difference d. Similarly, a negative half-modulus
class modulo d is the set of terms of an arithmetic progression with common difference
−d.

We are motivated in this section by considering the vertex labels which occur in
an edge-magic Z-labelling of G. In Example 10, G = P1 + I, m = 2 and k = 1.
The set of vertex labels is {−1, 2} ∪ {z > 0 | z ≡ 7 mod 9} ∪ {z < 0 | z ≡ 7
mod 9} ∪ {z > 0 | z ≡ 5 mod 9} ∪ {z < 0 | z ≡ 5 mod 9} ∪ {z > 0 | z ≡ 0
mod 9} ∪ {z < 0 | z ≡ 0 mod 9}. Note that if we set µ = 3, then this is a union of a
finite set and 2µ half-modulus classes mod µ × (m + 1).

We use the following result which can be found in Pólya and Szegö [6]:
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Theorem 12. The set of coefficients of a power series expansion of a rational function
is finite if and only if the sequence of coefficients is eventually periodic.

We make the following observation:

Observation 13. If a power series
∑

fnzn has its series of coefficients periodic of period
M for n ≥ K, i.e. fK, fK+1, . . . is periodic of period M , then

∞
∑

n=0

fnzn = f0 + f1z + · · · + fK−1z
K−1 +

zk(fK + fK+1z + . . . fK+M−1z
M−1)

(1 − zM )
.

Our main result in this section is:

Theorem 14. Let G = H + I be an H-burr which is not simply a star. That is m, the
number of vertices in H, is greater than 1. Suppose that there is an edge-magic Z-labelling
of G. Then, for some number µ, the vertex labels of G consist of a finite set and a disjoint
union of µ positive half-modulus classes and µ negative half-modulus classes all modulo
µ(m + 1).

Proof. Our calculations take place in the quotient field Q((z)) of the ring Q[[z]] of formal
power series in z with rational coefficients. For f(z), g(z) ∈ Q((z)), define f(z) ≈ g(z) if
f(z) and g(z) differ by a finite number of terms, that is if f(z) − g(z) ∈ Q[z, z−1], where
Q[z, z−1] denotes the subring of Q((z)) consisting of polynomials over Q in z and z−1.

Suppose that there is an edge-magic Z-labelling of G with edge-magic constant k.
Consider the two power series in Q[[z]] defined using the labels on the vertices of I:

p(z) =
∑

x≥0, x∈IV

zx

and
q(z) =

∑

x≤0, x∈IV

z−x.

Define an element of Q[z, z−1] using the labels on the vertices of H:

a(z) =
∑

a∈HV

za.

In general, for f(z) ∈ Q[z, z−1]), define f̂(z) = f(1/z). In particular

â(z) =
∑

a∈HV

z−a.

Edges which are not in H are edges from H to I. Their labels are the integers of the
form k − a− x, with a ∈ HV and x ∈ IV . Now, k − a− x > 0 for all sufficiently large and
negative x. Therefore,

zkâ(z)q(z) ≈
∑

y≥0, y∈BE

zy.
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Now every sufficiently large positive integer labels either an edge not in H or a vertex not
in H, and hence:

zkâ(z)q(z) + p(z) ≈
∞
∑

n=0

zn =
1

1 − z
. (15)

Similarly, k − a − x is negative for all sufficiently large positive x, hence

z−ka(z)p(z) ≈
∑

y≤0, y∈BE

z−y,

and

z−ka(z)p(z) + q(z) ≈
1

1 − z
. (16)

From these equivalences we have that

zkâ(z)q(z) + p(z) =
1

1 − z
+ r(z) (17)

and

z−ka(z)p(z) + q(z) =
1

1 − z
+ s(z), (18)

where s(z), r(z) ∈ Q[z, z−1].
This system of equations is linear in q and p, with coefficients and right-hand-side

expressions rational functions of z. When the determinant of the system

zkâ(z) 1
1 z−ka(z)

= a(z)â(z) − 1

is non-zero we can solve this system for p(z) and q(z). Now a(z)â(z) = 1 if and only if
a(z) = za for some a ∈ Z, which will not be the case for m > 1. We deduce that, since
the graph H is not a countable star, p(z) and q(z) are rational functions of z.

Since all the coefficients of p(z) and q(z) are either 0 or 1, we can apply Theorem 12
to both series. Therefore, for some positive integers K and M the power series p(z) and
q(z) have their sequence of coefficients periodic of period M for n ≥ K. (Note that we
can choose the same K in both sequences, because if we had different K ′s then the larger
value of K would be appropriate for each sequence, and if we had different M ′s then the
product of them would be an M appropriate for each sequence.)

We now apply Observation 13 to p(z), bearing in mind that the coefficients are each
0 or 1, to deduce that there exist integers

0 ≤ b1 < b2 < b3 < · · · < bµ < M
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such that

p(z) = p0 + p1z + · · · + pK−1z
K−1 + zK

(

zb1 + · · · + zbµ

1 − zM

)

. (19)

The term

zK

(

zb1 + · · ·+ zbµ

1 − zM

)

=

µ
∑

i=1

(

∞
∑

j=0

zK+bi+Mj

)

. (20)

Thus Equation 19 tells us that an integer x ≥ K labels a vertex of I if and only if x belongs
to the union of arithmetic progressions with first term one of b1+K, b2+K, . . . , bµ+K and
common difference M . Note that this is a disjoint union of half-modulus classes because
the integers b1, . . . bµ are distinct modulo M .

Similarly there exist integers

0 ≤ c1 < c2 < c3 < · · · < cν < M

such that

q(z) = q0 + q1z + · · · + qK−1z
K−1 + zK

(

zc1 + · · · + zcν

1 − zM

)

, (21)

which implies that the integers less than or equal to −K which are labels of vertices of I
consist of the negatives of the terms arithmetic progressions with first terms K + c1, K +
c2, · · · , K + cν and common difference M .

To complete the proof of the theorem it remains to show ν = µ and M = µ(m + 1).

From (17) and
1

1 − z
=

1 + z + · · · + zM−1

1 − zM
we deduce

zkâ(z)q(z) + p(z) = r(z) +
1 + z + · · · + zM−1

1 − zM
. (22)

Set
b(z) = zb1 + · · · + zbµ and c(z) = zc1 + · · · + zcν .

From (19) and (21) we deduce (1−zM )p(z) and (1−zM )q(z) are polynomials in z congruent
to zKb(z) and zKc(z) respectively. So if we multiply (22) through by 1 − zM we get an
equation in Q[z, z−1] which we can divide by zK and reduce modulo 1 − zM to deduce

zkâ(z)c(z) + b(z) ≡ 1 + z + · · · + zM−1 mod (1 − zM ).

Similarly from (18) follows

z−ka(z)b(z) + c(z) ≡ 1 + z + · · ·+ zM−1 mod (1 − zM ).

Note that a(1) = â(1) = m, b(1) = µ, c(1) = ν and (1 − zM)z=1 = 0. So putting z = 1
into the two congruences immediately above gives

mν + µ = M,

mµ + ν = M.

Subtracting these equations gives (m − 1)(ν − µ) = 0. Since m 6= 1 by assumption we
deduce ν = µ and M = µ(m + 1) as required.
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5 Extending labellings of H to H-burrs

In this section H is a finite graph with m vertices, m > 1. We suppose that H has an
injective edge-magic Z-labelling, and we derive necessary and sufficient conditions for this
to be extendible to an edge-magic Z-labelling of G = H + I.

For integers a ≤ b let [a, b ] be the set {a, a + 1, · · · , b} consisting of the b − a + 1
integers lying between a and b inclusive. We call such a set an interval of integers. If we
assume HV = [a, b ] then m = b − a + 1. Since m > 1, it follows that b > a.

Theorem 23. Suppose we have an injective edge-magic Z-labelling of a finite graph H
with edge-magic constant k such that HV = [a, b ] with b > a, i.e m = |HV | > 1.

We can extend this to an edge-magic Z-labelling of G = H + I if and only if one of
the following holds.

(1) k < 3a − 2 and HE = {k − a − b}.

(2) k > 3b + 2 and HE = {k − a − b}.

(3) 3a ≤ k ≤ 2a + b, |HE| = 2a + b− k and if 2a + b− k > 0 then HE = [k− a− b, a− 1].

(4) a + 2b ≤ k ≤ 3b, |HE| = k− a− 2b and if k− a− 2b > 0 then HE = [b + 1, k− a− b ].

In each case the extension to an edge-magic Z-labelling of G is unique up to permuta-
tion of the labels of I.

In cases (1) and (2) the extension is given by taking

IV = {k − a − b + t(m + 1) | t = ±1,±2, · · · }.

In case (3) the extension is given by taking

IV = {(a − 1) + t(m + 1) | t = 1, 2, · · · } ∪ {k − a − b + t(m + 1) | t = −1,−2, · · · }.

In case (4) the extension is given by taking

IV = {(k − a − b + t(m + 1) | t = 1, 2, · · · } ∪ {b + 1 + t(m + 1) | t = −1,−2, · · · }.

Before proving this theorem, first let us establish some preliminary results assuming
we have an edge-magic Z-labelling of H + I with edge constant k and HV = [a, b].

Lemma 24. The set BE is the disjoint union of the intervals [k−ν−b, k−ν−a], ν ∈ IV .

Proof. Consider the labels of the m edges from the vertex of I labelled ν.

Lemma 25. If ν ′ > ν and ν, ν ′ ∈ IV then ν ′ − ν > b − a.

Proof. If ν ′ > ν and ν, ν ′ ∈ IV then [k−ν−b, k−ν−a] ⊂ BE and [k−ν ′−b, k−ν ′−a] ⊂ BE

are disjoint intervals with k − ν − b < k − ν ′ − b. Hence k − ν − a < k − ν ′ − b i.e.
ν ′ − ν > b − a.
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Definition 26. Set

ν∗ = k − a − b. (27)

This integer, which occurs already in the statement of Theorem 23 is significant be-
cause

HV = [a, b ] = [k − ν∗ − b, k − ν∗ − a]. (28)

Note that ν∗ is the midpoint of [k − 2b, k − 2a].

Lemma 29. The intersection of [k − 2b, k − 2a] and IV is empty.

Proof. Let ν ∈ IV . Then the interval [k − ν − b, k − ν − a] ⊂ BE, must be disjoint from
HV = [k − ν∗ − b, k − ν∗ − a]. Hence as in Lemma 25 if ν > ν∗, then ν − ν∗ > b − a or
equivalently ν > k − 2a and similarly if ν < ν∗, we have ν < k − 2b.

Lemma 30. The integer ν∗ ∈ HV ∪ HE.

Proof. Since ν∗ ∈ [k − 2b, k − 2a], it follows from Lemma 29 that ν∗ 6∈ IV .
It remains to show that ν∗ 6∈ BE. To have ν∗ ∈ BE there would have to be a ν ∈ IV

such that ν∗ ∈ [k− ν − b, k− ν −a]. However k− ν − b ≤ k−a− b = ν∗ if and only ν ≥ a
and ν∗ = k − a − b ≤ k − ν − a if and only if ν ≤ b and so ν∗ ∈ [k − ν − b, k − ν − a] if
and only if ν ∈ [a, b ] = HV , which is disjoint from IV . So ν∗ 6∈ BE.

Lemma 31. The set of integers HE ⊆ [k − 2b + 1, k − 2a − 1].

Proof. The extreme values for elements of HE are given by the label on an edge with
vertices labelled by b and b − 1 or by a and a + 1. Thus any element of HE must lie
between k − b − (b − 1) = 2b + 1 and k − a − (a + 1) = k − 2a − 1.

Lemma 32. (1) The labels k − 2b, k − 2a ∈ HV ∪ BE.

(2) At least one of k − 2b and k − 2a is an element of BE.

(3) The integer k − 2b ∈ BE if and only if k − 2b ∈ [k − νb − b, k − νb − a] ⊂ BE for some
νb ∈ IV satisfying

b + 1 ≤ νb ≤ b + (b − a). (33)

(4) The integer k− 2a ∈ BE if and only if k− 2a ∈ [k− νa − b, k− νa − a] ⊂ BE for some
νa ∈ IV satisfying

a − (b − a) ≤ νa ≤ a − 1. (34)
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Proof. From Lemmas 29 and 31 neither k − 2b nor k − 2a is an element of IV ∪HE. The
first assertion follows.

Since (k − 2a) − (k − 2b) = 2(b − a) > b − a at most one of k − 2b and k − 2a can
lie in the interval [a, b ]. Thus they cannot both be elements of HV . The second assertion
follows.

The integer k− 2b ∈ BE if and only if k− 2b ∈ [k− νb − b, k− νb −a] for some νb ∈ IV ,
i.e. k − νb − b ≤ k − 2b ≤ k − ν − a, i.e.

b ≤ ν ≤ 2b − a = b + (b − a).

But νb 6∈ HV implies that νb 6= b. Hence k − 2b ∈ BE if and only if there exists νb ∈ IV

with

b + 1 ≤ vb ≤ b + (b − a). (35)

Hence the third assertion.
A similar argument proves the fourth assertion.

Suppose we have a set of disjoint intervals. Then they come naturally ordered: [c, d] <
[e, f ] if and only if d < e. Call two intervals of integers [c, d], [e, f ] adjacent if there is no
gap between them, that is e = d + 1 or c = f + 1.

Lemma 36. (1) The set BE ∪ HV is the union of disjoint intervals

{[k − b − ν, k − a − ν] | ν ∈ IV ∪ {ν∗} .

Each consists of m = (b − a) + 1 consecutive integers.

(2) The integers not in such an interval are elements of HE ∪ IV .

(3) Two consecutive intervals of BE ∪ HV are adjacent (not separated by an element of
HE∪IV ) if and only if they are of the form [k−ν−b, k−ν−a] and [k−ν ′−b, k−ν ′−a]
for a pair of integers ν > ν ′ ∈ IV ∪ {ν∗} with ν − ν ′ = b − a + 1. In this case the
b − a − 1 integers strictly between ν and ν ′ are elements of HE.

Proof. The first statement follows from Lemma 24 and equation (28). For the second
assertion assume [k− ν − b, k − ν − a] and [k− ν ′ − b, k− ν ′ − a] are adjacent. This is the
case if and only if |ν − ν ′| = (b− a) + 1. By Lemma 25 there is no room for any elements
of IV between ν and ν ′. Also |ν − ν ′| = (b − a) + 1 implies there are only b − a integers
strictly between ν and ν ′ and no elements of BE ∪HV can lie between them as such labels
come in intervals of (b − a) + 1 integers.

We are now ready to complete the proof of Theorem 23.

Proof of Theorem 23. Case 1: Suppose that k − 2b, k − 2a ∈ BE. By Lemma 32,
neither k − 2b nor k − 2a lies in [a, b ]. By Lemma 24, k − 2b ∈ [k − νb − b, k − νb − a]
for some νb ∈ IV satisfying (33) and k − 2a ∈ [k − νa − b, k − νa − a] for some νa ∈ IV

the electronic journal of combinatorics 13 (2006), #R92 14



satisfying (34). Moreover, one of (k−2a < a), (k−2b < a and k−2a > b) or (k−2b > b)
must hold, i.e.we have the following subcases: k < 3a (Case 1A) or a + 2b < k < 2b + a
(Case 1B) or k > 3b (Case 1C).

We first eliminate Case 1B: a + 2b < k < 2b + a.
In this case the interval J = [k − νb − b, k − νb − a] ⊆ BE containing k − 2b < a must

be to the left of the interval [a, b ]. This interval J does not contain νa ∈ IV . Any integer
ν < k−νb−b will satisfy ν < a− (b−a). For (34) of Lemma 32 to hold we must therefore
have k − νb − a < νa. This implies

k − a < νa + νb. (37)

Similarly the interval [k− νa − b, k− νa − a] containing k− 2a must be to the right of the
interval [a, b ] and it follows similarly that k − νa − b > νb which implies

k − b > νa + νb. (38)

But (37) and (38) together imply a > b, a contradiction to our assumption b > a.
Hence if both k − 2a and k − 2b are elements of BE we must have either k − 2a < a,

i.e k < 3a or k − 2b > b, i.e. k > 3b.
Consider now Case 1A: k < 3a.
In this case k − 2a− 1 < a− 1. So by Lemma 31 there are no elements of HE greater

than or equal to a − 1. In particular a − 1 6∈ HE. If a − 1 ∈ BE, then from Lemma 36,
k − ν − b = a − 1 for some ν ∈ K with |ν − ν∗| = b − a + 1. But then ν = k − a − b + 1
and ν∗ = k − a− b contradict the fact that b− a + 1 ≥ 2. Thus we must have νa = a− 1
and νb = b + 1 by Lemma 32.

Let Jb = [k − 2b− 1, k − a− 1] and Ja = [k − a − b + 1, k − 2a + 1] be the intervals in
BE associated to νb = b + 1 and νa = a − 1 respectively. They are are both to the left of
[a, b ] since k− 2a < a lies in the right most Ja, which is disjoint from [a, b ]. The intervals
Ja and Jb are separated by the single integer k − a − b = ν∗. Bearing in mind Lemma
31, we have that HE = {ν∗}. Lemma 36 implies now that all other pairs adjacent blocks
are separated by a single integer from IV . We must also have k − 2a + 2 ∈ IV . Hence
k − 2a + 2 ≤ νa = a − 1, i.e k ≤ 3a − 3.

Then the labels making up IV ∪ {ν∗} are separated by intervals of m = (b − a) + 1
integers. Hence these labels are congruent modulo m+1 and so make up the set of integers
congruent to ν∗ = k − a − b modulo m + 1. Thus the set of labels of the vertices in I,
IV = {k − a − b + t(m + 1) | t 6= 0}.

A similar argument holds for Case 1C: k > 3b, and gives again HE = {ν∗} and
IV = {k − a − b + t(m + 1) | t 6= 0}.

It remains now to consider Case 2, in which one of k− 2a and k− 2b is an element of
HV . By Lemma 32 the other lies in BE. Note k − 2a ∈ HV if and only if 3a ≤ k ≤ 2a + b
and k − 2b ∈ HV if and only if a + 2b ≤ k ≤ 3b.
Case 2A: Suppose that 3a ≤ k ≤ 2a + b. Then k − 2b ∈ BE. So Lemma 32 implies there
exists νb ∈ IV satisfying (33). We show that νb = b + 1.

By the first part of Lemma 36 if νb > b + 1 there must be an element of HE greater
than b. From k− 2a ≤ b we deduce k− 2a− 1 < b which together with Lemma 31 implies
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there are no elements of HE greater than b. We must therefore have νb = b+1 as required.
Also as HE ∩ [a, b ] = ∅, any ν ∈ HE must satisfy ν < a (needed below).

We now show
HE = {ν | k − a − b − 1 < ν < a}. (39)

The interval [k − νb − b, k − νb − a] = [k − 2b − 1, k − a − b − 1] ⊆ BE and it lies to the
left of [a, b ]. Since k − 2b − 1 < k − 2b + 1 from Lemma 31 we deduce that any ν ∈ EH

has ν > k − a − b − 1. Thus any elements of HE lie strictly between k − a − b − 1 and
a. To establish (39) it remains to show that every integer strictly between k − a − b − 1
and a lies in HE. Since k ≥ 3a, k − a − b ≥ 2a − b = a − (b − a). So by Lemma 32, as
k − 2a 6∈ BE, there are no elements of IV strictly between k − a − b − 1 and a. Hence all
such integers are elements of HE by Lemma 36.

Note if k = 2a + b then k − a − b = a and EH = ∅, this implies H has no edges,
whereas if 3a ≤ k < 2a + b, |EH | = 2a + b− k and EH = [k − a− b, a− 1] = [ν∗, a− 1], is
an interval and so is the complete set of labels of the graph elements of H,

HV ∪ HE = [k − a − b, b ]. (40)

Having established (39), we have that the interval of BE containing k − b lies to the
left of [a, b ] and the intervening integers form the set EH . Hence Lemma 36 implies all
consecutive pairs of intervals in BE ∪ HV except that containing k − 2b and [a, b ] are
separated by a single element of IV .

If we order the elements of IV greater than ν∗ then consecutive labels are separated by
a block of m = (b−a)+1 integers. These elements are congruent modulo (b−a)+2 = m+1
and form the half-modulus class

{(b + 1) + t(m + 1) | t ≥ 0} = {(a − 1) + t(m + 1) | t > 0}.

Similarly the elements of IV less than ν∗ form the half-modulus class

{k − a − b + t(m + 1) | t < 0}.

Case 2B: Suppose lastly 2b + a ≤ k ≤ 3b.
A similar argument to the above shows

HE = {ν | k − a − b − 1 < ν < a}. (41)

so that for k = a + 2b, HE = ∅, a + 2b ≤ k ≤ 3b and 2b + a − k > 0, HE = [b + 1, ν∗].
Hence in the case 2b + a ≤ k ≤ 3b, the labels of the graph elements of H,

HV ∪ HE = [a, k − a − b ]. (42)

Further the elements of IV greater than ν∗ form the half-modulus class

{k − a − b + t(m + 1) | t > 0},
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and elements of IV less than ν∗ form the half-modulus class

{a − 1 + t(m + 1) | t ≤ 0} = {b + 1 + t(m + 1) | t < 0}.

The necessary conditions of the theorem have now been established. When these hold we
can extend the injective labelling on H to an edge-magic labelling of G, by labelling the
vertices I by the given half-modulus classes.

Corollary 43. If H has exactly one edge then H + I has an edge-magic Z-labelling.

Proof. Immediate.

Recall [7] that a finite graph H with m edges and ` vertices is called edge magic, with
edge constant k if there a bijective labelling of the graph elements of H by the integers
[1, m + `] which gives each edge weight k. This labelling is called strong if the labels on
the vertices form the interval of integers [1, m].

Corollary 44. Suppose H has more than one edge. Then H + I has an edge-magic Z-
labelling (in which the vertices of H are labelled by consecutive integers) if and only H
has a strong edge-magic labelling, with edge constant k satisfying

2m + 3 ≤ k ≤ 3m.

Proof. Suppose H has more than one edge and H +I has an edge-magic Z-labelling with
constant k for which HV = [a, b]. Then either (3) or (4) of Theorem 23 holds. But if (3)
holds, then replacing every label n by (a+b)−n gives an edge-magic Z-labelling of H with
edge constant 3(a + b) − k for which (4) holds. So without loss of generality there exists
an edge-magic Z-labelling with constant k, satisfying a+2b+2 ≤ k ≤ 3b. Note we cannot
have k = a+2b, or k = a = 2b+1 because these give ` = |HE| ≤ 1. By (4), recalling (42),
we have a total labelling of the graph elements of H by [a, k−a−b ], in which the vertices
of H are labelled by [a, b ]. Subtracting a − 1 from each label gives a strong edge-magic
labelling of H with edge-constant k′ = k − 3a + 3, with 2(b − a) + 5 ≤ k′ ≤ 3(b − a) + 3.
But m = (b− a)+ 1. Hence H has a strong edge-magic labelling where the edge-constant
k′ satisfies 2m + 3 ≤ k′ ≤ 3m. Reversing the above shows the converse.

Corollary 45. Suppose H + I has an edge-magic Z-labelling in which the vertices of H
are labelled by consecutive integers. Then H has fewer edges than vertices.

Proof. Suppose H + I has such labelling with edge-constant k.
If H has m ≤ 2 vertices the number of edges is less than the number of vertices. The

result is trivially true.
If H has m ≥ 3 vertices apply the theorem. In case (1) or (2) above then H has only

one edge and the result is trivially true. In case (3) note that 3a ≤ k is equivalent to
2a+b−k ≤ b−a = m−1. Thus in case (3) the number of edges of H, |HE| = 2a+b−k < m.

Similarly in case (4) the number of edges of H, |HE| < m.
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Example 46. Let H = Tm−1 be a star on m vertices. Then there is an edge-magic
Z-labelling of the H + I with edge constant 0.

Proof. Let HV = {0, 1, 2, . . . , m − 1} (with the centre of the star labelled with 0) so that
HE = {−1,−2, . . . ,−(m − 1)}. Then we have Case 3 of Theorem 23 with a = k = 0,
b = m − 1. Thus

IV = {−1 + t(m + 1) | t = 1, 2, . . . } ∪ {−m + 1 + t(m + 1) | t = −1,−2, . . . },

with BE = Z \ (IV ∪ HV ∪ HE).

If we relax the assumption that HV is a set of consecutive integers, the problem
considered in this section becomes much more complicated. However, the following lemma
shows a special case.

Lemma 47. Let H be a finite graph with 2M ≥ 2 vertices and 2L ≥ 0 edges and suppose
there is an injective Z-labelling of H in which the vertices are labelled with the set {±i |
1 ≤ i ≤ M} and the edges with the set {±i | M + 1 ≤ i ≤ M + L} ∪ {0}, so that the edge
constant is 0. Then we can always extend the labelling of H to an edge-magic Z-labelling
of H + I with edge constant 0.

Proof. Label the vertices of I with {i(2M + 2L + 1) | i 6= 0}. This forces the edges
between H and I to use all remaining Z-labels.

Example 48. Using the previous lemma with M = 3, L = 2 and H = P5 labelled as in
Figure 2, there exists an edge-magic Z-labelling of the P5-burr.
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Figure 2: P5

We conclude with the following open problem:

Does there exist an edge-magic Z-labelling of K3 + I?

Note that by Corollary 45 there is no such labelling in which the vertices of K3 are
labelled with consecutive integers.
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