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Abstract

Let T be the Cayley graph of a finitely generated free group F . Given two

vertices in T consider all the walks of a given length between these vertices that at

a certain time must follow a number of predetermined steps. We give formulas for

the number of such walks by expressing the problem in terms of equations in F and

solving the corresponding equations.

1 Introduction

Let T be an infinite regular tree and n a positive integer. Fix two vertices x and y in T .
By a walk or a path between x and y we mean any finite sequence of edges that connect
x and y in which backtrackings are allowed. There are many formulas in the literature
which give the number of walks of length n between x and y, such as recurrence formulas,
generating functions, Green functions, and others. Here we consider walks of length n

between x and y which at a certain time follow a number of predetermined steps.
This work was motivated by the following question of Tatiana Smirnova-Nagnibeda,

in relation to finding the spectral radius of a given surface group. Let F2 be the free group
on generators a and b, K a field of characteristic 0, T = a−1 + a + b−1 + b an element
in the group algebra K[F2], and c = [a, b] = aba−1b−1. What is the projection, for any
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m, and for any m-tuple of integers (k1, ..., km), of Tck1Tck2...T ckm onto the group algebra
of the subgroup generated by c? Alternately, this can be formulated as a question in
the free group F2. Given an m-tuple of integers (k1, ..., km), how many of the words of
type x1c

k1x2c
k2 ...xmckm with xi ∈ {a±1, b±1}, turn out to be a power of c? In turn, this

question can be translated into counting certain paths in the Cayley graph of F2, since
each word in F2 corresponds uniquely to a walk in the Cayley graph of F2, the infinite
regular tree of degree four. In the rest of the paper we will use the formulation of the
question in terms of the free group or in terms of walks in regular trees interchangeably.

We answer this question in the case (k1, . . . , km) = (0, . . . , 0, ki, 0, . . . , 0), ki 6= 0, not
only for the free group on two generators, but on any number of generators, by counting
the number of solutions (x1, x2, . . . , xm) of the equation x1 . . . xic

kxi+1 . . . xm = cl (see
Section 5). This equation is a particular instance of an equation of type WX = Y U

in a free group, where W and U are given fixed words. The study of equations in free
groups is a fully-developed area, with Makanin [3] and Razborov [4] having provided an
algorithm that finds the solutions to equations that have solutions, and Diekert, Gutierez
and Hagenah [2] having considered solutions to equations with rational constraints. While
WX = Y U clearly has infinitely many solutions (X, Y ) in a free group and does not require
the complicated machinery developed by Makanin-Razborov, when we put restrictions on
the lengths of X and Y , finding the number of solutions becomes delicate. We treat the
equation WX = Y U in Section 4. Section 3 contains results about a type of restricted
words or paths which will be used in later sections, but is also of independent interest.

Let LW,U(N, M) be the number of solutions of the equation WX = Y U , where X and
Y are reduced words of lengths N and M . Let V r

l (n) be the number of unreduced words
of length n that are equal, after cancellations, to a fixed reduced word of length l in Fr.
Then our main result is

Theorem. Let U be a fixed element in Fr, T the Cayley graph of Fr, P a fixed point in
T , and M , N two positive integers. Let W be the element in Fr describing the path from
the origin to P . Then the number of paths in T of length M + |U | + N beginning at the
origin, after M steps following the path prescribed by U and then proceeding to the point
P in N steps is

N
∑

n=0

M
∑

m=0

LW,U(n, m)V r
n (N)V r

m(M).

2 Background and Example

Let us fix a set X = {a1, a2, . . . , ar}, where r is a positive integer, and let X−1 be a set of
formal inverses for the elements of X, that is, X−1 = {a−1

1 , . . . , a−1
r }. Let X± = X ∪X−1.

Elements of X will be called generators and elements of X± will be called letters. For
x ∈ X set (x−1)−1 = x. A finite string of letters is called a word. We define the inverse
of a word U = x1 · · ·xn to be U−1 = x−1

n · · ·x−1
1 . The length of U will be denoted by |U |.

For a word W , a string of consecutive letters in W forms a subword of W . A word W is
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reduced if it contains no subword of the form xx−1 with x in X ∪ X−1. We will denote
the free group on generators a1, . . . , ar by Fr. The elements of Fr are the reduced words
in letters a±1

1 , . . . , a±1
r . Reduced words correspond to paths without backtracking in the

Cayley graph of Fr, while unreduced words or simply “words” correspond to arbitrary
paths in the Cayley graph.

Let a and b be the generators of F2, K a field of characteristic 0, T = a−1 +a+ b−1 + b

an element in the group algebra K[F2] and c = [a, b] = aba−1b−1. Let us consider the
easiest case of the projection computation that we mentioned in the Introduction. In the
case in which ki = 0 for all i, one simply counts how many words of length n in a±1

and b±1 are powers of the commutator c = [a, b]. This is a special case of the following
computation. Let x and y be fixed points in the Cayley graph of Fr, let l = d(x, y) be
the distance between x and y, and let V r

l (n) be the number of paths of length n between
x and y. If r = 2, then the projection of Tck1Tck2...T ckn with k1 = k2 = . . . = kn = 0 is

· · ·+ V 2
8 (n)c−2 + V 2

4 (n)c−1 + V 2
0 (n)c0 + V 2

4 (n)c + V 2
8 (n)c2 + . . .

In other words, among all the elements of length n in F2 we get V 2
0 (n) of them equal to

the identity, V 2
4 (n) equal to the commutator c, and so on. We will use the same additive

notation to count the number of words in F2 equal to commutators. Note that if n − l

is an odd integer, then V 2
l (n) = 0. Formulas for V r

l (n) have been known for a long time
and are often used in the context of random walks on graphs [5, 1]. After computing the
values of V 2

l (n), we get that among all the words of length 4 in F2, there are c−1+28c0+c1

commutators. Among all the words of length 6 in F2, we get 16c−1 + 232c0 + 16c1 since
the generating function for V 2

0 (n) is 3
1+

√
4−3x2

, with V 2
0 (0) = 1, V 2

0 (2) = 4, V 2
0 (4) = 28,

V 2
0 (6) = 232, V 2

0 (8) = 2092.
One standard tool for studying random walks on graphs or groups is the Green func-

tion.

Definition. Let G be a graph with x, y ∈ G and let p(n)(x, y) be the probability that the
walker who started at point x will be at point y at the n-th step. Then the associated
Green function is

G(x, y|z) =

∞
∑

n=0

p(n)(x, y)zn,

where z ∈ C.

For a regular infinite tree of degree M the Green function is ([5], Ch. 1)

G(x, y|z) =
2(M − 1)

M − 2 +
√

M2 − 4(M − 1)z2

(

M −
√

M2 − 4(M − 1)z2

2(M − 1)z

)d(x,y)

Thus the generating function for V r
l (n) is G(x, y|2rz), where d(x, y) = l is fixed.
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3 Restricted words

In this section we count the number of reduced words of a certain type that will appear
in our later results.

Let |A| denote the cardinality of the set A, and let A−1 = {a−1 : a ∈ A}.

Proposition 1. Let a1, . . . , ar be the generators of Fr and let A and B be subsets of
{a±1

1 , . . . , a±1
r }. The number of elements of length n in Fr that do not start with a letter

in A and do not end with a letter in B is equal to

φ′
n(A, B) =

(2r − |A|)(2r − |B|)(2r − 1)n−1 + δr + (−1)n(|A||B| − σr)

2r
,

where δ = |A ∩ B| − |A−1 ∩ B|, σ = |A ∩ B| + |A−1 ∩ B|.

Proof.

Let χ
A
(x) be the characteristic function for A, i.e. χ

A
(x) =

{

1 x ∈ A

0 x 6∈ A
, let A+ =

A ∩ {a1, . . . , an} and A− = A ∩ {a−1
1 , . . . , a−1

n }. Furthermore, let αi,n be the number of
reduced words of length n > 0 that do not start with a letter in A, but end in ai, and let
ᾱi,n be the number of reduced words of length n that do not start with a letter in A, but
end in a−1

i . Then we have

α1,n + ᾱ1,n + · · ·+ αr,n + ᾱr,n = (2r − |A|)(2r − 1)n−1, (1)

and αi,1 = 1 − χ
A
(ai), ᾱi,1 = 1 − χ

A
(a−1

i ).
The following recursion relations hold

αi,n+1 = (α1,n + ᾱ1,n + · · ·+ αr,n + ᾱr,n) − ᾱi,n,

ᾱi,n+1 = (α1,n + ᾱ1,n + · · ·+ αr,n + ᾱr,n) − αi,n,

where i ≥ 1.
This implies αi,n − ᾱi,n = χ

A
(a−1

i ) − χ
A
(ai) for all n and i. Now fix i. Then for any

j with 1 ≤ j ≤ r, when we subtract the recursion relation for αj,n+1, from the recursion
relation for αi,n+1, we get αi,n+1 − αj,n+1 = ᾱj,n − ᾱi,n = αj,n − αi,n + χ

A
(aj)− χ

A
(a−1

j ) +

χ
A
(a−1

i )−χ
A
(ai). Let ej,n = αi,n−αj,n and ēj,n = αi,n− ᾱj,n . Then ej,1 = χ

A
(aj)−χ

A
(ai)

and it is easy to see that ej,2k = χ
A
(a−1

i ) − χ
A
(a−1

j ), ej,2k+1 = χ
A
(aj) − χ

A
(ai), and

ēj,n = ej,n + χ
A
(a−1

j ) − χ
A
(aj). Equation (1) can now be written as

(αi,n − e1,n) + (αi,n − e1,n + χ
A
(a1) − χ

A
(a−1

1 )) + . . .

+ (αi,n − er,n) + (αi,n − er,n + χ
A
(ar) − χ

A
(a−1

r )) = (2r − |A|)(2r − 1)n−1.
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This gives αi,n =
(2r−|A|)(2r−1)n−1+2

P

j ej,n−|A+|+|A−|
2r

, where the sum runs from 1 to r. Thus

αi,2k =
(2r − |A|)(2r − 1)2k−1 + 2rχ

A
(a−1

i ) − |A|

2r
,

αi,2k+1 =
(2r − |A|)(2r − 1)2k − 2rχ

A
(ai) + |A|

2r
,

ᾱi,2k =
(2r − |A|)(2r − 1)2k−1 + 2rχ

A
(ai) − |A|

2r
,

ᾱi,2k+1 =
(2r − |A|)(2r − 1)2k − 2rχ

A
(a−1

i ) + |A|

2r
.

Now, the number of reduced words of length n that do not start with a letter in A and
do not end with a letter in B is equal to

(α1,n + ᾱ1,n + · · · + αr,n + ᾱr,n) −
∑

j:χ
B

(aj )=1

αj,n −
∑

j:χ
B

(a−1

j )=1

ᾱj,n

= (2r − |A|)(2r − 1)n−1 −
|B|

2r

(

(2r − |A|)(2r − 1)n−1 − (−1)n|A|
)

(2)

−(−1)n

(

∑

j:χ
B

(aj)=1

χ
A
(a

−(−1)n

j ) +
∑

j:χ
B

(a−1

j )=1

χ
A
(a

(−1)n

j )

)

.

If n is even, then we have
∑

j:χ
B

(aj )=1

χ
A
(a−1

j ) +
∑

j:χ
B

(a−1

j )=1

χ
A
(aj) = |A−1 ∩ B|

If n is odd, then we have
∑

j:χ
B

(aj)=1

χ
A
(aj) +

∑

j:χ
B

(a−1

j )=1

χ
A
(a−1

j ) = |A ∩ B|

By simplifying (2), one easily obtains that the number of these reduced words is
{

(2r−|A|)(2r−|B|)(2r−1)n−1+|A||B|
2r

− |A−1 ∩ B| if n even,
(2r−|A|)(2r−|B|)(2r−1)n−1−|A||B|

2r
+ |A ∩ B| if n odd.

The desired formula follows now by averaging the two expressions, then adding and sub-
tracting the deviation to and from the average for even and odd n, respectively.

A more natural quantity to count is the number of reduced words that start with a
letter from a given set and end with a letter from another set. By applying the De Morgan
formulas for set identities to Proposition 1 we obtain the following

Corollary 1. Let A and B be subsets of {a±1
1 , . . . , a±1

r }. The number of elements of length
n in Fr that start with a letter in A and end with a letter in B is equal to

φn(A, B) =
|A||B|(2r − 1)n−1 + δr + (−1)n(|A||B| − 2r(|A| + |B|) + σr)

2r
,

where δ = |A−1 ∪ B| − |A ∪ B|, σ = |A ∪ B| + |A−1 ∪ B|.
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4 Main results

In this section we count the number of solutions (X, Y ) of the equation

WX = Y U, (3)

in the free group Fr, for fixed elements W and U , and fixed lengths of X and Y . The
number of solutions varies widely, depending on the lengths of W and U with respect to
the lengths of X and Y . Since the lengths of W , U , X and Y are all fixed, the amount of
cancellation between W and X uniquely determines the amount of cancellation between
Y and U . If X and Y are short compared to W and U , then after cancellation on both
sides of the equality there are, relatively speaking, large parts of W and U left. So in
order to have equality of reduced words the suffix of what is left of W must agree with
the prefix of what is left of U after cancellation. This leads naturally to the definition of
the correlation function γW,U(i, n, j) of the words W and U , where i refers to the number
of letters that will be cancelled in U , j to the number of letters that will be cancelled in
W , and n to the length of the subword that must appear in both W and U . To illustrate
this, in the following diagram we have U = ūU ′, W = W ′w̄, where ū and w̄ are prefix and
suffix of U and W , respectively, uū = e, ww̄ = e, |ū| = i, |w̄| = j, and |s| = n, W ′ = W ′′s,
and U ′ = sU ′′.

W X

Y U
=

W ′w̄ wX ′

Y ′u ūU ′ =
W ′′ s X ′

Y ′ s U ′′

Definition. (i) Let (W )i be the i-th letter in the word W , where 1 ≤ i ≤ |W |, with the
convention that (W )0 = (W )|W |+1 = e, where e is the empty word.

(ii) Define (W )j
i to be the subword of W which starts with the i-th letter of W and ends

with the j-th letter of W and the convention that (W )j
i = e if j < i.

(iii) Let γW,U(i, n, j) be the correlation function of two words W , U . Whenever W and
U are fixed we will use γ(i, n, j) instead of γW,U(i, n, j). The correlation function
identifies whether W and U have a common maximal subword s of length exactly
n, followed by exactly j letters in W , and preceded by exactly i letters in U . Thus,
when n > 0

γ(i, n, j) =























1 if (W )
|W |−j
|W |−n−j+1 = (U)i+n

i+1 ,

(W )|W |−n−j 6= (U)i or i = 0,

(W )|W |−j+1 6= (U)i+n+1 or j = 0

0 else.

If n = 0,

γ(i, 0, j) =











1 if [(W )|W |−j(U)i+1 6= e or (W )|W |−j = (U)i+1 = e]

and (W )|W |−j 6= (U)i, (W )|W |−j+1 6= (U)i+1

0 else.
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Example. Let W = abc and U = bcd be words in the free group on four letters. Then
γ(0, 2, 0) = 1, but γ(1, 1, 0) = γ(0, 1, 1) = 0. In all three cases the overlap between W

and U is bc, a subword of both W and U . Since bc does not have length 1, it follows that
γ(1, 1, 0) = γ(0, 1, 1) = 0.

Definition. Let LW,U(N, M) be the number of solutions of the equation WX = Y U ,
where X and Y are reduced words of length N and M , respectively.

It can be seen at once that

LU,W (N, M) = LW,U(N, M), (4)

LW,U(N, M) = LW−1,U−1(M, N) (5)

LW,U(N, M) = 0 whenever |U | + |W | + N + M is odd (6)

In the following propositions we adopt the convention that if e, the identity element
of Fr, is in some set A, then A = A \ {e}.

Proposition 2. The number LW,U(N, M) of solutions of WX = Y U , where X and Y

are reduced words of length N and M , respectively, is given below. Let d = N−M+|W |−|U |
2

and n = N+M−|W |−|U |
2

,

(i) LW,U(N, M) = 0 if N + M <
∣

∣|U | − |W |
∣

∣ or n 6∈ Z

(ii) For
∣

∣|U | − |W |
∣

∣ ≤ N + M ≤ |W | + |U |, n ∈ Z,

LW,U(N, M) =























min(|U |,M)
∑

i=0

γ(i,−n, i + d) if d ≥ 0

min(|W |,N)
∑

i=0

γ(i − d,−n, i) if d < 0

(iii) If N + M > |W | + |U |, n ∈ Z, then

LW,U(N, M) =

min(|U |,|W |−d)
∑

i=max(0,−d)

φ′
n(Ai, Bi)

where Ai = {((W )|W |−d−i)
−1, (W )|W |−d−i+1}, Bi = {(U)i, ((U)i+1)

−1}.

Proof. (i) If |W | − |X| > |U | + |Y |, then the length of the reduced word equal to WX

is strictly longer than the length of the reduced word equal to Y U , so there is no
solution. Similarly, if |W | + |X| < |U | − |Y | there is no solution.
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(ii) The equation WX = Y U can be rewritten as

W ′w̄wX ′ = Y ′uūU ′,

where w, u, X ′, Y ′ are reduced words with w and u maximal such that W = W ′w̄,
X = wX ′, Y = Y ′u and U = ūU ′. From this equation we have

2|w| = |W | − |U | + N − M + 2|u|. (7)

For a solution (X, Y ), |X| = N , |Y | = M , the length of the resulting reduced
words on both sides of the equation is N + |W | − 2|w| = M + |U | − 2|u|, and it is
easy to see that U and W must have a common subword s of exactly |W | − M +
|u| − |w| = |U | − N + |w| − |u| letters. From the equation above it follows that

2|w| − 2|u| = N − M + |W | − |U | = 2d, thus |s| = |W |+|U |−N−M
2

= −n.

It follows that (X, Y ) is a solution if and only if γ(|u|, |s|, |w|) = 1. The formula
now follows, since γ(|u|, |s|, |w|) = γ(|u|,−n, |u|+ d) = γ(|w| − d,−n, |w|).

(iii) We use the notation from (ii). In equation 7, since N +M > |W |+ |U |, the suffix of
X ′ is U ′ = uU and the prefix of Y ′ is W ′ = Ww. Thus we can write every solution
(X, Y ) as (wX ′′uU, WwY ′′u) = (wX ′′U ′, W ′Y ′′u), where X ′′ = Y ′′ is any reduced

word of length n = M+N−|U |−|W |
2

which does not begin with the inverse of the last
letter of W ′ or w, nor end with the inverse of the first letter of U ′ or u, since X and
Y are reduced words. Notice that the inverses of the last letter of W ′ and w are
(W )−1

|W |−|w| and (W )|W |−|w|+1, respectively, and the inverses of the first letter of u

and U ′ are (U)|u| and (U)−1
|u|+1, respectively. Note that the length of X ′′ is constant,

regardless of the length of u and w.

The following diagram better exemplifies the equalities between the words.

W X

Y U
=

W ′w̄ wX ′

Y ′u ūU ′ =
Ww X ′′ U ′

W ′ Y ′′ uU

Let d = |W |−|U |+N−M
2

, then it follows from (7) that |W | − |w| = |W | − d − |u|.
For every (possibly empty) word u such that u−1 is a prefix of U , let A|u| =
{(W )−1

|W |−d−|u|, (W )|W |−d−|u|+1} and B|u| = {(U)|u|, (U)−1
|u|+1}.

Thus for a fixed u, and n = |X ′′| = M+N−|U |−|W |
2

, the number of choices for X ′′ is
φ′

n(A|u|, B|u|).

To obtain the total number of solutions, we consider the cases d ≥ 0 and d < 0
separately.

• d ≥ 0

It follows from equation (7) that the smallest length of |w| for which there

can be a solution is |w| = |W |−|U |+N−M
2

in which case we have |u| = 0. Thus

|u| ranges from 0 to min(|U |, M − n), while |w| ranges from |W |−|U |+N−M
2

to
|W |+|U |+N−M

2
= N − n (if |U | < M − n) or |W |−|U |+N+M−2n

2
= |W | (else).
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• d < 0

It follows from equation (7) that the smallest length of |u| for which there can be

a solution is |u| = |U |−|W |+M−N
2

in which case |w| = 0. Thus |w| ranges from 0

to min(|W |, N−n), while |u| ranges from |U |−|W |+M−N
2

to |U |+|W |+M−N
2

= M−n

(if |W | < N − n) or |U |−|W |+M+N−2n
2

= |U | (else).

In both cases, the formula follows immediately.

Note that Proposition 2 not only counts the number of solutions to an equation of the
form (3) but the proof also sketches a strategy for computing the actual solutions of that
equation. We can now use Proposition 2 to give a formula for the number of restricted
walks in regular trees.

Theorem 1. Let U be a fixed element in Fr, T the Cayley graph of Fr, P a fixed point
in T , and M , N two positive integers. Let W be the element in Fr describing the path
from the origin to P . Then the number of paths in T of length M + |U | + N beginning
at the origin, after M steps following the path prescribed by U and then proceeding to the
point P in N steps is

N
∑

n=0

M
∑

m=0

LW,U(n, m)V r
n (N)V r

m(M).

Proof. The Theorem follows easily from Proposition 2, because for every reduced word R

of length ρ, there are exactly V r
ρ (l) words of length l which are equal to R.

5 The commutator case

For ease of notation, let a = a1, b = a2 and c = [a, b] = aba−1b−1. Here we consider the
projection computation in the case when ki = 0 for all except one value of i. Let us fix
integers k and l. Then we want to find the number of solutions of the equation:

x1 . . . xic
kxi+1 . . . xm = cl, (8)

where xi ∈ {a±1
1 , . . . , a±1

r }. We count the number of solutions by first rearranging the
equation as

ckX = Y cl, (9)

where X = xi+1 . . . xm and Y = (xi . . . x1)
−1.

Let Lk,l(N, M) be the number of solutions of the equation 9, where X and Y are
reduced words of length N and M , respectively. We compute Lk,l(N, M) by specializing
our results from the previous section to the case when W and U are commutators. Clearly
Lk,l(N, M) = Ll,k(N, M), Lk,l(N, M) = L−k,−l(M, N), Lk,l(N, M) = 0 whenever N+M ≡
1 (mod 2), and Lk,l(N, M) = Lk,l(M, N). When N+M is smaller or equal to the combined
length of the commutators, then we have the following number of solutions.
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Proposition 3. Let k and l be positive integers.

(i) If N + M <
∣

∣|4k| − |4l|
∣

∣ then Lk,l(N, M) = L−k,l(N, M) = 0.

(ii) For |4k − 4l| ≤ N + M < 4k + 4l

Lk,l(N, M) =































2 if 4|N , k = l and N = M 6= 0

1 if k = l and N = M = 0

1 if 4|N and |4k − 4l| = N + M

1 if 4|N and |4k − 4l| = |N − M |

0 else

L−k,l(N, M) =































min(4l, M) if 4k + 4l = M + N + 2

and M ≡ 1 (mod 4) , 4l < M

min(4l, M) + 1 if 4k + 4l = M + N + 2

and M ≡ 1 (mod 4) , M < 4l

0 else

(iii) For N + M = 4k + 4l, N ≥ M , δi,j the Kronecker Delta,

Lk,l(N, M) =























⌈

min(4l,M)
2

⌉

+ 1 if M ≡ 1, 2 (mod 4) ,
⌊

min(4l,M)
2

⌋

+ 1 if M ≡ 3 (mod 4) ,

min(4l,M)
2

+ δM,4k + δM,4l else.

L−k,l(N, M) =



















min(4l, M) + 1 if M ≡ 2 (mod 4)

2 if M ≡ 3 (mod 4) and M < 4l

0 if M ≡ 1 (mod 4) and M < 4l

1 else.

Proof. Let n′ = 4k+4l−N−M
2

and d = N−M+4k−4l
2

. (Here n′ = −n, where n is as defined in
Proposition 2.) We can assume without loss of generality that k ≥ l and N ≥ M .

(i) follows immediately from Proposition 2 (i).

(ii) We need to compute

min(4l,M)
∑

i=0

γ(i, n′, i + d) for n′ > 0. Notice that d ≥ 0.

We consider the equation ckX = Y cl first. Two commutators cannot have a common
maximal subword of a certain length in their interiors, but only at the end or
beginning of a commutator. In other words, γ will be non-zero only when some of
the following are satisfied: i = 0, i + d = 0, n′ = 4l.
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Let us first assume that n′ = 4l, which is equivalent to 4k − 4l = N + M . Then we
must have i = 0, so in this case Lk,l(N, M) = 1 because only γ(0, n′, d) is nonzero.
This case also includes k = l and M = N = 0. Now let’s assume n′ < 4l. If
d = 0, which is equivalent to k = l and N = M . Then we can have i = 0 and
i = 4l− n′, so in this case Lk,l(N, M) = 2. If d > 0 then i = M , which is equivalent
to 4k − 4l = N − M , and so we get Lk,l(N, M) = 1.

Since n′, d and i must be multiples of 4 in order to have solutions, we get that M

and N must also be multiples of 4. The formula now follows.

If we consider c−kX = Y cl, then let γ′(i, n′, i + d) := γc−k,cl(i, n′, i + d). Notice that
no subword of cl of length at least two can be found in c−k because while letter
a always appears in cl in a subword of the form b−1ab, it appears in c−k only in a
subword of the form bab−1, and a similar statement is valid for the other letters. Thus
γ′(i, n′, i + d) 6= 0 if and only if n′ = 1, which is equivalent to 4k + 4l = M + N + 2.
Let the common maximal subword s be the letter x. If x is the (i + 1)-st letter in
cl, then x−1 appears in a position 4k − j − 1 in c−k where i ≡ j (mod 4). Since
x is two positions before or after x−1 in a commutator, we get that we must have
i ≡ i + d + 2 (mod 4), which is equivalent to d ≡ 2 (mod 4). Since n′ = 1, after
a few identities we get M ≡ 1 (mod 4). In this case γ ′(i, 1, i + d) = 1 for all i,
and i takes all values from 0 to min(4l, M) − 1 if M > 4l, and all values from 0 to
min(4l, M) if M < 4l.

(iii) We need to determine

min(4l,M)
∑

i=0

γ(i, n, i+d) for n = 0, which is equivalent to N +M =

4k + 4l.

Again, we consider ckX = Y cl first. Then γ(i, 0, i + d) is nonzero if and only if (10)
and one of (11) and (12) is true:

(ck)4k−i−d 6= (cl)i, (c
k)4k−i−d+1 6= (cl)i+1 (10)

(ck)4k−i−d(c
l)i+1 6= e (11)

(ck)4k−i−d = e or (cl)i+1 = e (12)

If we assume that none of the subwords in the conditions above are empty, which
is certainly the case for 0 < i < min(4l, M), and we number the letters in the
commutator powers modulo 4, then we obtain from (10) the condition 4k − i− d 6≡
i (mod 4) and from (11) the condition 4k − i − d − (i + 1) 6≡ 2 (mod 4). Thus we
have 2i + d 6≡ 0, 1 (mod 4). Since N + M = 4k + 4l, we have d = 4k −M , and thus
we can count for how many i between 1 and min(4l, M)− 1 one of the congruences
2i−M ≡ 2, 3 (mod 4) holds. A moment’s thought shows that if M ≡ 0, 3 (mod 4)

then there are bmin(4l,M)
2

c such i, and dmin(4l,M)
2

e − 1 else.

It remains to consider the cases i = 0 and i = min(4l, M), i.e. to evaluate γ(0, 0, d)
and γ(min(4l, M), 0, min(4l, M) + d). If, i = 0, then (10) is true if and only if d = 0
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(i.e. M = 4k) or M 6≡ 0 (mod 4). Furthermore, if d = 0 or M 6≡ 0 (mod 4) then
(12) cannot be true. (11) is true, if M 6≡ 3 (mod 4). Thus

γ(0, 0, d) =

{

1 M ≡ 1, 2 (mod 4) or M = 4k,

0 else.

For i = min(4l, M), suppose first that M < 4l. Then (10) is true if and only if
M 6≡ 0 (mod 4). (12) is true, since i = M , d = 4k−M , hence 4k− i− d = 0. Thus
for M < 4l

γ(M, 0, M + d) =

{

1 M ≡ 1, 2, 3 (mod 4) ,

0 else.

Finally, for M ≥ 4l, (10) is true if and only if M 6≡ 0 (mod 4) or M = 4l. Since
i = 4l, (12) is true. Thus for M ≥ 4l,

γ(4l, 0, 4l + d) =

{

1 M ≡ 1, 2, 3 (mod 4) or M = 4l,

0 else.

For c−kX = Y cl, let, as in (ii), γ′(i, 0, i + d) := γc−k,cl(i, 0, i + d). Then γ′(i, 0, i + d)
is nonzero if and only if (13) and one of (14) and (15) is true:

(c−k)4k−i−d 6= (cl)i, (c
−k)4k−i−d+1 6= (cl)i+1 (13)

(c−k)4k−i−d(c
l)i+1 6= e (14)

(c−k)4k−i−d = e or (cl)i+1 = e (15)

If we assume that none of the subwords in the conditions above are empty, which
is certainly the case for 0 < i < min(4l, M), and we number the letters in the
commutator powers modulo 4, then we obtain from (13) the conditions 4k−i−d+i 6≡
1, 3 (mod 4) and from (14) the condition 4k − i − d + i + 1 6≡ 1 (mod 4). Thus we
have M = 2(4), and γ ′ is nonzero for all min(4l, M) − 1 values of i in this range.

If, i = 0, then (13) is true if and only if M 6= 0 and M 6≡ 1 (mod 4). (14) is true, if
and only if M = 0 or M 6≡ 0 (mod 4), and (15) is true, if and only if M = 0. Thus

γ(0, 0, d) =

{

1 M ≡ 2, 3 (mod 4) ,

0 else.

For i = min(4l, M), suppose first that M < 4l. Then (13) is true if and only if
M 6≡ 1 (mod 4). (15) is true, since i = M , d = 4k−M , hence 4k− i− d = 0. Thus
for M < 4l

γ(M, 0, M + d) =

{

1 M ≡ 0, 2, 3 (mod 4) ,

0 else.
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Finally, for M ≥ 4l, (13) is true if and only if M 6≡ 3 (mod 4). Since i = 4l, (15) is
true. Thus for M ≥ 4l,

γ(4l, 0, 4l + d) =

{

1 M ≡ 0, 1, 2 (mod 4) ,

0 else.

The number of solutions to equation (9), when the combined length of the solutions
is greater than the combined length of the commutators, is given by the following two
propositions.

Proposition 4. The number of solutions of ckX = Y cl, where X and Y are words in Fr

of length N and M , respectively, k, l > 0, N + M > 4k + 4l, is given by the following
formulas. Let d = 2k− 2l + N−M

2
, n = N+M

2
− 2l− 2k, R = min(4l, 4k− d)−max(0,−d).

(o) Lk,l(N, M) =











0 R < 0
(2r−1)n+1−r+(−1)n(1−r)

2r
R = 0

determined by (i) and (ii) R > 0

(i) If d 6= 0 and 4l 6= 4k − d, then

Lk,l(N, M) =
(2r − 1)n−1(2r − 2)(R(r − 1) + r) + R(−1)n(2 − r)

r

+

{

sgn(d)(−1)
d+1

2 d odd, |N − M | > |4k − 4l|

0 else.

(ii) If d = 0 or 4l = 4k − d, then Lk,l(N, M) =

{

(R − 1) (2r−2)2(2r−1)n−1+(−1)n(4−2r)
2r

+ (2r−1)n+1+(−1)n

r
+ 1, if d = 0, k = l

(R − 1) (2r−2)2(2r−1)n−1+(−1)n(4−2r)
2r

+ (4r−3)(2r−1)n+(−1)n(3−r)
2r

+ 1
2
, else.

Proof. We begin by computing the sets Ai and Bi in Proposition 2. If k, l > 0, then for
max(0,−d) ≤ i ≤ min(4l, 4k − d)

Ai =







































{a} i = 4k − d

{b} i = −d

{a, b} i 6∈ {−d, 4k − d}, i ≡ − d (mod 4)

{a, b−1} i 6∈ {−d, 4k − d}, i ≡ 1 − d (mod 4)

{a−1, b−1} i 6∈ {−d, 4k − d}, i ≡ 2 − d (mod 4)

{a−1, b} i 6∈ {−d, 4k − d}, i ≡ 3 − d (mod 4)

(16)
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and

Bi =







































{a−1} i = 0

{b−1} i = 4l

{a−1, b−1} i 6∈ {0, 4l}, i ≡ 0 (mod 4)

{a, b−1} i 6∈ {0, 4l}, i ≡ 1 (mod 4)

{a, b} i 6∈ {0, 4l}, i ≡ 2 (mod 4)

{a−1, b} i 6∈ {0, 4l}, i ≡ 3 (mod 4)

(17)

We need to compute

min(4l,4k−d)
∑

i=max(0,−d)

φ′
n(Ai, Bi). If R < 0, the sum is clearly empty. For

R = 0, there is only one summand, and from i = max(0,−d) = min(4l, 4k − d) it is easy
to see that either i = 0 = 4k − d or i = −d = 4l. In both cases the result follows at once
from (16), (17), and Proposition 1. This concludes case (o).

For (i) and (ii), we will call the cases where i ∈ {0, 4l,−d, 4k−d} borderline cases and
refer to all the other cases as the general case. Comparison with Proposition 2 shows that
there are two borderline cases, namely i = max(0,−d) and i = min(4l, 4k − d), while the
remaining R − 1 cases form the general case.

General case. In order to compute the sum

min(4l,4k−d)−1
∑

i=max(0,−d)+1

φ′
n(Ai, Bi), (18)

we will first compute the (δ, σ) pairs in Proposition 1 from (Ai, Bi) then sum up the
corresponding values of the φ′-function. The following table can be easily obtained from
the definition of δ and σ in Proposition 1. It shows the values of (δ, σ) for all possible
values of i, d modulo 4.

(mod 4) i ≡ 0 i ≡ 1 i ≡ 2 i ≡ 3
d ≡ 0 (−2, 2) (2, 2) (−2, 2) (2, 2)
d ≡ 1 (0, 2) (0, 2) (0, 2) (0, 2)
d ≡ 2 (2, 2) (−2, 2) (2, 2) (−2, 2)
d ≡ 3 (0, 2) (0, 2) (0, 2) (0, 2)

Table 1: (δ, σ) for all possible values of i, d mod 4

Thus the sum in (18) is given by

• d ≡ 1, 3 (mod 4)

(R − 1)
(2r − 2)2(2r − 1)n−1 + (−1)n(4 − 2r)

2r

the electronic journal of combinatorics 13 (2006), #R93 14



• d ≡ 0, 2 (mod 4)

If d ≡ 0 (mod 4) then R− 1 = (min(4l, 4k− d)−max(0,−d)− 1) ≡ 3 (mod 4) and
i ranges from i ≡ 1 (mod 4) to i ≡ 3 (mod 4), thus we have 1

2
(R − 2) + 1 values of

the φ′-function with (δ, σ) = (2, 2) and 1
2
(R − 2) values with (δ, σ) = (−2, 2).

If d ≡ 2 (mod 4) then (R− 1) is odd, thus we can pair the values of the φ′ function
for (2, 2) and (−2, 2) in all but one case. Since i ranges from i ≡ 1 or 3 (mod 4) to
i ≡ 1 or 3 (mod 4) we have a φ′ value for (−2, 2) left over in all four cases.

Hence the sum is equal to

(R − 1)
(2r − 2)2(2r − 1)n−1 + (−1)n(4 − 2r)

2r
+ (−1)d/2.

Borderline cases. Let i0 = max(0,−d), i1 = min(4l, 4k − d). We need to compute

φ′
n(Ai0 , Bi0) + φ′

n(Ai1 , Bi1).

We are going to compute the (δ, σ) pairs and corresponding values of the φ′-function
from Proposition 1 for all possible values of i0 and i1. The results follow from simple
inspection of equations 16 and 17. It turns out that for certain values of i0 and i1 we
have φ′

n(Ai0 , Bi0) = φ′
n(Ai1 , Bi1), thus we will list these cases under a common item and

let i ∈ {i0, i1}.

• If d > 0 and 4l > 4k − d, then (δ, σ) =

{

(−1, 1) d ≡ 0, 1 (mod 4)

(1, 1) d ≡ 2, 3 (mod 4)

φ′
n(Ai, Bi) =

{

(2r−2)(2r−1)n−r+(−1)n(2−r)
2r

d ≡ 0, 1 (mod 4)
(2r−2)(2r−1)n+r+(−1)n(2−r)

2r
, d ≡ 2, 3 (mod 4)

• If d < 0 and 4l < 4k − d, then (δ, σ) =

{

(−1, 1) d ≡ 0, 3 (mod 4)

(1, 1) d ≡ 1, 2 (mod 4)

φ′
n(Ai, Bi) =

{

(2r−2)(2r−1)n−r+(−1)n(2−r)
2r

d ≡ 0, 3 (mod 4)
(2r−2)(2r−1)n+r+(−1)n(2−r)

2r
, d ≡ 1, 2 (mod 4)

• If d = 0 and 4l = 4k − d, then (δ, σ) = (0, 0)

φ′
n(Ai, Bi) =

(2r − 1)n+1 + (−1)n

2r
.
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Putting it all together. Adding up the solutions in the general and borderline cases,
we obtain

• d ≡ 0 (mod 4)

If d = 0 and k = l then

(R − 1) (2r−2)2(2r−1)n−1+(−1)n(4−2r)
2r

+ 1 + 2 (2r−1)n+1+(−1)n

2r
,

If (d = 0 and k 6= l) or (d 6= 0, 4l = 4k − d) then

(R − 1) (2r−2)2(2r−1)n−1+(−1)n(4−2r)
2r

+ 1 + (2r−1)n+1+(−1)n

2r
+

(2r−2)(2r−1)n−r+(−1)n(2−r)
2r

If d 6= 0, 4l 6= 4k − d

(R − 1) (2r−2)2(2r−1)n−1+(−1)n(4−2r)
2r

+ 1 + 2 (2r−2)(2r−1)n−r+(−1)n(2−r)
2r

.

• d ≡ 1 (mod 4)

If d > 0 and 4l > 4k − d

(R − 1) (2r−2)2(2r−1)n−1+(−1)n(4−2r)
2r

+ 2 (2r−2)(2r−1)n−r+(−1)n(2−r)
2r

If (d > 0 and 4l < 4k − d) or (d < 0 and 4l > 4k − d) then

(R − 1) (2r−2)2(2r−1)n−1+(−1)n(4−2r)
2r

+ 2 (2r−2)(2r−1)n+(−1)n(2−r)
2r

If d < 0 and 4l < 4k − d then

(R − 1) (2r−2)2(2r−1)n−1+(−1)n(4−2r)
2r

+ 2 (2r−2)(2r−1)n+r+(−1)n(2−r)
2r

• d ≡ 2 (mod 4) This is the simplest case. For all possible values of d, l, and k, we
obtain

(R − 1) (2r−2)2(2r−1)n−1+(−1)n(4−2r)
2r

− 1 + 2 (2r−2)(2r−1)n+r+(−1)n(2−r)
2r

• d ≡ 3 (mod 4)

If d > 0 and 4l > 4k − d then

(R − 1) (2r−2)2(2r−1)n−1+(−1)n(4−2r)
2r

+ 2 (2r−2)(2r−1)n+r+(−1)n(2−r)
2r

If (d > 0 and 4l < 4k − d) or (d < 0 and 4l > 4k − d) then

(R − 1) (2r−2)2(2r−1)n−1+(−1)n(4−2r)
2r

+ 2 (2r−2)(2r−1)n+(−1)n(2−r)
2r

If d < 0 and 4l < 4k − d then

(R − 1) (2r−2)2(2r−1)n−1+(−1)n(4−2r)
2r

+ 2 (2r−2)(2r−1)n−r+(−1)n(2−r)
2r

The proposition now follows after consolidating equal cases and simplifying terms.

Since Lk,l(N, M) = L−k,−l(N, M), the number of solutions of equation 9 when k, l < 0
is equal to L|k|,|l|(N, M). Thus it remains to compute the number of solutions when kl < 0.
With minimal changes to the proof of Proposition 4, we obtain
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Proposition 5. The number of solutions of ckX = Y c−l, where X and Y are words in
Fr of length N and M , respectively, k, l > 0, N + M > 4k + 4l, is given by the following
formulas. Let d = 2k− 2l + N−M

2
, n = N+M

2
− 2l− 2k, R = min(4l, 4k− d)−max(0,−d).

(o) Lk,l(N, M) =











0 R < 0
(2r−1)n+1+(−1)n

2r
R = 0

determined by (i) and (ii) R > 0

(i) If d 6= 0 and 4l 6= 4k − d, then

Lk,−l(N, M) =
(2r − 1)n−1(2r − 2)(R(r − 1) + r) + R(−1)n(2 − r)

r

−











(−1)d/2R d even

sgn(d)(−1)
d+1

2 d odd, |N − M | > |4k − 4l|

0 else.

(ii) If d = 0 or 4l = 4k − d, then Lk,−l(N, M) =

{

(R − 1) (2r−2)2(2r−1)n−1+(−1)n(4−2r)
2r

+ (2r−1)n+1+(−1)n(1−r)
r

− R, if d = 0, k = l

(R − 1) (2r−2)2(2r−1)n−1+(−1)n(4−2r)
2r

+ (4r−3)(2r−1)n+(−1)n(3−2r)
2r

− R, else.

The propositions in this sections now allow us to compute the number of solutions of
equation 8 in the following theorem, which is a special case of Theorem 1.

Theorem 2. Let k, l be nonzero integers, N, M be positive integers, x1, . . . , xN+M , a, b ∈
{a±1

1 , . . . , a±1
r } with a and b fixed such that a, a−1 6= b, and let c = [a, b]. Then the number

of solutions (x1, x2, . . . , xN+M) of the equation x1 . . . xNckxN+1 . . . xN+M = cl is given by

N
∑

n=0

M
∑

m=0

Lk,l(n, m)V r
n (N)V r

m(M).

6 Conclusion

We have counted the number of bounded length solutions to two variable equations of the
form WX = Y U , which is equivalent to counting the number of restricted walks that lie
in a given ball of an infinite regular tree of even degree.

While we have tackled only the simplest case of the general question posed in the In-
troduction, the methods used can be generalized to obtain formulas for more complicated
cases. The expressions for the Lk,l(N, M) function in Propositions 4 and 5 indicate that
writing out a formula for a more general case will be very tedious.
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