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Abstract

It is proved that, if G is a K -minor-free graph with maximum degree 3, then GG
is totally 4-choosable; that is, if every element (vertex or edge) of G is assigned a list
of 4 colours, then every element can be coloured with a colour from its own list in
such a way that every two adjacent or incident elements are coloured with different
colours. Together with other known results, this shows that the List-Total-Colouring
Conjecture, that ch”(G) = x"(G) for every graph G, is true for all K -minor-free
graphs and, therefore, for all outerplanar graphs.

Keywords: Outerplanar graph; Minor-free graph; Series-parallel graph; List total
colouring.

1 Introduction

We use standard terminology, as defined in the references: for example, [8] or [10]. We
distinguish graphs (which are always simple) from multigraphs (which may have multiple
edges); however, our theorem is only for graphs. For a graph (or multigraph) G, its
edge chromatic number, total (vertex-edge) chromatic number, edge choosability (or list
edge chromatic number), total choosability, and maximum degree, are denoted by \'(G),
X" (G), ch'(GQ), ch"(G), and A(G), respectively. So ch”(G) is the smallest k for which G
is totally k-choosable.

There is great interest in discovering classes of graphs G for which the choosability
or list chromatic number ch(G) is equal to the chromatic number x(G). The List-Edge-
Colouring Conjecture (LECC') and List-Total-Colouring Conjecture (LTCC') [1, 4, 6] are
that, for every multigraph H, ch’(H) = x/(H) and ch”(H) = x"(H), respectively; so the
conjectures are that ch(G) = x(G) whenever G is the line graph or the total graph of a
multigraph H.
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For an outerplanar (simple) graph H, Wang and Lih [9] proved that ch'(H) = y/(H) =
A(H)if A(H) >3 and ch”(H) = x"(H) = A(H) + 1 if A(H) > 4. For the larger class of
K -minor-free (series-parallel) graphs, the first of these results had already been proved by
Juvan, Mohar and Thomas [7], and the second was proved by Hetherington and Woodall
[5], following an incomplete outline proof by Zhou, Matsuo and Nishizeki [12]. This proves
both the LECC and the LTCC for K -minor-free (simple) graphs, except for the following
missing case, the proof of which is the sole achievement of this paper.

Theorem 1. If H is a Ky-minor-free graph with maximum degree 3, then ch”(H) =
X'(H) = 4.

In Section 2 we set up the framework for proving Theorem 1, and prove it subject to
a number of technical lemmas; these lemmas are proved in Sections 3-5. The resulting
proof of Theorem 1 is very long; it would clearly be desirable to have a shorter proof.

For brevity, when considering total colourings of a graph G, we will sometimes say
that a vertex and an edge incident to it are adjacent or neighbours, since they correspond
to adjacent or neighbouring vertices of the total graph T(G) of G. In the context of this
paper, by a 4-list-assignment A to a graph G we always mean an assignment of a list A(z)
of four colours to every element (vertex or edge) z of G.

2 The framework for the proof

We first define the concept of a sepachain (short for series-parallel chain). Consider
first a graph GG containing exactly two vertices w,v with degree 1, with neighbours x,y
respectively. It is convenient to draw G as in Fig. 1(a); note however that u and v are
vertices of G, despite being outside the region labelled G in the figure. The sepachains
form a subclass of graphs of this type. They are defined inductively as follows: a path
(with at least one edge) is a sepachain; and if G; and G9 are sepachains then the graphs
formed by joining them in series and in parallel, as in Figs 1(b) and 1(d), are both
sepachains. A sepachain is nontrivial if it is not a path of length 1 or 2; that is, if the
vertices u, z,y,v in Fig. 1(a) are all distinct. The relevance of sepachains is shown by the
following easy lemma.

Lemma 1. Let H be a Ky-minor-free block with mazimum degree at most 3. Suppose
H contains a vertex zy of degree 2, with neighbours x,vy, and H' is formed from H by
replacing zy by two vertices u,v of degree 1 with neighbours x,y respectively. Then H' is
a nontrivial sepachain.

Proof. We prove the result by induction on |V (H)|. It is clear that = # y, so that H'
is not a trivial sepachain. The result holds if H' is a path, so suppose that it is not.
Suppose first that there do not exist two edge-disjoint zy-paths in H’. Then, by the
edge-separation analogue of Menger’s theorem, there is a cutedge in H' separating x from
y; that is, H' can be labelled as in Fig. 1(b), where y,v; = uszs is the cutedge. Fori = 1,2,
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Fig. 1
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if x; = y; then G; is a path of length 2, which is a (trivial) sepachain, and if z; # y; then
we may suppose that G; is a (nontrivial) sepachain by the induction hypothesis applied
to the Kj-minor-free block obtained from G; by identifying w; with v;. Thus H’ is a
sepachain, formed by joining G; and G5 in series.

Suppose now that there exist two edge-disjoint zy-paths in H’, necessarily internally
vertex-disjoint and with no connection between them, since H has maximum degree at
most 3 and no K4 minor. If one of these paths is a single edge, then H’ looks like
Fig. 1(h), where if G; is not a path of length 2 (as in Fig. 1(g)) then it is a nontrivial
sepachain, by the induction hypothesis applied to the K4-minor-free block obtained from
G by identifying u; with v;. If neither of the paths is a single edge, then H’ looks like
Fig. 1(d), where each of Gy, Gy is either a path of length 2 (as in Fig. 1(e) or 1(f)) or
a nontrivial sepachain, by the same inductive argument. In all cases, H' is a nontrivial
sepachain, formed by joining G; and G5 in parallel. O

We say that a nontrivial sepachain G (labelled as in Fig. 1(a)) is very good for total
4-choosability if, for each 4-list-assignment A to GG, and each way of colouring the elements
u, ux, vy, v with colours Ay, Auz, Ay, Ay from their lists, this colouring can be extended to
a total A-colouring of G. Not every sepachain is very good for total 4-choosability, since
if z, y are adjacent, and every element is given list {a, b, ¢, d}, and u, uz, vy, v are coloured
with colours c, d, ¢, d respectively, then this colouring cannot be extended to the elements
x,zy,y (which must all be given different colours but can only be coloured with a or b).
Because of this and similar examples, we introduce a weaker concept.

We say that a nontrivial sepachain G is good for total 4-choosability if, for each 4-list-
assignment A to G, there is one of the conditions in Table 1 such that, if the elements
u, ux, vy, v are given colours A, Ayz, Ay, Ay from their lists in a way that does not match
any of the forbidden patterns given for that condition in the table (and A, # A, and
Aoy # Ay, of course), then this colouring can be extended to a total A-colouring of G.
Here a, b, c,d, e, f are distinct specific colours (depending on G and A), u, v, £ are variable
colours, and a dot denotes an arbitrary colour (so that, for example, - £ & - denotes any
colouring in which uz and vy are given the same colour). For example, if the the pair
(G,A) is as in Fig. 2(a), where the lists are written as abcd rather than {a,b, c,d}, and
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Condition

N(a,b,c,d,e)

O(a, b, c)
P(a,b,c)
Q(a,b,c)
R(a,b,c)

Forbidden colourings
of u,ux,vy,v

2%
2%

avbv
avbv

avbv
avbv
avby
avby
avby

avby
avby
avbv
avbv

avbv

abca
-bca
abca
abca

“be-
abca
abca
abca
abca

abca
abca

abed
-bed
abed
abed

abed
abed

.55.
aba -

afg -
ab -

ach -
cac-
-che
abab
abcb

-che
cbeb
acac
acdc

dede
aéa

aba -
acac

bebe
abad

aba -
abda
adad
bdbd

dbd -
dede

aléd
aba -
abd -
acdc

abe -
aede

acac

cbeb

dede
dbdb
dede

ecec

dbda

ebea
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Forbidden colourings
of u,ux, vy, v

WV pv

pajpd
papb

pajpd
pajpb
apb
apb
apb

papb
papb
pajpb
pajpb

papb

abe -
abca

abca
abca
abca
abca

abca

abce -
abed
abed

abed
abed

-bab

-EED
'a/b'

-ach
-cbe
cac-

abab
acab

cac-
acac
cbeb
cdeb

cded

raca

baba

adcd
-aca
adca
dada
dedce

-ded

-ded
-acd
babd

-ecd
eaed

cbeb

acac

cded
adad
cded

cece

adcd

aece



if the elements w,ux,vy, v are given colours A, Ayz, Ay, Ay, then this colouring can be
extended to a total A-colouring of G unless A\, = A\, € {c,d, e} and (A\ys, Ay) = (a,b), or
(Aus Auzs Avys Av) = (€, a,b, ¢); hence it can be extended if Ay, Ayz, Ayy, Ay does not match
either of the patterns given for condition D’(a,b) in Table 1. The precise form of Table 1
is determined by the proof of Lemma 9.

We say that a colouring of u, ux, vy, v satisfies condition = if it does not match any of
the patterns given for condition = in Table 1. A pair (G, A), comprising a sepachain G
with associated 4-list-assignment A, is of type = if every colouring that satisfies condition =
can be extended to a total A-colouring of GG, but this is not true for any earlier condition
in Table 1. According to this definition, (G,A) cannot have more than one type, and
Theorem 2 implies that if G is nontrivial then (G, A) has exactly one type. For example,
if (G,A) is as in Fig. 2(a) then it has type D’(a,b); if it is as in Fig. 2(b) (which is the
same with a different labelling of the colours) then it has type D’(d,e); and if G is very
good for total 4-choosability then (G, A) has type A, for every 4-list-assignment A.

Our proof of Theorem 1 rests on the following result.

Theorem 2. Every nontrivial sepachain G is good for total 4-choosability.

Outline proof. We prove the result by induction on |[V(G)|. The base case for the
induction is a path of length 3, whose goodness follows from that of the configuration in
Fig. 1(g), proved in Lemma 8. If G is a nontrivial sepachain that is not a path of length 3,
then it is formed by joining two smaller, possibly trivial, sepachains G; and G in series
or in parallel.

If G is formed by joining GG; and G5 in series, then we may assume that neither G,
nor G5 is a single edge (since if Gy, say, is a single edge, then G = G), and that G; and
G4 are not both paths of length 2 (since, if they are, then G is a path of length 3). We
may assume inductively that if G or G5 is nontrivial then it is good. If G5, say, is a path
of length 2, then G is as in Fig. 1(c), and it is proved good in Lemma 2. If G| and G are
both nontrivial then G is as in Fig. 1(b), and it is proved good in Lemma 3.

If G is formed by joining G; and G5 in parallel, then each of GGy and G5 can be a single
edge, a path of two edges, or nontrivial, except that G; and G5 cannot both be single
edges since G is simple. If Gy, say, is a single edge, then G is as in Fig. 1(g) or 1(h), and
it is proved good in Lemma 8 or 9 respectively. If G5 is a path of length 2 and G, is not
a single edge, then G is as in Fig. 1(e) or 1(f), and it is proved good in Lemma 7 or 6
respectively. Finally, if G; and G5 are both nontrivial then G is as in Fig. 1(d), and it is
proved good in Lemma 5. O

We now show how Theorem 2 implies Theorem 1.

Proof of Theorem 1. Let H be a K ;-minor-free graph with maximum degree 3. It is
clear that ch”(H) > x"(H) > 4, and so it suffices to prove that ch”(H) < 4. In proving
this we assume only that the maximum degree of H is at most 3. Suppose if possible that
ch”(H) > 4 and that H has as few vertices as possible subject to this condition. It is
clear that H is connected and has no vertex with degree 0 or 1.
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If H is 2-connected let B = H and let zg be any vertex of degree 2 in H, which exists
by the well-known result of Dirac [2] that every Kj-minor-free graph has a vertex with
degree at most 2. If H is not 2-connected let B be an end-block of H with cutvertex zy.
In either case, zy has degree 2 in B. Let its neighbours in B be z and y, and let G be the
graph obtained from B by replacing zo by two vertices u, v of degree 1 with neighbours
x,y respectively. By Lemma 1, G is a nontrivial sepachain.

Let A be a 4-list-assignment to H such that H has no total A-colouring. If B # H
then we may suppose that H — (B — z) has a total A-colouring; uncolour zq, and for
each uncoloured element z let L(z) denote the residual list of colours in A(z) that are not
used on any element adjacent to z, and so are still available for use on z. If B = H let
L(z) = A(z) for every element z. In either case,

2 if z = z,
|L(2)] =< 3 if 2= zx or 2y,
4 otherwise.

We can transfer these lists to G by defining L(u) = L(v) = L(2g), L(uz) = L(zoz) and
L(vy) = L(z0y). A total L-colouring of H corresponds to a total L-colouring of G in
which u,v have the same colour and w,uz,vy have three different colours. A study of
Table 1 shows that for every type of GG, we can ensure that a colouring of u, ux, vy, v with
these properties can be extended to a total L-colouring of G provided that we avoid a
fixed colour on one of uz and vy. Specifically, if G has type D(a,b), D'(a,b) or E'(a,b, c),
then such a colouring will extend provided that ux does not have colour a. If G has type
E(a,b,c), then it is enough that ux does not have colour c. If G has one of types O-Y,
A(a,b,c,d), B(a,b,c,d) or D(a,b,c,d,e), then it is enough that ux does not have colour b.
If G has one of types P'~X', A'(a,b,c,d), B'(a,b,c,d) or D'(a,b,c,d,e), then it is enough
that vy does not have colour c. If G has any other type, then no restriction is needed.

If we must avoid a particular colour @ on ux, then colour ux (and zpx) first with a
colour b € L(zyx) \ {a}, then colour u (and v and zy) with a colour ¢ € L(z) \ {b}, and
finally colour vy (and zoy) with a colour d € L(zpy) \ {b, c}. If we must avoid a particular
colour on vy, then colour vy, u, uz in the reverse order. Either way, this colouring extends
to a total L-colouring of G and hence to a total A-colouring of H, and this contradiction
completes the proof of Theorem 1. O

The remainder of the paper is devoted to the lemmas needed to prove Theorem 2.

3 The series constructions

In this section we will use only the following property of good sepachains, which can be
seen by a careful study of Table 1: if A is a 4-list-assignment to a nontrivial good sepachain
G, and v and ux are coloured from their lists, and we wish to extend this colouring to a
total A-colouring of G, then there are at most two possible choices for the colour of vy
that place any restriction at all on the colour of v, and there is at most one choice that
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forbids more than one colour for v (in addition to the obvious restriction that v must have
a different colour from vy).

Lemma 2. If a nontrivial sepachain G is good for total 4-choosability, then the sepachain
G in Fig. 1(c) is very good for total 4-choosability.

Proof. Let A be a 4-list-assignment to G, and let colours A, Az, Ay, Ay be assigned
to u, ux,vy,v. At this point there are at least two colours that we can use on the vertex
vy =y and at least three colours that we can use on the edge v1y;. So give v1y; a colour
that places no restriction at all on the colour of v; (if we want to extend this colouring to
G1), and then give v; a colour different from the colour we have just given to viy;. Now
this colouring of u=wu1, ur=wu 1, v1y; and v; can be extended to the whole of G, and
so the original colouring of u, ux, vy, v can be extended to a total A-colouring of G. O

Lemma 3. If G; and G5 are nontrivial sepachains that are good for total 4-choosability,
then the sepachain G in Fig. 1(b) is very good for total 4-choosability.

Proof. Let A be a 4-list-assignment to G, and let colours Ay, Ayz, Ay, Ay be assigned
to u, ux,vy,v. Consider the edge y,v; =usxs. There are at most two of the four possible
colours for this edge that place any restriction at all on the colour of us (if we want to
extend this colouring to G3), and there is at most one colour for this edge that forbids
more than one colour for vy (if we want to extend this colouring to G1). So give this edge
a colour that places no restriction on uy and forbids at most one colour for vy, and give
vy a colour that is not forbidden (and is different from the colour of the edge). Now this
colouring can be extended to the whole of GGy. If we now delete the colour that we assigned
to v, then the resulting colouring of wus, usxs, v9ys =vy and ve=v can be extended to
the whole of GG5. Thus the original colouring of u,ux,vy,v can be extended to a total
A-colouring of G. O

4 The easier parallel constructions
In this section we will need the following easy lemma.

Lemma 4. (a) ch'(Cy) = x/(Cy) = 2.

(b) If C': zwiywox is a 4-cycle and every edge z of C is given a list I'(z) of three colours,
and if p,v are arbitrary colours, then the edges of C' can be coloured from their lists in
such a way that adjacent edges get different colours and, for each i € {1,2}, zw; is not
coloured with p, yw; is not coloured with v, and if xw; is coloured with v then yw; is not
coloured with .

Proof. (a) follows from the well-known result [3] that a cycle of even length is 2-
choosable (or, equivalently, edge-2-choosable). To prove (b), for each i let L(zw;) :=
[(zw;) \ {p} and L(yw;) := T'(yw;) \ {v}, so that |L(z)| > 2 for each edge z. We may
assume that v € L(xw;) and p € L(yw;) for at least one 7, since otherwise we require only
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Forbidden Forbidden

Condition Colouring colourings Condition Colouring colourings
of u,v of u,v

of ux, vy of ux, vy

A pv v &€
B(a,b) av va ba B'(a,b) wh bu ba
C(a,b) av vb ¢ C'(a,b) wh ap ¢
E(a,b,c) av vb cbh E'(a,b,¢) wh ap ac
G(a,b,c) ac ca ch G'(a,b,c) ch ac be
J(a,b,c,d) dc cb cd J'(a,b, ¢, d) cd ac dc
L(a,b,c,d) ac ca ch L'(a,b,c,d) cb ac bc
M(a,b,c,d) ac cbh cd M'(a,b,c,d) cbh ac dc

O(a,b,c) aa bc €
S(a,b,c,d) ad ba bc S'(a,b,c,d) ad bc dc
U(a,b,c,d) aa bc bd U'(a,b,c,d) aa bc dc

Z(a,b,c,d) ad be ¢
A(a, b, c,d) ad ba be A'(a,b,c,d) ad be dc
D(a,b,c,d,e) ad be be D'(a,b,c,d,e) ad be ec

Table 2

that xw; and yw; should have different colours for each ¢, and the result follows from part
(a). So suppose that v € L(zw,) and p € L(yw,). If u € L(yw,), then colour zw, with v,
ywe with u, and zws, and yw; with colours different from both g and v, which is possible
since p ¢ L(zws) and v ¢ L(yw;). If however u ¢ L(yws), then colour yw; with p, zw,;
with a colour different from both p and v, zwy with a colour different from that of xwy,
and yws with a colour different from that of xws, and necessarily different from p. O

If A is a 4-list-assignment to a nontrivial sepachain G, labelled as in Fig. 1(a), and
u,v are given colours \,, A, from their lists, then we say that (G, A, \,, \,) is standard
(or, if the lists and colours are clear from the context, we say just that G is standard) if
there is at most one pair of colours p € A(ux) \ {\,} and v € A(vy) \ {\,} such that,
if ux, vy are given colours pu, v respectively, then this colouring cannot be extended to
a total A-colouring of G. For more than half of the possible types for (G, A), it can be
seen from Table 1 that every possible colouring of u, v results in G being standard. The
exceptions are listed in Table 2. Note that in most of these cases it is possible to change
the colour of v or v in such a way that G' becomes standard.

Lemma 5. If G; and G5 are nontrivial sepachains that are good for total 4-choosability,
then the sepachain G in Fig. 1(d) is very good for total 4-choosability.

Proof. Let A be a 4-list-assignment to G, and let colours Ay, Ayz, Ay, Ay be assigned to
u, ux,vy,v. At this point there are at least two colours available for use on each of x,y
and at least three for use on each of the edges in the set Ey := {zz1, xx2, yy1,yy2}-
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Suppose first that we can assign colours to z and y in such a way that both G; and
G+ are standard. In this case we borrow a trick from [7], which we call the standard trick;
note that it can only be used after x and y have both been coloured. For each z € Ej,
let L(z) denote the set of colours that can now be used on z, where |L(z)| > 2. For each
i, if there is an ordered pair u; € L(xx;), v; € L(yy;) of colours that is forbidden for
xx;, yy;, and p; # v;, then choose a new colour &;, not contained in any other list, and
set L'(zx;) == L(zz;) U{& \ {i} and L' (yy;) = L(yy;) U{&} \ {vi} (we call this the
standard construction); otherwise, set L'(xx;) := L(zz;) and L'(yy;) := L(yy;). Identify
x;,y; into a new vertex w;. By Lemma 4(a), the edges of the 4-cycle zwiywsz can be
coloured from the lists L'. Transfer this colouring to G (giving edges xx;, yy; the colours
of zw;, yw;). For each i, at most one of the edges xx;, yy; is coloured with the new colour
&. I, say, zx; is, then uncolour zx; and recolour it with a colour that is not used on uz,
x or xxs_;; perhaps it will now have the same colour as yy;, but that is acceptable. In
this way we can colour the edges in Fy so that neither pair xx;, yy; is given its forbidden
pair of colours (if it has one), and so this colouring can be extended to both graphs G; so
as to form a total A-colouring of G.

It is clear from Table 2 that this proves the result unless one of G; and G5 has type
A, B,C, E, B, C" or ', since in all other cases we can choose a colour for z (= u;) such
that G, is standard whatever the colour of y (= v1), and we can choose a colour for y
(= v2) such that G is standard whatever the colour of x (= uz). It also proves the result
if G1, say, has type B, C or E (or B, C'" or E') and G5 has any type other than A, B, C
or E (or A, B', C" or E'), for the same reason. There remain two cases to consider.

Case 1: G, (say) has type A.

Suppose first that G also has type A. Colour x,y with colours u, v from their lists, and
identify x;,y; into a new vertex w;, for each 7. Colour the edges of the 4-cycle zwywsx
as in Lemma 4(b), and transfer this colouring to G (giving edges xx;, yy; the colours of
xw;, yw;). Then all the requirements of Condition A are satisfied for both G; and Ga,
and so this colouring can be extended to a total A-colouring of G.

If G5 has any type other than A, then it is possible to assign colours to x,y in such a
way that G5 is standard. Using the standard construction, we can modify the lists so that
the colouring can be extended to G5 as long as xxy and yy, do not have the same colour.
The result now again follows from Lemma 4(b), used as in the previous paragraph.

Case 2a: G has type B(a,b), C(a,b) or E(a,b,c) and Gy has type B(da’, V'), C(a',') or
E(d,V, ).

Case 2b: Gy has type B'(a,b), C'(a,b) or E'(a,b,c) and G has type B'(d/, V'), C'(d', V')
or E'(a',V,c).

Case 2b is the same as Case 2a reflected left-to-right, and so we will consider only Case 2a.
Give z,y colours from their lists so that « (= usg) is not given colour a’. Then G, is
standard; carry out the standard construction on G5 if necessary, so that it suffices for
xxe and yys to be given different colours. We may assume that the colour of x is a (so
that a # a’), since otherwise G is standard as well. There are now at least two colours
available for each of the edges in Ej.
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If G has type B(a,b), then give yy; (= v1y1) a colour different from a, then colour yys
(differently from yy;), xzo (differently from yy,) and zx; (differently from zxs; possibly
xxq has the same colour as yy;, but this does not matter). This colouring can be extended
to a total A-colouring of G. If Gy has type F(a,b,c) then the same argument works if
we start by giving yy; a colour different from b. Thus we may assume that Gy has type
C(a,b). By interchanging GG; and G, if necessary, we may assume that Gy also has type
C, specifically C'(a’,0’). However, since z (= uy) does not have colour @', it can be seen
from Table 1 that condition C'(a’,d’) imposes no restriction on the colours of xxs (= usxs)
and yya (= vays). So colour zx; differently from y, and yy; differently from zxq, then xxo
differently from xx;, and yy, differently from yy;. This colouring can be extended to a
total A-colouring of GG, and this completes the proof of Lemma 5. O

Lemma 6. If a nontrivial sepachain G is good for total 4-choosability, then the sepachain
G in Fig. 1(f) is very good for total 4-choosability.

Proof. Let A be a 4-list-assignment to GG, and let colours Ay, Ayz, Ay, Ay be assigned to
u, ux, vy, v. For each uncoloured element z, let L(z) denote the set of colours that can now
be used on z, so that |L(2)| > 2 if z € {z,y}, |L(2)| = 3 if z € Ey := {xs,ys, zx1,yy1 },
and |L(s)| = 4. There are two cases to consider, which are dealt with by rather similar
arguments.

Case 1: Gy has type A.

If we colour x and y with arbitrary colours u, v from their lists, and identify x,y; into a
new vertex wi, then it follows from Lemma 4(b) that we can colour the four edges in a
way that meets all the required conditions. The only problem is if z, xs, ys, y have been
given the four distinct colours in L(s). This will not happen if z and y are given the same
colour, or if one of them has been given a colour not in L(s), and so we may assume that
this is not possible; specifically, we assume that

L(z) = {a, b}, L(y) = {¢,d}, L(s) ={a,b,c,d}.

If it is possible to colour x, xs,y so that xs and y have the same colour, do so, w.l.o.g.
with colours a, ¢, ¢, then colour xxq, yy;,ys, s in that order, which is possible since both
ys and s have two neighbours with the same colour. (Specifically, we colour xz; with a
colour ¢; € L(zzy) \ {a,c}, yy1 with co € L(yyr) \ {c,c1}, ys with ¢z € L(ys) \ {c, e},
and s with ¢4 € L(s) \ {a, ¢, c3}.) In view of this, we may suppose that L(xs)N L(y) = 0,
and similarly that L(xz) N L(ys) = (. Thus there exist colours e € L(xzs) \ L(s) and
e € L(ys) \ L(s), where possibly e = ¢'.

Now colour x and y with arbitrary colours pu, v from their lists, and extend this colour-
ing to the edges in Fy using Lemma 4(b). If xs or ys is coloured with e or ¢’ or any
other colour not in L(s), then this colouring can be extended to s and hence to a total
A-colouring of G. So we may assume that this is not so, and that

L(zs) = {a,b, e}, L(ys) = {c,d, €'}, L(zs) N L(ys) = 0,
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and zz1,yy; are coloured with e, e’ respectively (so that e # €’), since otherwise we could
recolour zs or ys with e or ¢’ or some other colour not in L(s), without changing the colour
of any other element. But now we can recolour yy; with a colour ¢; € L(yy;) \ {e, €'}, y
with a colour in {c¢,d}\ {c1}, and ys with €/, and this colouring can be extended to s and
then to a total A-colouring of G.

Case 2: G1 does not have type A.

By reflecting left-right if necessary, we may assume that GG; does not have any of the types
in the right half of Table 2, so that it is possible to colour z (= u;) in such a way that,
whatever colour is given to y (= v;), G is standard. If this is done, then the standard
trick together with Lemma 4(a) shows that the edges in Ey can be coloured so that all
conditions are satisfied. As in Case 1, the only problem is if z, zs, ys, y have been given
the four distinct colours in L(s). This will not happen if x and y are given the same
colour, or if one of them has been given a colour not in L(s), and so we may assume that
this is not possible; specifically, we assume that

x has colour a, L(y) = {c,d}, L(s) ={a,b,c,d}.

If it is possible to colour xs and y with the same colour (and x with a), do so, then colour
rT1, YY1, ys, s in that order, which is possible since both ys and s have two neighbours
with the same colour. (The colour ¢; given to zz; rules out at most one colour ¢y for
Yy, if (1, ¢2) is the forbidden ordered pair; it is irrelevant whether or not ¢; = ¢3.) In
view of this, we may suppose that L(zs) N L(y) = 0, so that there is at least one colour
e € L(xs) \ L(s).

Now colour x with a and y with an arbitrary colour v € L(y), and extend this colouring
to the edges in Ej using the standard trick and Lemma 4(a). If zs or ys is coloured with
e or any other colour not in L(s), then this colouring can be extended to s and hence to
a total A-colouring of G. So we may assume that this is not so.

Suppose first that e € L(ys). Then we can change the colour of zs or ys to e without
changing any other colour, unless xx; and yy; both have colour e. (This is after completing
the standard trick, when zz; and yy; may have the same colour.) In that case, recolour
xs with e and zz; with a colour in L(xx1)\ {a, e}; if this would cause xz; and yy; to have
the forbidden pair of colours, then, instead, recolour ys with e and yy; with a colour in
L(yy1) \ {v, e}, and note that now zx; and yy; cannot have the forbidden ordered pair of
colours. So the colouring can be extended to s and then to a total A-colouring of G.

So we may assume that e ¢ L(ys). Now recolour xs with e, xx; with a colour
¢ € L(zzy) \ {a, e}, yy; with a colour co € L(yy;) \ {v} such that (ci,cy) is not the
forbidden ordered pair of colours, and ys with a colour in L(ys) \ {v, c2}. This colouring
can be extended to s and then to a total A-colouring of G, and this completes the proof
of Lemma 6. 0O

The following lemma is a special case of a result in [11], where it is proved by an
entirely different method. For completeness, we include here a proof using the methods
of the current paper.

Lemma 7. The sepachain G in Fig. 1(e) is very good for total 4-choosability.
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Proof. Let A be a 4-list-assignment to G, and let colours Ay, Ayz, Ay, Ay be assigned to
u, uz, vy, v. For each uncoloured element z, let L(z) denote a set of colours that can now
be used on z, where
2 if z==xory,
|L(z)| = ¢ 3 if zis an edge, (1)
4 if z=rors.

Note that if we first colour z and y, then we can colour the four edges by Lemma 4(a)
since each edge has at least two usable colours in its list, and we can then colour r and s
unless either x, zr, ry, y have been coloured with the four distinct colours in L(r), or else
x,xs, sy, y have been coloured with the four distinct colours in L(s). This will not happen
if we can give x and y the same colour, and so we may assume that L(z) N L(y) = 0;
specifically, we choose

L(z) ={a,b} and L(y)={c,d}. (2)

The same method of colouring will work if we can give = or y a colour that is not in
L(r)U L(s), and so we may assume that

{a,b,c¢,d} C L(r) U L(s). (3)

It will also work if we can give x a colour not in L(r) and y a colour not in L(s), or vice
versa, and so we may assume that

L(x) C L(r) or L(y) C L(s), and L(z) C L(s) or L(y) C L(r). (4)

Suppose that L(z) N L(ry) # (. Then colour « and ry with the same colour p, and let
L'(z) :== L(z) \ {u} for each uncoloured element z. By (1) and (2), |L'(z)| > 2 for each z,
and |L'(z)| > 3 if z € {r, s}. If it is now possible to colour xs and y with the same colour,
do so, and then colour zr, r, sy, s in that order. If however this is not possible, then either
|L'(s)| = 4, or else L'(zs) or L'(y) contains a colour not in L'(s); in either case, colour
xs, sy and y in that order, using a colour not in L'(s) if possible, and then colour s, xr
and 7 in that order. In view of this and symmetric arguments, we may assume that

L(x) N L(ry) = L(x) N L(sy) = L(y) N L(xr) = L(y) N L(xs) = 0. (5)

If L(r) = L(s) = {a, b, c,d}, then by (1), (2) and (5) we can colour zr with a colour f ¢
L(r) and sy with a colour f’ ¢ L(s), and we can then colour the elements zs,ry, z,y,r, s
in that order, since f ¢ L(z) and f" ¢ L(y) by (2).

If L(r) = {a,b,c,d} and L(s) # {a,b,c,d}, say d ¢ L(s), then we can colour zr with
a colour f ¢ L(r) and y with the colour d ¢ L(s), and we can then colour the elements
Ty, SY, xS, x, T, s in that order, since f ¢ L(z).

So we may assume that L(r) # {a,b,c,d} and L(s) # {a,b,c,d}. By (1)-(4) and
symmetry we may therefore assume that L(r) = {a, b, c,e} and L(s) = {a,b,d, '}, where
possibly e = ¢’ but e, ¢’ ¢ {a,b,c,d}.

Note that if three mutually adjacent elements each have a list of two colours, then
they can be coloured from these lists unless the lists are all identical. Thus if we colour

THE ELECTRONIC JOURNAL OF COMBINATORICS 13 (2006), #R97 13



ry and sy with colours p and ¢, then we can extend this colouring to zr, x and xs unless
L(zr) = {a,b,p} and L(xzs) = {a,b,q}. We will use this idea in conjunction with the
following table, which we will explain shortly.

Colouring for At least one
rY, Y, SY extends because
(i) fdec or decg d¢ L(r) and ¢ ¢ L(s).
(ii) fdec or fecd f ¢ L(r) and ¢ ¢ L(s).
(iii) fdc or fcg f ¢ L(r) and ¢ ¢ L(s).
(iv) fed or fecg f ¢ L(r) and ¢ ¢ L(s).
(v) fegr or fcgs f & L(r) and ¢ ¢ L(s).

By (2) and (5), {a,b} N L(ry) = 0, and so there is a colour f € L(ry) \ {a,b,c,d}.
Similarly, there is a colour g € L(sy) \ {a,b, ¢, d}, where possibly g = f. If d € L(ry)
and ¢ € L(sy), then we can colour ry,y, sy respectively with either f,d,c or d,c,g as
in row (i) of the table; at least one of these colourings can be extended to xr,z,zs as
explained in the previous paragraph (since L(xs) cannot equal both {a, b, c} and {a,b, g}),
and then to r and s since d ¢ L(r) and ¢ ¢ L(s). So we may suppose that d ¢ L(ry) or
c ¢ L(sy), wlo.g. d ¢ L(ry). It follows that there are at least two possible choices for
f € L(ry) \ {a,b,c,d}, and we can ensure f # e, so that f ¢ L(r). If {c,d} C L(sy),
we can complete the colouring by using one of the schemes for ry, y, sy in row (ii) of the
table; thus we may assume that {c,d} ¢ L(sy), which means that there are at least two
choices for g, and we can choose g # f. Now if ¢ € L(sy) or d € L(sy) we can complete
the colouring using row (iii) or (iv) of the table respectively, and so we may assume that
neither of these happens. This means that there are three choices for g, and we can choose
distinct colours g1, g2 € L(sy) \ {a, b, c,d, f}. Finally we can complete the colouring using
row (v) of the table, and this completes the proof of Lemma 7. O

5 The harder parallel constructions
Lemma 8. The sepachain G in Fig. 1(g) is good for total 4-choosability.

Proof. Let A be a 4-list-assignment to G, and let colours Ay, Ayz, Ay, Ay be assigned to
u, ux,vy,v. For each uncoloured element z, let L(z) denote the set of all colours that can
now be used on z, and let L(z) C L(z) where

2 if z=uxz, xyory,
|L(z)] =< 3 if 2 =wz or wy,
4 if z =w.

Up to left-right reflections, the lists L(x), L(xy), L(y) fall into one of the patterns (i)—(xii)
shown in Table 3 (where for brevity we have written ab instead of {a, b}, etc.). Here (i) is
the pattern with all three lists the same, (ii)—(v) are the patterns with two lists the same
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L(x) L(zy) L(y) wr x  wy oy wy

(i) ab ab ab No possibility
(ii) ab ac ab 2  a c b 2
2 b c a 2
(iii) ac ab ab 2 a b
2 b a
(iv) ab cd cd 2 o« c d
2 a d c
2 b c d
(v) ab cd ab 2 o« c b 2
2 a d b 2
2 b c a 2
(vi) ac ab bc 2 o« b c 2
2 c a b 2
(vii) ac ab ad 2 b d
2 a d 2
b a 2
(viii) ac ab bd 2 o« b d
c a b 2
(ix) ab cd ac 2 o« d c
b d a 2
2 b c a 2
(x) ab  cd b “ ; ¢
(xi) ab cd ed Z ¢
(xii) ab cd ef ‘ ¢
b d e

Table 3
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Bad colourings Avoided by
Row Afz) Alzy) Aly) AuAuz Avy Ay condition

1 {a,b,c,d} {a,b,c,d} {a,b,c,d} % A

2 Ha,b,c,d} {a,b,c,d} {a,b,d, e} pcpe C'(c,e)
3  AHa,b,ce} {a,b,c,d} {a,b,cd} evdv C(e, d)
4 Ha,b,c,e} {a,b,c,d} {a,b,d, e} ecde D(c,d)
5 AHa,b,c,e} {a,b,c,d} {a,b,d, [} ecdf D(c,d)

Table 4

and the third different, and (vi)—(xii) are those with no two lists the same; of these, (vi)
is the only one where the union of the lists contains exactly three colours, (vii)—(ix) are
where it contains four colours, (x) and (xi) contain five colours, and (xii) has six colours.

For each pattern, some of the ways of colouring z, ry, y from their lists are also shown
in Table 3. After such a colouring, there is at least one colour available for wz, at least
one for wy, and at least two for w. If wy can be given the same colour as z, then the
colouring can be extended to wx and then w to give the required total colouring of G. We
will assume henceforth that this is not possible. This means that if there is a colouring in
which z is coloured with a, say, then we may assume that a ¢ L(wy), and so if there is a
different colouring in which xy or y is coloured with a, then this second colouring can be
extended to wy in at least two different ways; this is indicated by a figure 2 in the column
for wy, and it means that if we colour wx first, we can then colour wy differently from
wzx. The same holds with = and y interchanged, as indicated by a figure 2 in the column
for wx. It follows that all the colourings listed for the patterns (ii)—(ix) can be extended
to wx and wy.

Now suppose that for one of these patterns there is a colouring shown in which xy
is coloured with a, say, and a second colouring in which x or y is coloured with a. If
a € L(w) then the first colouring can be extended to w by giving w colour a, while if
a ¢ L(w) then the second colouring can be extended because one of the four neighbours
of w has a colour not in L(w). This argument shows that the patterns in (iii), (iv) and
(vi)—(ix) all allow for total colourings of GG, whatever lists have been assigned to wx, wy
and w. For pattern (v), we may assume by the same argument that ¢,d ¢ L(w), so that
if wy can be coloured with ¢ or d then wx and w can be coloured. But if L(wy) does
not contain c or d, then, since we are already assuming it does not contain a or b, we can
colour wz and w first and still have a colour to give to wy. Thus we have shown that all
the patterns in (iii)—(ix) allow for total colourings of G.

We can deal with patterns (x)—(xii) all together. Suppose first that a ¢ L(wz). Then
the colourings a,c,e and a,d, e of x,zy,y both extend to wx after wy. By a previous
argument we may therefore suppose that ¢,d ¢ L(w). If ¢ € L(wx) then we can use
¢ on wz or wy in the second of these extensions and then colour w; and if ¢ ¢ L(wx)
then, since a ¢ L(wz), we can use the colouring a, ¢, e and then colour wy, w, wx in that
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order. So we may assume that a € L(wz), and similarly b € L(wx). Therefore one of
¢,d, wlo.g. ¢, ¢ L(wzx). Thus the colourings a,c,e and b, ¢, e of x, xy,y both extend to
wz after wy, and one of them can be extended to w unless L(w) = {a,b,e,d'} for some
colour d' ¢ {a,b,c,e}, and L(wz) = {a,b,d'} and L(wy) = {c,e,d'}. But then we can
colour z, xy, y with a,d, e and wx,w, wy with b, d’, ¢ (whether or not d’ = d). This proves
the result for patterns (x)—(xii).

We have now dealt with patterns (iii)—(xii), and so we must consider patterns (i) and
(i1). We deal with (i) first. When we chose L(z), L(xy), L(y) at the start of the proof, it
is not possible that we were forced into pattern (i) unless L(z) = L(zy) = L(y) = {a, b},
which implies A\yz # Ay, S8y Ay = ¢ and A\, = d, and A(z) = {a,b,¢c, N\, }, Alzy) =
{a,b,c,d}, and A(y) = {a,b,d, \,}. The essentially different possibilities for (\,, \,) are
then (d, ), (d,e), (e,c), (e,e) and (e, f) (where distinct letters represent distinct colours),
giving the lists shown in Table 4. In each case, if a (possibly different) assignment of
colours Ay, Auz, Auy, Ay 0 u, uz, vy, v puts us into pattern (i), that is,

A(:L’) \ {/\ua )\ux} = A($y) \ {)\uxa )\vy} = A(y) \ {)‘vya )‘v} = X7 say,

where |X| = 2, then this ‘bad colouring’ A, Ays, Ay, A, must match the pattern shown
in the penultimate column of Table 4, and it can be avoided by imposing the condition
given in the final column.

We now deal with pattern (ii). When we chose L(x), L(zy), L(y) at the start of the
proof, if we were forced into pattern (ii), or the only way of avoiding it would put us into
pattern (i) instead, then L(z) = L(y) = {a,b} and ¢ € L(zy) C {a,b,c}. By arguments
similar to those used above, one of the two colourings in (ii) will extend to the whole of G
if ¢ € L(w) or if a or b € L(wz) or L(wy). It is not difficult to see that neither colouring
extends if and only if the lists are as shown in Fig. 3(a). Here the colours a, b, ¢ are distinct
by definition, but the only restriction on the other letters is that each list must contain
four distinct colours. The pairs of letters that could represent the same colour are shown
by the edges in the graph in Fig. 3(b). So h, A,, A, could all be equal, for example; or
A, could equal ¢ or A, and/or A, could equal ¢ or A,;; and \,, can equal \,, only if
{a,b,c} C A(zy). Various pairs of colours are determined by the lists, as follows:
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Colourings Colourings .
O do) A@) Ary) AW) Adasdogho rlP};geoi AedazAog Ao if)onlgiet‘fozy
bad for (ii) bad for (i)
(c,e) abde abced abec cdec 2 pdpe D'(d,e)
abdc abce abec cdec 3 dvev D(d,e)
abdc acde abec cdec 4 bdeb D(d,e)
(¢,d) abdc abcd abed cded 2 pepe F'(c,e,d)
abdc abce abed cded 4 dced P'(d,c,e)
abdc acde abed cded 4 bceb D(c,e)
(¢, f) abdec abcd abef cde f - )
abdc abce abef cde f 5 dece f B'(c,d,e, f)
abdc acde abef cdef —
(e,d) abde abcd abed eded -
abde abce abed eded -
abde acde abed eded =
(e,f) abde abcd abef ede f -
abde abce abef ede f —
abde acde abef ede f —
Case2 abde abcd abcd eddc 3 evev Cle,c)
cddc
Case 3 abcd abed abed {dccd} 1 WY v A
Table 5
{h, k} = Mwz) N A(w), {c, Aoyt = Awy) \ {h, k},

{CL, b} = A<w) \ {h> k}a {)‘w )‘ux} = A($) \ {CL, b}7 (6>
{c, Mo} = Mw) \ {h K}, { Aoy, A} = Ay) \ {a, b}

We now distinguish three cases.
Case 1: AMwzx) # A(wy).

Then A,y # Ay and {c} = (A(wz) N A(wy)) \ {h, k}, so that Ay, Aus, Ay, Ay are uniquely
determined by (6). This shows that there is only one colouring of w,ux, vy, v that will
not extend to the whole of G because it gives rise to pattern (ii), although there may be
other colourings that fail to extend because they give rise to pattern (i). We can avoid
the colouring that is bad for pattern (ii) by imposing an appropriate condition on the
colours of u, ux, vy, v (condition D(A,;, Ay ), for example), but we need to show that this
condition can be chosen so as to avoid also any colourings that give rise to pattern (i).
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For convenience write A, as d and \,, as e, so that A(x) = {a,b,d, \,} and A(y) =
{a,b,e,\,}. Since ¢ € A(zy) C {a,b,c,d, e}, we may assume that A(xy) = {a,b,c,d} or
{a,b,c,e} or {a,c,d,e}. (Note that {b, c,d, e} would be essentially the same as {a, ¢, d, e},
since a and b are interchangeable.) In each row of Table 4, |A(z) U A(zy) U A(y)| < 6,
with equality only in row 5, where |A(x) N A(y)| = 2. It therefore suffices to consider
the following five essentially different possibilities for (A, \,): (¢, ¢), (¢, d), (¢, f), (e,d)
and (e, f) (where distinct letters represent distinct colours; note that (e, c), (f,c¢) and
(f,d) would be essentially the same as (c¢,d), (¢, f) and (e, f), respectively, under left-
right reflection). The corresponding sets A(z), A(zy), A(y) are listed in the top 15 lines
of Table 5 (omitting braces and commas for brevity), together with the colourings of
u,ux,vy,v that are bad for pattern (ii) or for pattern (i). Note that in the first row
of Table 5, for example, choosing (A, Auz, Avy, Av) = (a,d,e,a) or (b,d,e,b) instead of
(¢,d, e, c) would put us into pattern (ii) with L(z) = L(y) = {b, ¢} or {a,c} in place of
{a,b}. However, this is not bad because the colouring will extend to a total A-colouring
of G unless L(z) and L(y) are both equal to the set {a,b} = A(w) \ A(wz), as given
by (6). In contrast, pattern (i) is always bad. In checking Table 5, it may help to
observe that in every row of Table 4, |A(z) N A(zy)| > 3 and |[A(xy) N A(y)| > 3, and if
|A(z) N A(zy) N A(y)| = 3 then A(xy) is equal to A(z) or A(y). In each row of Table 5
where pattern (i) can arise, an appropriate condition is given which rules out all the
bad colourings, so that any colouring satisfying that condition will extend to a total
A-colouring of G.

Case 2: AMwzx) = A(wy) and ¢ # A, or ¢ # A, w.lo.g. ¢ # \y.

From Fig. 3(a), Ayz = Ay = d, say, and A(zy) = {a,b,c,d} and A(z) = {a,b,d, \,}, and
so {c} = A(zy) \ A(z). Now Ay, Auz, Aduys Ay are uniquely determined by (6), and so any
colouring satisfying an appropriate condition (condition A, for example) will extend to the
whole of GG, unless it gives rise to pattern (i). Since A(z) # A(xy) but A(x), A(zy), Ay)
all have a, b, d in common, the only row of Table 4 that could correspond is row 3 with ¢
and d interchanged, when A\, = e and A\, = ¢, as given in the penultimate row of Table 5.
Case 3: AMwx) = A(wy) and ¢ = A\, = A,.

As in Case 2, Ay = Ay = d, say, and so A(z) = A(zy) = A(y) = {a, b, ¢,d}, putting us
in row 1 of Table 4. We cannot distinguish between ¢ and d, and so the bad colourings
for pattern (ii) are ¢, d, d, c and d, ¢, ¢, d, as in the last row of Table 5.

In every case, there is one of the conditions in Table 1 such that, provided the colouring
of u, ux, v, vy satisfies that condition, it can be extended to a total A-colouring of GG. This
shows that G is good for total 4-choosability, and it completes the proof of Lemma 8. O

Lemma 9. If a nontrivial sepachain G is good for total 4-choosability, then so is the
sepachain G in Fig. 1(h).

Proof. Let A be a 4-list-assignment to GG, and let colours Ay, Ayz, Ay, Ay be assigned to
u, uz, vy, v. For each uncoloured element z, let L(z) denote the set of all colours that can
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now be used on z, and for z € {sx, z, xy,y, yt} choose L(z) C Z(z) such that

|2 ifz=2, ayory,
|L(Z)‘_{ if z = sz or yt.

We wish to prove that, by imposing a suitable restriction on the colours A, Ayz, Ay, Ay if
necessary, we can colour sx, x, xy,y, yt from these lists in such a way that this colouring
can be extended to the whole of G;. Up to left-right reflections, the lists L(z), L(zy), L(y)
fall into one of the patterns (i)—(xii) shown in Table 3. (The columns headed wz and wy
are not now relevant and should be ignored.)

The proof is in two parts. In Part 1 we show that every colouring Ay, Az, Apy, Ay Of
u, ux, vy, v extends to the whole of G unless it gives rise to pattern (i) or (up to left-right
reflection and relabelling of the colours) to one of the following six ‘problem cases’; in
Part 2 we examine these problem cases in more detail.

L(x)={a,c},  Llxy) ={a,b},  L(y)={bc},
L(s:z:) = {a,c,d}, L( t) ={a,b,c}, (7)
G1 has type J'(d, b, a, c);

L(x), L(xy), L(y) € L(sz) = L(yt) = {a,b,c},
Gy has type A, B or B, or, if L(zy) = L(y) = {a b}, (8)
type G'(b,a,c), H(c,b,a), J'(b,,c.a), K'(c,,b,a),
L'(?,b,c,a) or N'(?,7,¢,a,b); )
c€L(z) C{a,bc},  Llzy) = L(y) = {a,b}, )
L(SZL‘) = {Cl, ba C}v L(yt) = {Cl, ba d}a (9)
(G1 has one of types C—N with first two parameters c, d,
or type S'(c,b,d,a) or X'(c,?,d,b,a) or A'(c,b,d,a); J
c€Lx) C{abel,  Llay) = Ly) = {a.b}, ‘
a,d € L(sz) C {a,b,c,d}, L(yt) = {a,b, c}, (10)
G4 has type B(c,d) or, if L(sx) = {a,c,d},
type G'(d,a,c) or J'(d,?, ¢, a); J
ce€L(z) C{abcl,  L(zy) = L(y) = {a,b},
a,d € L(sz) C {a,b,c,d}, L(yt) = {a,b,d}, (11)
G1 has type C(c, d);
ce E(£) C {a7bv 0}7 Z(xy) = Z(y) = {avb}’
aJde L(SI‘) g {a’7b7 c, d}? L(yt> = {CL, b7 6}7 (12)

G has type E(c,e,d) or, ifﬁf(w) ={a,c,d},
type S’'(c,d,e,a) or A'(c,d, e, a).

Note that more than one of these cases may arise for the same pair (G, A), with different
choices of Ay, Auz, Ay, Ay and (therefore) different labellings of the colours.
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Part 1. In this part of the proof we show that if the colouring A, Az, Ayy, A, does not
give rise to pattern (i) or to any of (7)—(12), then it extends to the whole of G;. We
consider four cases.

Case 1.1: The pattern is (ii) or (vi), and L(sz) = L(yt) = {a, b, c}.

These patterns permit the colourings

st x xy Yy yt st T xy Yy yt
(i) b a ¢ b a (vi) ¢ a b ¢ a
a b ¢ a b b ¢ a b c

respectively. Rearranged in the appropriate order for comparison with Table 1 (applied
to Gi—mnote that (z, sz, yt,y) = (ug, u1x1, V191, v1)), these become

r sr yt vy T sr yt y
(ii)) a b a b (vi) a ¢ a c
b a b a c b ¢ b

respectively. A comparison with Table 1 shows that if G; has any type other than A or
B or B, then at least one colouring in each set will extend to the whole of Gy. If any
of the sets L(sx), L(x), L(xzy), L(y), L(yt) contains any colour other than a,b, ¢ (and the
hypotheses of Case 1.1 hold), then it is easy to see that there is a colouring that will
extend even if G has type A or B or B’; that is, the colouring A,, Ayz, Ay, Ay extends to
the whole of Gy unless (8) holds. (The last part of (8) is not relevant at this point.)

Case 1.2: The pattern is (vii) or (viii), and L(sz) = {a,b,c} and L(yt) = {a,b,d}.

The four possible colourings are

st x xy Yy Yyt st o oxy Yy yt
(vil) ¢ a b d a (vili) ¢ a b d a

a c b d a a ¢ b d a

b ¢ a d b b ¢ a d b

a ¢ b a d b ¢ a b d

respectively. Rearranged, these become

z sr yt y r st yt y
(vil) a ¢ a d (vili) a ¢ a d

c a a d c a a d

c b b d c b b d

c a d a c b d b

and it is easy to see that at least one of them must extend to the whole of G: the two
colourings in which sz and yt have the same colour must extend unless GG; has type A, C,
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Forbidden colourings  Bad pair of

Condition )
of sz, x,y, yt colourings
B(a,b) vuvu ba-a (b/v)ava
C(a,b) vavb Ea-¢§ (b/v)avb
E(a,b,c) vavb ca-b (¢c/v)avb

G'(a,b,c) apbp ac-c¢ bebe  (a/b)cbe
J'(a,b,c,d)  apbp ac-c dede (a/d)cdce
L'(a,b,e,d)  apbp bebe dede  (a/b)cbe
M'(a,b,c,d) apbp dcbe (a/d)cbe
O(a,b,c) baac Eaaf (b/c)aac
S"(a,b,e,d)  b--c¢ dadc (b/d)adc
U'la,b,e,d) baac daac (b/d)aac
Z(a,b,c,d)  badc Eadé (b/c)adc
A(a,b,c,d)  ba-c d-dc (b/d)adc
' (b/e)

D'(a,b,c,d,e) badc e-dc b/e)adc

Table 6

C' or Z, in which case at least one of the other colourings in each column must extend.
This completes Case 1.2.

Case 1.3: Cases 1.1 and 1.2 do not apply, and the pattern is not (iii) (or (i), of course).

Up to permutations of the letters, patterns (ii), (vi), (vii) and (viii) are left-right symmet-
ric. In view of this and the results of Cases 1.1 and 1.2, we may assume that if the pattern
is one of these four then L(sx) # {a,b,c}. Then in all cases it is possible to choose a
colouring for x, xy, y, yt that can be extended to sz in at least two different ways. (For
example, in patterns (iv), (v) and (ix)—(xii), L(sz) cannot contain all of a,b,c,d, and
whichever one it omits, at least one of the colourings a,c and b, d for z,zy will extend
to sz in two different ways, regardless of the colours we give to y and yt.) A study of
Table 1 (or, more briefly, Table 2) shows that at least one of these two colourings must
extend to the whole of G, unless (G; has one of the types listed in Table 6. Here we
have listed the restrictions on the colourings in the order sz, x,y, yt, which is convenient
for our present purpose, although it does not correspond to the order in Table 1; note
however that the letters used in Table 6 agree with those in Table 1 and not necessarily
with those in Table 3.

In Table 6, types O and U’ are irrelevant and are included only for completeness, since
x and y are adjacent in G and so cannot be given the same colour. Types Z and D’ are
also easily dismissed, since in each of these cases every forbidden colouring for G; has a
fixed pair of colours on some pair of adjacent elements (a,d on x,y for type Z, and d, ¢
on y, yt for type D), but every pattern allows for a colouring avoiding any such fixed pair
of colours.
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If Gy has type C or E, then every forbidden colouring has the same colour a on =,
and every pattern allows for a colouring avoiding any such fixed colour on x (except for
pattern (iii), which we are not considering in Case 1.3). If G has type S’ or A, then every
forbidden colouring has a fixed colour ¢ on yt, and every pattern allows for a colouring
avoiding any such fixed colour on yt except for pattern (iv). However, if the pattern is
(iv) then we can choose the colour of y to be different from the colour that is called d in
Table 6, to avoid the second forbidden colouring in S’ or A’, and we can then choose the
colour of = so that sx can be given a different colour from the colour called b in Table 6,
to avoid the first forbidden colouring in each case; then the resulting colouring can be
extended to the whole of G;.

Finally, the forbidden colourings for conditions B, G’, J’, L' and M’ all require x and
yt to have the same colour, and this can be avoided unless the lists are as in pattern
(ii) or (vi) with L(yt) = {a,b,c}. However, by assumption in Case 1.3 there is a colour
d € L(sz) \ {a,b,c}, so that these patterns permit the colourings

st x xy Yy Yyt st x xy y yt
(ii)) d a ¢ b a (vij d a b ¢ a
d b ¢ a b d ¢ a b c

respectively. Of the stated conditions, the only ones that can rule out both colourings for
the same pattern are G'(d, b, a) and J'(d, b, a,?), with pattern (vi). However, |L(sz)| > 3,
and so pattern (vi) permits another colouring for sz, z, zy, y, yt, either ¢, a, b, ¢, a (where
¢ could equal c) or V', ¢, a,b,c (where b’ could equal b). Condition G'(d, b, a) cannot rule
out either of these, and J'(d,b,a,?) cannot rule out the second; but it can rule out the
first if (and only if) it occurs as J'(d, b, a,c) and ¢ = c¢. This problem arises only if the
lists are exactly as in (7); in all other cases one of the colourings can be extended to the
whole of G;. This completes the discussion of Case 1.3.

Case 1.4: The pattern is (iii).
Since we have already dealt with every other pattern, we may assume that ¢ € Z(x) C

{a,b,c} and L(zy) = L(y) = {a,b}. Suppose first that L(sz) = L(yt) = {a,b,c}. Then
we have the colourings on the left below, rearranged on the right:

st x xy y yt r sz yt y
a ¢ b a c c a ¢ a (13)
b ¢ a b ¢ c b ¢ b

Comparison with Table 1 shows that the conditions that forbid both of these colourings
are precisely those listed in (8), together with those obtained from the last six of these
by interchanging a and b. However, a and b are otherwise equivalent in (8), and so, by
interchanging them if necessary, we may assume that at least one of the above colourings
extends to the whole of G unless (8) holds.
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Now suppose that Z(yt) # Z(sx) = {a,b,c}, so that there is a colour d € z(yt) \
{a,b,c}. Then we have the colourings on the left below, rearranged on the right:

st x xy Yy yt z s yt y
a ¢ b a d c a d a (14)
b ¢ a b d c b d b

Comparison with Table 1 shows that the conditions that forbid both of these colourings
are precisely those listed in (9), together with those obtained from the last three of these
by interchanging a and b. Since a and b are otherwise equivalent in (9), we may assume
that if L(yt) = {a,b,d} then at least one of these colourings extends to the whole of G,
unless (9) holds. If however L(yt) # {a,b,d}, then there is a different colour, either ¢ or
a new colour e, available for yt. If ¢ € E(yt) then we can give z, sz, yt, y the colours in
(13) as well as those in (14), and least one of these colourings must extend to the whole
of G since the types listed in (8) are disjoint from those in (9). If ¢ € L(yt) then we can
give x, sz, yt,y the colours ¢, a,e,a or ¢,b,e, b as well as those in (14), and it is easy to
see from Table 1 that none of the conditions listed in (9) can rule out both of these new
colourings. R

We have now dealt with the possibility that L(sz) = {a,b,c}, and so we may assume
there is a colour d € L(sz) \ {a,b,c}. Thus at least one colouring of z,zy,y, yt can be
extended to sz in two different ways, and (as in Case 1.3) at least one of these extensions
will extend to the whole of G; unless G; has one of the types listed in Table 6. As in
Case 1.3, types O and U’ are irrelevant, and types Z and D’ are easily dismissed. We
must consider the remaining nine conditions.

Since a and b are interchangeable in pattern (iii), we may assume that there exists a
colour @ € L(sz) \ {b,c,d}, and then we have the colourings shown in the three columns
below, depending on whether L(yt) \ {a, b} contains ¢, d or a new colour e.

st x xy y Yyt st x xy y Yyt st x xy y yt
a ¢ b a c a ¢ b a d a ¢ b a

d ¢ b a d ¢ b a d d ¢ b a

d b d ¢ a b d d b

It is easy to see that none of the nine remaining conditions in Table 6 can rule out all
three colourings in any column if a # o/, and so we may assume that L(sz) C {a,b, ¢, d}
and a = d’. Then only conditions B(c, d), G'(d, a,c) and J'(d,?, ¢,a) can rule out all three
colourings in the first column, only condition C(c, d) can rule out all three in the second
column, and only E(c,e,d), S'(c,d,e,a) and A'(c,d,e,a) can rule out all three in the
third column. It immediately follows that if |L(yt) \ {a,b}| = 2, so that all the colourings
in two different columns are possible, or else there are two different choices for e in the
third column, then no condition can rule out all these colourings; thus we may assume
that L(yt) = {a,b,c}, {a,b,d} or {a,b, e}, for the three columns, respectively. Moreover,
if b € L(sz) then conditions G'(d,a,c) and J'(d,?,c,a) cannot rule out the colouring

THE ELECTRONIC JOURNAL OF COMBINATORICS 13 (2006), #R97 24



Eqn  A(sz) A(z) A(zy) A(y) A(yt)

(7)) acdlyy  achgduz  abdlyz Ay  bedy Ay abe)y,
(8) abchy abcAyAy abedz Ay abedy A, abe)y,
(9)  abchy  abcAyAu  abX Ay abAy A, abdy,
(10) abcdXyy abchyduy  ablyz Ay  ably, A,  abce)y,
(11) abedXyy abchydug  ablyz Ay abdy N,  abdhy,
(12) abcdXyy abchyduy  ablyz Ay ably, X,  abely,

Table 7

b,c,a,b,c for sz, r, zy,y,yt, and conditions S'(c,d, e,a) and A'(c,d, e, a) cannot rule out
the colouring b, ¢, a, b, e; thus in these four cases we may assume that L(sx) = {a,¢,d}. In
the other three cases, a and b are interchangeable, and so there is no loss of generality in

assuming that a € L(sz). In other words, at least one colouring will extend unless (10),
(11) or (12) holds.

Part 2.  'We have now shown that every colouring Ay, Ayz, Avy, Ay of ©, uz, vy, v extends to
the whole of G unless it gives rise to pattern (i) or (up to left-right reflection) to one of (7)-
(12). We must now examine (7)—(12), which we do in four cases. The lists corresponding
to (7)—(12) are given in Table 7; when five colours are given for a particular list, that
means that the list contains four of the five colours, including any that are underlined.

We work mainly with the lists, referring to the type of Gy only when it seems that
more than one of (7)—(12) may arise for the same pair (G, A). Note that (7)—(12) have
been specified up to left-right reflection, and so it appears possible that, for a given pair
(G, A), one choice of Ay, Ayz, Ay, Ay may put us into one of these problem cases as shown,
and another choice may put us into a different case in reflected form. This can happen
only if the type of GGy is, up to reflection, one of those listed in Case 2.1 below, with first
two parameters d, ¢ (not ¢, d), and some choice of Ay, Az, Ay, Ay puts us into the reflected
form of (9), which we denote by (9’), and a different choice puts us into the unreflected
form of (7), (8) or (10). In Case 2.1 we show that in fact this cannot happen, and we also
deal completely with (7).

Case 2.1: The type of Gy is G', H', J', K', L' or N’ and the lists permit (7) or (9) to
hold.

In this case, if (8) holds, then L(zy) = L(y) = {a,b}; (9) can arise only in its reflected
form (9'); if (10) holds then L(sx) = {a,c,d}; and (11) and (12) cannot arise. Thus, for
this case only, we have the following modified form of Table 7.
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Eqn  A(sz) A(z) A(zy) A(y) Ayt)

(7) acdAyy achydue  abAyp Xy,  bedly Ay abedy,

(8) abchyy abedyduz abAy Xy,  abAy Ay, abcedy,

(9) abdXliz abAyduz  abluz Ay abchy Ay abce)y,

(10) acdlyz abchyduz abluz Ay  ably Ay abedy,
Table 7/

In Case 2.2 we will consider the possibility that the lists permit (8) only to arise; in Case 2.3
we will consider the possibility that (9') or (10) (but not both) can arise (although we will
consider (9') in its reflected form, i.e. (9), with the type of G; similarly reflected); and in
Case 2.4 we will consider the possibility that (8) and (10) can both arise. In the present
case, we will deal with all other possibilities. We will defer until last the discussion of the
more complicated types G’ and J'.

Subcase 2.1.1: G has type H'(p,q,r), K'(p,q,7,5), L'(p,q,7,5) or N'(p,q,r,5,t), and (8)
and (9’) can both arise.

Then, in (8), (a,b,c) is equal to (r,q,p) if the type of Gy is H', to (5,7, p) if it is K, to
(5,q,r) if it is L, and to (5,¢,r) if it is N’, while, in (9'), (d,¢) = (p,q) in all cases. Thus
the relevant lists from Table 7’ can be written as follows.

Type Eqn  A(sz) A(z) A(zy) Ay) A(yt)
H  (8) parX, parA M. qrigX,  qriy,A pariy,
K’ (8) prsAl, prsilAl 7’§>\}m>\})y 7’§>\})y>\}) prg)\?l)y
L (8) qrsAl, qrsAlAl g5\l A})y qs A})y AL grs A})y
N (8) rsthy, rEEAA,  STALN,  StA, A TSEA,
Al (9) a®Pp Xl a®VPNLNL,  aPBPALL NG, aPPq N, N\D aPbPg N,

Here every colour not occurring as a parameter in the type is given a superscript, since
we do not know, for example, that the colour called A, in (8) is the same as the colour
called A, in (9').

Suppose first that G has type H' or K’. Note that p, ¢, r, § are distinct by definition,
since a, b, ¢, d represent distinct colours in Table 1. We see from the entries for A(yt) that
p € {a® %, X}, }, so that p € A(zy). Thus p = A, or A}, . But then either A(sz) or A(yt)
does not contain four distinct colours. Since we are assuming in the present subcase that
the type of G is such that (8) and (9’) can both arise, this contradiction shows that G,
does not have type H' or K.

If, however, GGy has type L’ or N’, then we can get exactly the same contradiction
by using r instead of p. We see from the entries for A(yt) that r € {a® b% A7}, so that
r € A(zy). Thus r = A}, or A\},. But then either A(sz) or A(yt) does not contain four
distinct colours. This contradiction shows that Subcase 2.1.1 cannot arise.

Subcase 2.1.2: G4 has type G'(p, q,r), and either (8) or (10) can arise together with (9').

Then (p,q,r) is equal to (b,a,c) in (8) or (d,a,c) in (10), while (p,q) = (d,c) in (9'). So
the relevant lists from Table 7’ can be written as follows.
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Eqm  A(sz) A(z) A(zy) Aly) A(y?)
(8)  parAl, parAgA, paXLA,  PaM, A parAl,

u Mux uzx vy vy M

(9" a2b2p)\zw a2b2>\i)\zx a2b2>\12un>\121y a2b2g)\12}y>\12} azbzq)\%y
(10) parAd, DqradXs, DqA N, BN, N bqrad

Whether it is (8) and (9) that both hold, or (10) and (9), we get a contradiction in exactly
the same way as for types L' and N’ in Subcase 2.1.1, using the fact that r € {a® b*, A\, }
but r ¢ A(zy). (Note that r # b® in (10).)

Subcase 2.1.3: G4 has type J'(p,q,1,5).

Then (p,r, 5) is equal to (b, ¢, a) in (8) or (d, ¢,a) in (10), and (p,q,r,5) = (d, b, a, c) in (7),
while (p,q) = (d,¢) in (9'). So the relevant lists from Table 7 can be written as follows.

Eq  A(sz) A(z) Alzy) Aly) Alyt)
(1) prsXl,  rSAAL qrAl N, gAY, N grs)l,
(8) pr3Al, praAldl, psALAL pEALAL pr3al
() @PpXL @PNXL PPN, @R, N aN,
(10) praXi, OrsXjAl, BSALA, WS AL sl

If (7) and (9') hold, we get a contradiction in the same way as before, by deducing that
5 € {a®b*,\},} but 5 ¢ A(xy). If (8) or (10) holds, along with (9'), then we get a
contradiction because r € {a* b*, A7} but r ¢ A(zy). If (8) or (10) holds as well as (7),
then 5 € A(zy) and so 5 = AV or \? | which is impossible from the lists for A(sz) and
A(yt). The remaining possibilities for (8), (9') and (10) to hold will be considered in Cases
2.2-2.4.

To complete Case 2.1 we consider the possibility that (7) holds. Note that p,q,r, s
are known from the type of G, and so A, AJ,, A),, A) are determined by the lists, since
{0} = A(sz) \ {p,7, 5}, {\0} = A(z) \ {r,5,\°_}, etc. Thus there is exactly one assign-
ment of colours A, AD,, A, A} to u, ux, vy, v that can cause (7) to hold, and it can be
avoided by imposing a suitable condition on G, e.g. condition D(A\? )\gy). However, we
must consider also the possibility that pattern (i) can arise, as in Table 4. Note that § is
in A(x) and A(y) but not A(zy), and the only row of Table 4 in which there is such an
element is row 4. As in every row of Table 4, |A(zx) N A(zy)| > 3, and so to match this
row A must equal g or A),. Similarly [A(zy) NA(y)| > 3, and so A) must equal 7 or A,
Rewriting ¢, 7,5, \? | )\Sy as b, a, c,d, e, we have the four possibilities in the following table.
In every case there is a condition that avoids all the bad colourings, and this completes

the discussion of Subcase 2.1.3 and hence of Case 2.1.

Colourings
AuAug Apy Ay Avoided by
Alz)  Axy)  Aly) bad for condition

(M)
acdb abde bcea bdea cdec D(d,e)
acde abde bcea edea cdbe X(c,d,be,?)
acdb abde bced bded caec X'(c,a,e,d,?)
acde abde bced eded cabc Y(c,a,b, e d)
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Case 2.2: The lists, and the type of G, permit (8) to hold, but none of (9)—(12).

We see from Table 7 (not Table 7’) that if A(sx) = A(yt) then (8) arises only when
Auz = Ay, and it can be avoided by imposing condition A on G. If A(sz) # A(yt) then
(8) arises only when {\,;} = A(sz) \ A(yt) and {\,,} = A(yt) \ A(sz), and it can be
avoided by imposing condition D(Ay, Ayy) on G. However, we must check the possibility
that pattern (i) arises, as in Table 4. A complete list of all the possibilities as in Table 5
would be too long, because A(x), A(xy) and A(y) are not uniquely determined by the
values of A, and A, that give rise to (8); and so we need a different approach. We
consider two subcases.

Subcase 2.2.1: A(sxz) = A(yt) = {a, b, c,d}, say, and (8) arises when A\, = Ay = d.

Then A(zy) = {a,b,c,d}, A(x) C {a,b,c,d, \,} and A(y) C {a,b,c,d, \,}. For the
purpose of tabulating possibilities for the sets A(z) and A(y), it is convenient to assume
that A\, € A(z) and A\, € A(y), since if A\, ¢ A(x) then the set A(z) is the same as
it would be if A\, = a, say. So, using a and b to denote ‘anything in {a,b,c,d}’, the
essentially different possibilities for (A, A,) are (a,b), (e, b), (e, e) and (e, f), where distinct
letters denote distinct colours as usual, since (a, €) is equivalent to (e, b) under left-right
reflection. If A\, = e then we may assume that A(z) = {a, b, c, e}, since (as far as the sets
are concerned) a, b, c,d are all interchangeable; and then, if A, = e or f, A(y) is either
{a,b,c, \,} or {a,b,d,\,}. The possibilities for the lists A(z), A(xy), A(y) are given in
the top six rows of Table 8, together with the colourings A, Auz, Ay, Ay that will cause
the lists L(z), L(zy), L(y) to be as in (8) or (i) (up to colour permutations), and the
conditions from Table 1 that will prevent this from happening.

Subcase 2.2.2: A(sx) # A(yt), say A(sx) = {a,b,c,d} and A(yt) = {a,b,c, e}, and (8) can
arise if (and only if) A\, = d and \,, = e.

Then A(zy) C {a,b,c,d, e}, A(z) C {a,b,c,d, \,} and A(y) C {a,b,c,e, \,}. Note that
each of a, b, c must occur in at least one of these sets, since otherwise we could not have (8)
except as pattern (i). As in Subcase 2.1.1, we will assume that A, € A(x) and A\, € A(y).

Suppose first that d does not occur in any of these sets, so that A(xy) = {a, b, c, e},
A(x) ={a,b,c, \y}, M\ & {a,b,c,d}, and A\, # d. The possibilities for (A,, A,) now (using
b to denote ‘anything in {a, b, ¢, e}’) are (e, b), (e, ), (f,b), (f, f) and (f,g), and if A, # b
then we may assume that A(y) is either {a,b,c, A\, } or {a,b,e, A\, }, since (as far as the
other sets are concerned) a, b, ¢ are all interchangeable. The possibilities are listed in the
next eight rows of Table 8, together with the colourings Ay, Auz, Avy, Ay that will cause

~ ~

the lists L(z), L(zy), L(y) to be as in (8) or (i) (up to colour permutations—but since
A(sz) N A(yt) = {a,b, ¢}, (8) requires that Ay, = d, Ay, = e and L(z), L(zy), L(y) C
{a,b,c}, and so the lists must be exactly as in (8)). In each case there is an appropriate
condition that will prevent this from happening. In view of this, we may assume that d
occurs in at least one of the sets A(z), A(xy), A(y), and similarly, by symmetry, that e
also occurs in at least one set. Thus each of a, b, ¢, d, e occurs in at least one set.
Suppose now that there is another colour f in one of the sets, w.l.o.g. A, = f (f ¢
{a,b,c,d,e}). Then we cannot have pattern (i) except as row 5 of Table 4. Note that
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b) abcd
,b)  abce
(e,e) abce
abce

(e,f) abce
abce

(e,b) abce
(e, f) abce
abce
(f.b) abef
(f.f) abef
abcef

(f,9) abcf
abcef

(a,f) abced
abed
(e,f) abde
abde
abde
abde

abed
abed
abce
abce
abde
abde
abde

A(zy)

abcd
abed
abed
abcd
abcd
abcd

abce
abce
abce
abce
abce
abce
abce
abce

abce
abde
abcd
abce
abce
acde

abed
abcd
abce
abce
abde
abde
abde

A(y)

abcd
abced
abce
abde
abe f
abd f

abce
abcef
abe f
abce
abe f
abe f
abcyg
abeg

abe f
abe f
abe f
abe f
acef
acef

abce
abde
abcd
abde
abed
abce
acde

Colourings
)\u)\ux)\vyAv
bad for (8)

L€
ef& -
et€e
et€e
el f
el f

ede -
edef
edef
fde-
fdef
fdef
fdeg
fdeg

~de f
~de f
ede f
ede f
edef
edef

de -
-ded
eded
eded
eded
ede -
eded

Table 8
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Table 4

[ N R O

ot

Ot Ot Ot Ot Ot Ot

NN NN DNDDND DN

Colourings

>\u >\um >\vy )\v

bad for (i)

WY v
evdy

ecde

ecdf

nvpv
pepf
pepf
frev

feef

feeg

dce f
cde f
edcf
decf
dbce f
bdcf

pdpe
pepe
pepd
pepd
pejc
pdpc
uwbuc

Avoided by
condition

A
C(e,d)

O(e, ¢, d)
Z(e,c,d, f)
B(e,d)
I'(e, f,d)

M'(c, f,e,d)
E(f, e d)

U(f,c e d)

Dl(f? C? 6797 d)

B/(d7 C? 67 f)
D(d,e)
E'(d, f,c)
C'(d,e,c, f)
E'(d,b,c, f,e)
E'(d, f,c)
D'(d,e)
¢, e d)
?)
e)
¢, d)
f(,qew)
N'(b,c,e,d,?)

F
H/
L/

(c,e
(ed
(c,d,
H'(e,
d

29



Colourings  Colourings

Common Avoi
colours Auduz Aoy Ao AuduaAvy Ao coilcciliet(iiozy
bad for (i) bad for (8)
{a,b} cdec ~de - (d,e)
decd eded Q'(d,e,c)
ecde eded Qle, c,d)
cedc eded R(c,e,d)
edce ede - P(e,d, c)
deced ~ded P'(d,c,e)
{c,d} abea ~ded A'(a,b,e,d)
beab eded W(b,e,a,d)
eabe eded Ve, a,b,d)
{d, e} abca eded Y(a,b,c, e, d)
Table 9

in this row there is no colour that belongs to A(x) and A(y) but not to A(xy), and so
we do not need to consider the possibility that A\, = A\, = f; and also there is no colour
that belongs to A(zy) but not to A(x) or A(y), and so, since d is in at least one set, we
may assume that d € A(x). Since a,b, ¢ are all interchangeable, and A, # A\, = d, we
may assume that (A, \,) = (a, f) or (e, f), and in the latter case A(x) = {a,b,d, e} and
A(y) = {a,b,c, f} or {a,c,e, f}, since |A(z) N A(y)] = 2. The possibilities are listed in
the next six rows of Table 8.

Finally we assume that all three sets are subsets of {a, b, ¢, d, e}, and we consider rows
1, 2 and 4 of Table 4 in turn (row 3 being essentially the same as row 2). For row 1, we
have already considered the case when all three sets equal {a, b, ¢, e}. The only essentially
different case is when they all equal {a,b,d, e}; but in this case (8) cannot arise except
as (1) (when w,uz, vy, y have colours e, d, e, d), and so there is nothing more to consider.
For row 2, the three essentially different possibilities for the first two (equal) sets are
{a,b,c,d}, {a,b,c,e} and {a,b,d, e}; the first two each give two possibilities for A(y)
(since a, b, ¢ are interchangeable), and the last gives three possibilities (since only a, b are
interchangeable), as listed in the last seven rows of Table 8.

In row 4 of Table 4, there are two colours that belong to all three sets, and every
other colour belongs to two sets. The three essentially different possibilities for the two
colours in all three sets are {a, b} (which is equivalent to {a,c} and {b, c}), {c,d} (which
is equivalent to {a,d}, {b,d}, {a,e}, {b,e} and {c,e}), and {d,e}; and for each of these
the other three colours can be used in 3! different ways. However, in the second case the
other three colours are a, b, e, and since a and b are interchangeable there are only three
essentially different ways of ordering these; and in the last case the other three colours are
a, b, c, and all six orderings of these are essentially equivalent. The possibilities are listed
in Table 9. The three sets are not given in the table, but can easily be reconstructed: if
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the common colours are p, ¢ and the bad colouring for (i) is i j ki, then A(z) = {p,q,1, 5},
Azy) = {p,q,J,k} and A(y) = {p, ¢, k, i}, and the first element of the bad colouring for
(8) is e if e € A(x) and - otherwise, and the last element is d if d € A(y) and - otherwise.
In every case there is an appropriate condition that rules out all the bad colourings, and
this completes the discussion of Case 2.2.

Case 2.3: The lists, and the type of G, permit at least one of (9)—(12) to hold, but
not (8).
We start by proving the following claim.

Claim. For a given pair (G, \), there is at most one choice of colour for uzx, and at most
two choices of colour for vy, that can give rise to any of (9)—(12). Moreover, if any of
(9)—(12) holds when vy is given colour ¢, then there is no other choice of colour for vy
that can give rise to any of (9)—(12).

Proof. We consider two subcases.

Subcase 2.3.1: Gy has type E(c,p,q), S'(c,q,p,?) or A'(c,q,p,?), and both (9) and (12)
can hold, with different labellings of the colours (p = d in (9), and (p, q¢) = (e, d) in (12)).

From Table 7 we see that the lists are as follows.

Eqn  A(sz) A(z) A(zy) A(y) A(yt)
(9)  a'Dledl, a'bleAbAL, @'BAL AL al'b'AL AL aldlp Al
(12) a®Pegrl, a®VPcA2NZ, a®DPA2, N2, a®BPA2, N2 a2bPp N2

Note that a, b, ¢,d are distinct colours in (9) and a, b, ¢,d, e are distinct colours in (12),
and so a',b', ¢, p are distinct and a?,b?, ¢, ¢, p are distinct. From the lists for A(yt) we see
that {a*,b", A}, } = {a® V%, A2, }, so that, from A(zy), AL, = A.,, = Aue, say; thus there
is only one choice of colour for uz that can cause (9) or (12) to hold. Now, \,, # a® or
g, since a,d € L(sz) in (12), and ¢ # a2 or ¢; thus {a',b'} = {a2,¢}. Since a' and b*
are interchangeable in (9), we may suppose w.l.o.g. that a! = a? and b' = ¢q. (Note that,
in order to achieve this, we do not need to interchange the colours themselves, but only
their names.) From A(zy) it now follows that {b*, A}, } = {b* A2 }, so that there are at
most two choices for the colour of vy (namely, the two elements of this set) that can give
rise to (9) or (12). Finally, if A}, = ¢ or A7, = c then ¢ € A(yt), but ¢ ¢ L(yt) in (9) or
(12) and so )\})y = )xgy = ¢; thus in this case there is only one choice of colour for vy that
can give rise to (9) or (12). This proves the Claim in Subcase 2.3.1.

Subcase 2.3.2: (G, A) and the type of G are such that (9) and (12) cannot both arise.

If none of (9)—(12) can arise then there is nothing to prove; so assume that at least one
can arise. If more than one can arise then G; must have type C(c,d), and it is (9) and
(11) that can arise. Note however that ¢ and d have the same meaning in (9) as in (11).
This differs from Subcase 2.3.1, where d has different meanings (i.e., it represents different
parameters in the type of G1) in (9) and (12).

So consider a labelling of the colours that agrees with one of (9)—(12). Then ¢ and
d, and e if (12) holds, are given to us in the type of G1. It is now clear from Table 7
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that from this knowledge and the lists we can uniquely determine the set {a,b, \,,} as
A(yt)\ {p}, where p = ¢, d or e as appropriate. Hence we can determine \,, as the unique
colour in A(zy) \ X, where X := {a,b, Ay, } = A(yt) \ {p}.

Let YV := A(sx) \ {c,d, \yz}. Then Y = {a} or {a,b}, and we know which, since these
sets have different cardinality. But {\,,} = X \ {a,b}, and so if |Y| = 2 then \,, is
uniquely determined. If |Y| =1 then X \ Y = {b, \,,}, and there may be two different
choices of colour for vy (namely, the two colours in X \ V) that can give rise to (9)—(12).
If however ¢ € X, then necessarily \,, = ¢, and so in this case there is only one choice
for the colour of vy that can give rise to any of (9)—(12). This completes the proof of the
Claim. O

If Gy has type B or G’ or J’, then it is possible that recolouring vy with colour b will
move us from (10) to (8); but we will consider this possibility in Case 2.4, since it is ruled
out by the hypotheses of Case 2.3. We will now examine the one or two possible bad
colourings for (9)—(12), at the same time as we consider the possibility that (i) arises, as
in Table 4.

For convenience, let us relabel d as d* and e (if it exists) as e*, and relabel A\, as d. (It
is irrelevant whether or not d or e (introduced below) is equal to d* or e*, since we will have
no further use for the sets A(sz) and A(yt).) Then, from Table 7, A(zy) = {a,b,d, A\, },
Ay) ={a,b, Ay, Ay}, and Ay, c € A(z) C {a,b,c,d, A\,}. (As in Case 2.2, for the purpose
of listing the sets, we may assume that A\, € A(x).) The possibilities for A,, are that
it equals ¢ or a new colour e ¢ {a,b,c,d}. The possibilities are listed in Table 10, with
Ayy = c in the top 11 lines and \,, = e in the remainder. Note that A\, ¢ {a,b, \,,},
since otherwise |A(y)| < 3. So, using a to denote ‘anything in {a, b, ¢,d}’, the essentially
different possibilities for (A, A,) are (a,c), (a,d), (a, f), (Auy, ), Aoy, d), Aoy, f), (f,0),
(f,d), (f, f) and (f,g). However, if A\,, = ¢ then we can rule out the five pairs in which
Au = Ay O A, = ¢, since the former is then equivalent to A\, = a and the latter is not
then possible. In Table 10, the entries in the second of the two columns headed ‘bad for
(9)—(12)" assume that there is a choice of two bad colours (b and e) for vy; if there is only
one bad colour then these second entries simply disappear. Note that there is only one
bad colour for vy, and so there is only one colouring that is bad for (9)-(12), if A,, = ¢,
orif A, = e and {b,c, f} C A(z) (since it does not matter if vy is given colour b, so that
L(zy) = L(y) = {a, €}, if L(z) contains more than one colour not in {a,e}). In every case
there is an appropriate condition that rules out all the bad colourings, and this completes
the discussion of Case 2.3.

Case 2.4: The lists, and the type of Gy, permit (8), and at least one of (9)—(12), to hold.

Then G must have type B or G’ or J', and it must be (8) and (10) that can both hold.
Assume that the colours are labelled as in (10). Then ¢ and d are given to us in the type
of Gy. As in Subcase 2.3.2, from the row for (10) in Table 7 we see that A, is the unique
colour in A(xy) \ X, where X := A(yt) \ {c}; and if Y := A(sz) \ {c,d, Ay} then Y = {a}
or {a,b} and A\, € X \ Y. Thus if b € A(sz) then the colours of ux and vy that can
cause (10) to hold are uniquely determined, while if b ¢ A(sx) then the colour of ux is
uniquely determined and there are at most two different possible colours for vy that can
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Colourings Colourings

(A Ay)  Alz)  A(zy)  Aly) AuAuz Ay Ao Row of - AyAuz Ay Ay Avoided by

bad for Table 4 bad for condition
(9)-(12) (i)
(a,d) abcd abed abed -dcd 1 WV v B'(c,d)
(a,f) abed abed abef -def 2 wdp f E'(d, f,c)
(f,d) abcf abcd abed fdcd 3 frdv I(f,d,c)
acdf abed abed fded 3 frbv M(f,b,d,c)
bedf abcd abed fdcd 3 frav M(f, a,d,c)
(f,f) abef abcd abef fdcf -
acdf abed abcef fdef 4 fdbf U(f,d,b,c)
bedf abcd abef fdcf 4 fdaf U(f,d,a,c)
(f,g) abcf abcd abcg fdcg -
acdf abed abecg fdcg 5 fdbg D(f,d,b,g,c)
bedf abcd abcg fdcg 5 fdag D(f,d,a,g,c)
(a,c) abcd abde abec -dec bdbc 4 cdec A(b,d,e,c)
(a,d) abcd abde abed -ded bdbd 3 cvev J(c,e,d,b)
(a,f) abcd abde abef -def bdbf 5 cde f A(b,d, e, f)
(e,c) abce abde abec edec bdbc - — E'(d,c,b)
acde abde abec edec bdbc 4 cdbc E'(d,c,b)
becde abde abec edec bdbc 4 cdac E'(d,c,a)
(e,d) abce abde abed eded bdbd 3 cvdv K(c,d,b,e)
acde abde abed eded bdbd 3 cvbv J(e,b,d,e)
bcde abde abed eded bdbd 3 cvav N(c,a,d,b,e)
(e,f) abce abde abef edef bdbf - — E'(d, f,b)
acde abde abef edef bdbf 5 cdb f E'(d, f,b)
bcde abde abef edef bdbf 5 cdaf E'(d, f,a)

(f,c) abcf abde abec fdec
acdf abde abec fdec fdbc - — D(f,d,b,c,e)
bedf abde abec fdec —

(f,d) abcf abde abed fded -
acdf abde abed fded fdbd — — M(f,b,d,e)
bcdf abde abed fded -

(f,f) abcf abde abef fdef -
acdf abde abef fdef fdbf - — U(f,d,b,e)
bedf abde abef fdef —

(f,g) abcf abde abeg fdeg -
acdf abde abeg fdeg fdbyg - — D(f,d,b,g,e)
becdf abde abeg fdeg -

Table 10
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Colourings Colourings

Azx)  A(zy)  Ay) AuduzAuy Ao Row of = Ay AduzAuy Ao Avoided by

bad for Table 4 bad for condition
(10)  (8) (i)

abcd abde abce -dec cdc- 4 cdec P(c,d,e)
abce abde abce edec cdc- — — P(c,d,e)
acde abde abce edec cdc- 4 cdbe T(c,d,b,e)
bcde abde abce edec cdc- 4 cdac T(c,d,a,e)
acdf abde abce fdec — —
abcd abde abde -ded cdcd 3 cvev G(c,e,d)
abce abde abde eded cdcd 3 cvdv H(c,d,e)
acde abde abde eded cdcd 3 cvby L(c,b,d, e)
becde abde abde eded cdcd 3 cvav L(c,a,d,e)
acdf abde abde fded — -
abecd abde abef -def cdcf 5 cde f' A(c,d,e, )

abce abde abef' edef cdcf’ - — A(c,d,e, )

acde abde abef' edef cdcf 5 cdb f’ E'(d, f',b)
becde abde abef' edef cdcf 5 cda f' E'(d, ', a)
acdf abde abef fdef’ —

abcd abde abce -dec bdb- 4 cdec A(b,d,e,c)
abce abde abce edec bdb- — — A(b,d,e,c)
acde abde abce edec -db- 4 cdbe S(e,d,b,c)
bcde abde abce edec bdb- 4 cdac X(c,d,a,b,e)
acdf abde abce fdec fdb- - — D(f,d,e,c,b)
abcd abde abde -ded bdbd 3 cvev J(c,e,d,b)
abce abde abde eded bdbd 3 cvdv K(c,d, b,e)
acde abde abde eded -dbd 3 cvby J(c,b,d,e)
bcde abde abde eded bdbd 3 cvav N(c,a,d,b,e)
acdf abde abde fded fdbd - - M(f,b,d, e)
abecd abde abef -def bdbf 5 cde f' A(b,d,e, )
abce abde abef' edef bdbf — — A(b,d, e, f)
acde abde abef edef -dbf 5 cdb f’ Ale,d, b, )
becde abde abef' edef bdbf 5 cda f' E'(d, ', a)
acdf abde abef fdef fdbf - — U(f,d,e,b) (f=1f")

D(f,d,e, f',b) (f # [')
Table 11
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cause (10) to hold. Note that \,, # a or b in (10), since a,b € E(xy) C Alzy) \ {\z};
nor ¢, since ¢ € L(x) € A(z) \ { A }; nor d, since d € L(sz) = A(sz) \ {Aue}. Thus Ay, is
a new colour, say e. Note that \,, # A\, and so e € A(zy) \ A(yt).

Now, with the colours still labelled as in (10), consider what is necessary in order
for the lists in (8) to be possible as well (after relabelling of colours). (8) can arise only
when uz and vy are coloured with colours in A(sz) and A(yt) respectively, after which
L(zy) C L(yt); but if e ¢ A(sz) then, whatever colours we choose for uz and vy, L(zy)
will still contain e, which is not in L(yt), so that (8) cannot arise. Thus we may assume
that e € A(sz), so that {a,d,e} C A(sx) C {a,b,c,d, e}, and b or ¢ ¢ A(sz), from the
row for (10) in Table 7. From the row for (8) in Table 7 we see that (8) requires that
|A(sz)NA(yt)| > 3, and the only way in which this is now possible in (10) is if A,,, = d. For
consistency with earlier cases, we now interchange the roles of d and e, so that \,, = d,
Aoy =€, ¢ € A(z) C{a,b,c,d, N}, A(y) = {a,b,e, A\, }, and the lists become:

A(sz) A(z) A(zy) A(y) A(yt)
{a,b,d, e} {a,b,c,d} {a,b,d, e} {a,b,c,e} {a,b,c,e}
{a,c,d, e} {a,b,c, e} {a,b,d, e}

{a,c,d, e} {a,b,e, f'}
{b,c,d, e}
[{a,b.c, f}]
{a,c,d, f}
[{b,c.d, f}]

This is because the possibilities for A\, are that it is one of a, b, ¢, d, or e, or a new colour
f; and A,, which cannot belong to {a,b, e}, is ¢, or d, or a new colour f’; here distinct
letters represent distinct colours, except that f’ is allowed to be the same as f. However,
not all the sets listed for A(x) need to be considered, as we will see.

In the top half of Table 11 we consider all the possibilities with A(sz) = {a,b,d, e},
when A(sz) N A(yt) = {a,b,e}. Here (8) arises only when {\,.} = A(sx)\ {a,b,e} = {d},
{Ay} = Alyt) \ {a,b,e} = {c}, and A(x) \ {d, \u} C {a,b,e}; this implies that A\, = ¢
(since ¢ € A(x) always), and it is impossible if A(z) = {a, b, ¢, [}, {a,c,d, f} or {b,c,d, f},
so that we do not need to consider these possibilities. Note that a and b are otherwise
interchangeable, and so if we consider A(z) = {a,c,d, e} then we do not also need to
consider A(z) = {b,c,d, e}, which will be obtained simply by interchanging a and b.
(However, the cases A(x) = {b,c,d,e} and {a,c,d, f} are included in the top half of
Table 11, even though they are not needed there, for consistency with the bottom half,
where they are needed.) In this case (10) arises only when \,, = d and \,, = e, since (as
we saw at the start of Case 2.4) if b € A(sx) then there is only one colour for \,, that
can cause (10) to arise.

In the bottom half of Table 11 we consider all the possibilities with A(sz) = {a, ¢, d, e},
when A(sz) NA(yt) = {a,c,e}. Here (8) arises only when {\,.} = A(sz)\ {a,c,e} = {d},
{Ay} = Alyt) \ {a,c,e} = {b}, and A(x) \ {d,\,} C {a,c,e}; this is impossible if
A(x) = {a,b,c, f} or {b,c,d, f}, since A\, cannot equal both b and f, and so we do not
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need to consider these possibilities. In this case (10) arises only when \,, = d, but, as we
saw at the start of Case 2.4, since b ¢ A(sz) we cannot determine from the lists whether
Ayy = € or b; however, choosing \,, = b gives L(sz) = L(yt) = {a,c,e} and so moves us
out of (10) and into (8), and so it is covered automatically in Table 11.

In each case there is a condition that we can impose on G in order to avoid all the
bad colourings. This completes the discussion of Case 2.4, and with it the proof of
Lemma 9. O
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