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Abstract

It is proved that, if G is a K4-minor-free graph with maximum degree 3, then G

is totally 4-choosable; that is, if every element (vertex or edge) of G is assigned a list
of 4 colours, then every element can be coloured with a colour from its own list in
such a way that every two adjacent or incident elements are coloured with different
colours. Together with other known results, this shows that the List-Total-Colouring
Conjecture, that ch′′(G) = χ′′(G) for every graph G, is true for all K4-minor-free
graphs and, therefore, for all outerplanar graphs.

Keywords: Outerplanar graph; Minor-free graph; Series-parallel graph; List total
colouring.

1 Introduction

We use standard terminology, as defined in the references: for example, [8] or [10]. We
distinguish graphs (which are always simple) from multigraphs (which may have multiple
edges); however, our theorem is only for graphs. For a graph (or multigraph) G, its
edge chromatic number, total (vertex-edge) chromatic number, edge choosability (or list
edge chromatic number), total choosability, and maximum degree, are denoted by χ′(G),
χ′′(G), ch′(G), ch′′(G), and ∆(G), respectively. So ch′′(G) is the smallest k for which G
is totally k-choosable.

There is great interest in discovering classes of graphs G for which the choosability
or list chromatic number ch(G) is equal to the chromatic number χ(G). The List-Edge-

Colouring Conjecture (LECC ) and List-Total-Colouring Conjecture (LTCC ) [1, 4, 6] are
that, for every multigraph H, ch′(H) = χ′(H) and ch′′(H) = χ′′(H), respectively; so the
conjectures are that ch(G) = χ(G) whenever G is the line graph or the total graph of a
multigraph H.
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For an outerplanar (simple) graph H, Wang and Lih [9] proved that ch′(H) = χ′(H) =
∆(H) if ∆(H) > 3 and ch′′(H) = χ′′(H) = ∆(H) + 1 if ∆(H) > 4. For the larger class of
K4-minor-free (series-parallel) graphs, the first of these results had already been proved by
Juvan, Mohar and Thomas [7], and the second was proved by Hetherington and Woodall
[5], following an incomplete outline proof by Zhou, Matsuo and Nishizeki [12]. This proves
both the LECC and the LTCC for K4-minor-free (simple) graphs, except for the following
missing case, the proof of which is the sole achievement of this paper.

Theorem 1. If H is a K4-minor-free graph with maximum degree 3, then ch′′(H) =
χ′′(H) = 4.

In Section 2 we set up the framework for proving Theorem 1, and prove it subject to
a number of technical lemmas; these lemmas are proved in Sections 3–5. The resulting
proof of Theorem 1 is very long; it would clearly be desirable to have a shorter proof.

For brevity, when considering total colourings of a graph G, we will sometimes say
that a vertex and an edge incident to it are adjacent or neighbours, since they correspond
to adjacent or neighbouring vertices of the total graph T (G) of G. In the context of this
paper, by a 4-list-assignment Λ to a graph G we always mean an assignment of a list Λ(z)
of four colours to every element (vertex or edge) z of G.

2 The framework for the proof

We first define the concept of a sepachain (short for series-parallel chain). Consider
first a graph G containing exactly two vertices u, v with degree 1, with neighbours x, y
respectively. It is convenient to draw G as in Fig. 1(a); note however that u and v are
vertices of G, despite being outside the region labelled G in the figure. The sepachains
form a subclass of graphs of this type. They are defined inductively as follows: a path
(with at least one edge) is a sepachain; and if G1 and G2 are sepachains then the graphs
formed by joining them in series and in parallel, as in Figs 1(b) and 1(d), are both
sepachains. A sepachain is nontrivial if it is not a path of length 1 or 2; that is, if the
vertices u, x, y, v in Fig. 1(a) are all distinct. The relevance of sepachains is shown by the
following easy lemma.

Lemma 1. Let H be a K4-minor-free block with maximum degree at most 3. Suppose

H contains a vertex z0 of degree 2, with neighbours x, y, and H ′ is formed from H by

replacing z0 by two vertices u, v of degree 1 with neighbours x, y respectively. Then H ′ is

a nontrivial sepachain.

Proof. We prove the result by induction on |V (H)|. It is clear that x 6= y, so that H ′

is not a trivial sepachain. The result holds if H ′ is a path, so suppose that it is not.
Suppose first that there do not exist two edge-disjoint xy-paths in H ′. Then, by the

edge-separation analogue of Menger’s theorem, there is a cutedge in H ′ separating x from
y; that is, H ′ can be labelled as in Fig. 1(b), where y1v1 = u2x2 is the cutedge. For i = 1, 2,
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Fig. 2

if xi = yi then Gi is a path of length 2, which is a (trivial) sepachain, and if xi 6= yi then
we may suppose that Gi is a (nontrivial) sepachain by the induction hypothesis applied
to the K4-minor-free block obtained from Gi by identifying ui with vi. Thus H ′ is a
sepachain, formed by joining G1 and G2 in series.

Suppose now that there exist two edge-disjoint xy-paths in H ′, necessarily internally
vertex-disjoint and with no connection between them, since H has maximum degree at
most 3 and no K4 minor. If one of these paths is a single edge, then H ′ looks like
Fig. 1(h), where if G1 is not a path of length 2 (as in Fig. 1(g)) then it is a nontrivial
sepachain, by the induction hypothesis applied to the K4-minor-free block obtained from
G1 by identifying u1 with v1. If neither of the paths is a single edge, then H ′ looks like
Fig. 1(d), where each of G1, G2 is either a path of length 2 (as in Fig. 1(e) or 1(f)) or
a nontrivial sepachain, by the same inductive argument. In all cases, H ′ is a nontrivial
sepachain, formed by joining G1 and G2 in parallel. 2

We say that a nontrivial sepachain G (labelled as in Fig. 1(a)) is very good for total
4-choosability if, for each 4-list-assignment Λ to G, and each way of colouring the elements
u, ux, vy, v with colours λu, λux, λvy, λv from their lists, this colouring can be extended to
a total Λ-colouring of G. Not every sepachain is very good for total 4-choosability, since
if x, y are adjacent, and every element is given list {a, b, c, d}, and u, ux, vy, v are coloured
with colours c, d, c, d respectively, then this colouring cannot be extended to the elements
x, xy, y (which must all be given different colours but can only be coloured with a or b).
Because of this and similar examples, we introduce a weaker concept.

We say that a nontrivial sepachain G is good for total 4-choosability if, for each 4-list-
assignment Λ to G, there is one of the conditions in Table 1 such that, if the elements
u, ux, vy, v are given colours λu, λux, λvy, λv from their lists in a way that does not match
any of the forbidden patterns given for that condition in the table (and λu 6= λux and
λvy 6= λv, of course), then this colouring can be extended to a total Λ-colouring of G.
Here a, b, c, d, e, f are distinct specific colours (depending on G and Λ), µ, ν, ξ are variable
colours, and a dot denotes an arbitrary colour (so that, for example, · ξ ξ · denotes any
colouring in which ux and vy are given the same colour). For example, if the the pair
(G, Λ) is as in Fig. 2(a), where the lists are written as abcd rather than {a, b, c, d}, and
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Condition
Forbidden colourings

Condition
Forbidden colourings

of u, ux, vy, v of u, ux, vy, v

A µ ν µ ν · ξ ξ ·

B(a, b) µ ν µ ν a b a · B ′(a, b) µ ν µ ν · b a b

C(a, b) a ν b ν a ξ ξ · C ′(a, b) µ a µ b · ξ ξ b
D(a, b) a ν b ν · a b · D′(a, b) µ a µ b · a b ·

E(a, b, c) a ν b ν a c b · E ′(a, b, c) µ a µ b · a c b
F (a, b, c) a ν b ν c a c · F ′(a, b, c) µ a µ b · c b c
G(a, b, c) a ν b ν · c b c a c a c G′(a, b, c) µ a µ b c a c · c b c b
H(a, b, c) a ν b ν a b a b c b c b H ′(a, b, c) µ a µ b a b a b a c a c
I(a, b, c) a ν b ν a b c b I ′(a, b, c) µ a µ b a c a b

J(a, b, c, d) a ν b ν · c b c d c d c J ′(a, b, c, d) µ a µ b c a c · c d c d
K(a, b, c, d) a ν b ν c b c b d b d b K ′(a, b, c, d) µ a µ b a c a c a d a d
L(a, b, c, d) a ν b ν a c a c d c d c L′(a, b, c, d) µ a µ b c b c b c d c d
M(a, b, c, d) a ν b ν a c d c M ′(a, b, c, d) µ a µ b c d c b

N(a, b, c, d, e) a ν b ν d c d c e c e c N ′(a, b, c, d, e) µ a µ b c d c d c e c e

O(a, b, c) a b c a a ξ ξ a
P (a, b, c) · b c a a b a · P ′(a, b, c) a b c · · a c a
Q(a, b, c) a b c a a c a c Q′(a, b, c) a b c a b a b a
R(a, b, c) a b c a b c b c

S(a, b, c, d) · b c · a b a d S ′(a, b, c, d) · b c · a d c d
T (a, b, c, d) a b c a a b a · d b d a T ′(a, b, c, d) a b c a · a c a a d c d
U(a, b, c, d) a b c a a b d a U ′(a, b, c, d) a b c a a d c a
V (a, b, c, d) a b c a a d a d V ′(a, b, c, d) a b c a d a d a
W (a, b, c, d) a b c a b d b d W ′(a, b, c, d) a b c a d c d c

X(a, b, c, d, e) a b c a d b d · e b e a X ′(a, b, c, d, e) a b c a · d c d a e c e
Y (a, b, c, d, e) a b c a d e d e

Z(a, b, c, d) a b c d a ξ ξ d
Ā(a, b, c, d) · b c d a b a · Ā′(a, b, c, d) a b c · · d c d
B̄(a, b, c, d) a b c d a b d · B̄′(a, b, c, d) a b c d · a c d
C̄(a, b, c, d) a b c d a c d c C̄ ′(a, b, c, d) a b c d b a b d

D̄(a, b, c, d, e) a b c d a b e · D̄′(a, b, c, d, e) a b c d · e c d
Ē(a, b, c, d, e) a b c d a e d e Ē ′(a, b, c, d, e) a b c d e a e d

Table 1
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if the elements u, ux, vy, v are given colours λu, λux, λvy, λv, then this colouring can be
extended to a total Λ-colouring of G unless λu = λvy ∈ {c, d, e} and (λux, λv) = (a, b), or
(λu, λux, λvy, λv) = (c, a, b, c); hence it can be extended if λu, λux, λvy, λv does not match
either of the patterns given for condition D′(a, b) in Table 1. The precise form of Table 1
is determined by the proof of Lemma 9.

We say that a colouring of u, ux, vy, v satisfies condition Ξ if it does not match any of
the patterns given for condition Ξ in Table 1. A pair (G, Λ), comprising a sepachain G
with associated 4-list-assignment Λ, is of type Ξ if every colouring that satisfies condition Ξ
can be extended to a total Λ-colouring of G, but this is not true for any earlier condition
in Table 1. According to this definition, (G, Λ) cannot have more than one type, and
Theorem 2 implies that if G is nontrivial then (G, Λ) has exactly one type. For example,
if (G, Λ) is as in Fig. 2(a) then it has type D′(a, b); if it is as in Fig. 2(b) (which is the
same with a different labelling of the colours) then it has type D′(d, e); and if G is very
good for total 4-choosability then (G, Λ) has type A, for every 4-list-assignment Λ.

Our proof of Theorem 1 rests on the following result.

Theorem 2. Every nontrivial sepachain G is good for total 4-choosability.

Outline proof. We prove the result by induction on |V (G)|. The base case for the
induction is a path of length 3, whose goodness follows from that of the configuration in
Fig. 1(g), proved in Lemma 8. If G is a nontrivial sepachain that is not a path of length 3,
then it is formed by joining two smaller, possibly trivial, sepachains G1 and G2 in series
or in parallel.

If G is formed by joining G1 and G2 in series, then we may assume that neither G1

nor G2 is a single edge (since if G2, say, is a single edge, then G ∼= G1), and that G1 and
G2 are not both paths of length 2 (since, if they are, then G is a path of length 3). We
may assume inductively that if G1 or G2 is nontrivial then it is good. If G2, say, is a path
of length 2, then G is as in Fig. 1(c), and it is proved good in Lemma 2. If G1 and G2 are
both nontrivial then G is as in Fig. 1(b), and it is proved good in Lemma 3.

If G is formed by joining G1 and G2 in parallel, then each of G1 and G2 can be a single
edge, a path of two edges, or nontrivial, except that G1 and G2 cannot both be single
edges since G is simple. If G2, say, is a single edge, then G is as in Fig. 1(g) or 1(h), and
it is proved good in Lemma 8 or 9 respectively. If G2 is a path of length 2 and G1 is not
a single edge, then G is as in Fig. 1(e) or 1(f), and it is proved good in Lemma 7 or 6
respectively. Finally, if G1 and G2 are both nontrivial then G is as in Fig. 1(d), and it is
proved good in Lemma 5. 2

We now show how Theorem 2 implies Theorem 1.

Proof of Theorem 1. Let H be a K4-minor-free graph with maximum degree 3. It is
clear that ch′′(H) > χ′′(H) > 4, and so it suffices to prove that ch′′(H) 6 4. In proving
this we assume only that the maximum degree of H is at most 3. Suppose if possible that
ch′′(H) > 4 and that H has as few vertices as possible subject to this condition. It is
clear that H is connected and has no vertex with degree 0 or 1.
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If H is 2-connected let B = H and let z0 be any vertex of degree 2 in H, which exists
by the well-known result of Dirac [2] that every K4-minor-free graph has a vertex with
degree at most 2. If H is not 2-connected let B be an end-block of H with cutvertex z0.
In either case, z0 has degree 2 in B. Let its neighbours in B be x and y, and let G be the
graph obtained from B by replacing z0 by two vertices u, v of degree 1 with neighbours
x, y respectively. By Lemma 1, G is a nontrivial sepachain.

Let Λ be a 4-list-assignment to H such that H has no total Λ-colouring. If B 6= H
then we may suppose that H − (B − z0) has a total Λ-colouring; uncolour z0, and for
each uncoloured element z let L(z) denote the residual list of colours in Λ(z) that are not
used on any element adjacent to z, and so are still available for use on z. If B = H let
L(z) = Λ(z) for every element z. In either case,

|L(z)| >





2 if z = z0,
3 if z = z0x or z0y,
4 otherwise.

We can transfer these lists to G by defining L(u) = L(v) = L(z0), L(ux) = L(z0x) and
L(vy) = L(z0y). A total L-colouring of H corresponds to a total L-colouring of G in
which u, v have the same colour and u, ux, vy have three different colours. A study of
Table 1 shows that for every type of G, we can ensure that a colouring of u, ux, vy, v with
these properties can be extended to a total L-colouring of G provided that we avoid a
fixed colour on one of ux and vy. Specifically, if G has type D(a, b), D′(a, b) or E ′(a, b, c),
then such a colouring will extend provided that ux does not have colour a. If G has type
E(a, b, c), then it is enough that ux does not have colour c. If G has one of types O–Y ,
Ā(a, b, c, d), B̄(a, b, c, d) or D̄(a, b, c, d, e), then it is enough that ux does not have colour b.
If G has one of types P ′–X ′, Ā′(a, b, c, d), B̄′(a, b, c, d) or D̄′(a, b, c, d, e), then it is enough
that vy does not have colour c. If G has any other type, then no restriction is needed.

If we must avoid a particular colour a on ux, then colour ux (and z0x) first with a
colour b ∈ L(z0x) \ {a}, then colour u (and v and z0) with a colour c ∈ L(z0) \ {b}, and
finally colour vy (and z0y) with a colour d ∈ L(z0y) \ {b, c}. If we must avoid a particular
colour on vy, then colour vy, u, ux in the reverse order. Either way, this colouring extends
to a total L-colouring of G and hence to a total Λ-colouring of H, and this contradiction
completes the proof of Theorem 1. 2

The remainder of the paper is devoted to the lemmas needed to prove Theorem 2.

3 The series constructions

In this section we will use only the following property of good sepachains, which can be
seen by a careful study of Table 1: if Λ is a 4-list-assignment to a nontrivial good sepachain
G, and u and ux are coloured from their lists, and we wish to extend this colouring to a
total Λ-colouring of G, then there are at most two possible choices for the colour of vy
that place any restriction at all on the colour of v, and there is at most one choice that
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forbids more than one colour for v (in addition to the obvious restriction that v must have
a different colour from vy).

Lemma 2. If a nontrivial sepachain G1 is good for total 4-choosability, then the sepachain

G in Fig. 1(c) is very good for total 4-choosability.

Proof. Let Λ be a 4-list-assignment to G, and let colours λu, λux, λvy, λv be assigned
to u, ux, vy, v. At this point there are at least two colours that we can use on the vertex
v1 =y and at least three colours that we can use on the edge v1y1. So give v1y1 a colour
that places no restriction at all on the colour of v1 (if we want to extend this colouring to
G1), and then give v1 a colour different from the colour we have just given to v1y1. Now
this colouring of u=u1, ux=u1x1, v1y1 and v1 can be extended to the whole of G1, and
so the original colouring of u, ux, vy, v can be extended to a total Λ-colouring of G. 2

Lemma 3. If G1 and G2 are nontrivial sepachains that are good for total 4-choosability,
then the sepachain G in Fig. 1(b) is very good for total 4-choosability.

Proof. Let Λ be a 4-list-assignment to G, and let colours λu, λux, λvy, λv be assigned
to u, ux, vy, v. Consider the edge y1v1 =u2x2. There are at most two of the four possible
colours for this edge that place any restriction at all on the colour of u2 (if we want to
extend this colouring to G2), and there is at most one colour for this edge that forbids
more than one colour for v1 (if we want to extend this colouring to G1). So give this edge
a colour that places no restriction on u2 and forbids at most one colour for v1, and give
v1 a colour that is not forbidden (and is different from the colour of the edge). Now this
colouring can be extended to the whole of G1. If we now delete the colour that we assigned
to v1, then the resulting colouring of u2, u2x2, v2y2 =vy and v2 =v can be extended to
the whole of G2. Thus the original colouring of u, ux, vy, v can be extended to a total
Λ-colouring of G. 2

4 The easier parallel constructions

In this section we will need the following easy lemma.

Lemma 4. (a) ch′(C4) = χ′(C4) = 2.
(b) If C : xw1yw2x is a 4-cycle and every edge z of C is given a list Γ(z) of three colours,
and if µ, ν are arbitrary colours, then the edges of C can be coloured from their lists in

such a way that adjacent edges get different colours and, for each i ∈ {1, 2}, xwi is not

coloured with µ, ywi is not coloured with ν, and if xwi is coloured with ν then ywi is not

coloured with µ.

Proof. (a) follows from the well-known result [3] that a cycle of even length is 2-
choosable (or, equivalently, edge-2-choosable). To prove (b), for each i let L(xwi) :=
Γ(xwi) \ {µ} and L(ywi) := Γ(ywi) \ {ν}, so that |L(z)| > 2 for each edge z. We may
assume that ν ∈ L(xwi) and µ ∈ L(ywi) for at least one i, since otherwise we require only
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Forbidden Forbidden
Condition

Colouring
colourings Condition

Colouring
colourings

of u, v
of ux, vy

of u, v
of ux, vy

A µ ν ν µ ξ ξ
B(a, b) a ν ν a b a B ′(a, b) µ b b µ b a
C(a, b) a ν ν b ξ ξ C ′(a, b) µ b a µ ξ ξ

E(a, b, c) a ν ν b c b E ′(a, b, c) µ b a µ a c
G(a, b, c) a c c a c b G′(a, b, c) c b a c b c

J(a, b, c, d) d c c b c d J ′(a, b, c, d) c d a c d c
L(a, b, c, d) a c c a c b L′(a, b, c, d) c b a c b c
M(a, b, c, d) a c c b c d M ′(a, b, c, d) c b a c d c
O(a, b, c) a a b c ξ ξ

S(a, b, c, d) a d b a b c S ′(a, b, c, d) a d b c d c
U(a, b, c, d) a a b c b d U ′(a, b, c, d) a a b c d c
Z(a, b, c, d) a d b c ξ ξ
Ā(a, b, c, d) a d b a b c Ā′(a, b, c, d) a d b c d c

D̄(a, b, c, d, e) a d b c b e D̄′(a, b, c, d, e) a d b c e c

Table 2

that xwi and ywi should have different colours for each i, and the result follows from part
(a). So suppose that ν ∈ L(xw1) and µ ∈ L(yw1). If µ ∈ L(yw2), then colour xw1 with ν,
yw2 with µ, and xw2 and yw1 with colours different from both µ and ν, which is possible
since µ /∈ L(xw2) and ν /∈ L(yw1). If however µ /∈ L(yw2), then colour yw1 with µ, xw1

with a colour different from both µ and ν, xw2 with a colour different from that of xw1,
and yw2 with a colour different from that of xw2, and necessarily different from µ. 2

If Λ is a 4-list-assignment to a nontrivial sepachain G, labelled as in Fig. 1(a), and
u, v are given colours λu, λv from their lists, then we say that (G, Λ, λu, λv) is standard

(or, if the lists and colours are clear from the context, we say just that G is standard) if
there is at most one pair of colours µ ∈ Λ(ux) \ {λu} and ν ∈ Λ(vy) \ {λv} such that,
if ux, vy are given colours µ, ν respectively, then this colouring cannot be extended to
a total Λ-colouring of G. For more than half of the possible types for (G, Λ), it can be
seen from Table 1 that every possible colouring of u, v results in G being standard. The
exceptions are listed in Table 2. Note that in most of these cases it is possible to change
the colour of u or v in such a way that G becomes standard.

Lemma 5. If G1 and G2 are nontrivial sepachains that are good for total 4-choosability,
then the sepachain G in Fig. 1(d) is very good for total 4-choosability.

Proof. Let Λ be a 4-list-assignment to G, and let colours λu, λux, λvy, λv be assigned to
u, ux, vy, v. At this point there are at least two colours available for use on each of x, y
and at least three for use on each of the edges in the set E0 := {xx1, xx2, yy1, yy2}.
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Suppose first that we can assign colours to x and y in such a way that both G1 and
G2 are standard. In this case we borrow a trick from [7], which we call the standard trick ;
note that it can only be used after x and y have both been coloured. For each z ∈ E0,
let L(z) denote the set of colours that can now be used on z, where |L(z)| > 2. For each
i, if there is an ordered pair µi ∈ L(xxi), νi ∈ L(yyi) of colours that is forbidden for
xxi, yyi, and µi 6= νi, then choose a new colour ξi, not contained in any other list, and
set L′(xxi) := L(xxi) ∪ {ξi} \ {µi} and L′(yyi) := L(yyi) ∪ {ξi} \ {νi} (we call this the
standard construction); otherwise, set L′(xxi) := L(xxi) and L′(yyi) := L(yyi). Identify
xi, yi into a new vertex wi. By Lemma 4(a), the edges of the 4-cycle xw1yw2x can be
coloured from the lists L′. Transfer this colouring to G (giving edges xxi, yyi the colours
of xwi, ywi). For each i, at most one of the edges xxi, yyi is coloured with the new colour
ξi. If, say, xxi is, then uncolour xxi and recolour it with a colour that is not used on ux,
x or xx3−i; perhaps it will now have the same colour as yyi, but that is acceptable. In
this way we can colour the edges in E0 so that neither pair xxi, yyi is given its forbidden
pair of colours (if it has one), and so this colouring can be extended to both graphs Gi so
as to form a total Λ-colouring of G.

It is clear from Table 2 that this proves the result unless one of G1 and G2 has type
A, B, C, E, B′, C ′ or E ′, since in all other cases we can choose a colour for x (= u1) such
that G1 is standard whatever the colour of y (= v1), and we can choose a colour for y
(= v2) such that G2 is standard whatever the colour of x (= u2). It also proves the result
if G1, say, has type B, C or E (or B ′, C ′ or E ′) and G2 has any type other than A, B, C
or E (or A, B′, C ′ or E ′), for the same reason. There remain two cases to consider.

Case 1: G1 (say) has type A.

Suppose first that G2 also has type A. Colour x, y with colours µ, ν from their lists, and
identify xi, yi into a new vertex wi, for each i. Colour the edges of the 4-cycle xw1yw2x
as in Lemma 4(b), and transfer this colouring to G (giving edges xxi, yyi the colours of
xwi, ywi). Then all the requirements of Condition A are satisfied for both G1 and G2,
and so this colouring can be extended to a total Λ-colouring of G.

If G2 has any type other than A, then it is possible to assign colours to x, y in such a
way that G2 is standard. Using the standard construction, we can modify the lists so that
the colouring can be extended to G2 as long as xx2 and yy2 do not have the same colour.
The result now again follows from Lemma 4(b), used as in the previous paragraph.

Case 2a: G1 has type B(a, b), C(a, b) or E(a, b, c) and G2 has type B(a′, b′), C(a′, b′) or
E(a′, b′, c′).
Case 2b: G1 has type B′(a, b), C ′(a, b) or E ′(a, b, c) and G2 has type B′(a′, b′), C ′(a′, b′)
or E ′(a′, b′, c′).

Case 2b is the same as Case 2a reflected left-to-right, and so we will consider only Case 2a.
Give x, y colours from their lists so that x (= u2) is not given colour a′. Then G2 is
standard; carry out the standard construction on G2 if necessary, so that it suffices for
xx2 and yy2 to be given different colours. We may assume that the colour of x is a (so
that a 6= a′), since otherwise G1 is standard as well. There are now at least two colours
available for each of the edges in E0.
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If G1 has type B(a, b), then give yy1 (= v1y1) a colour different from a, then colour yy2

(differently from yy1), xx2 (differently from yy2) and xx1 (differently from xx2; possibly
xx1 has the same colour as yy1, but this does not matter). This colouring can be extended
to a total Λ-colouring of G. If G1 has type E(a, b, c) then the same argument works if
we start by giving yy1 a colour different from b. Thus we may assume that G1 has type
C(a, b). By interchanging G1 and G2 if necessary, we may assume that G2 also has type
C, specifically C(a′, b′). However, since x (= u2) does not have colour a′, it can be seen
from Table 1 that condition C(a′, b′) imposes no restriction on the colours of xx2 (= u2x2)
and yy2 (= v2y2). So colour xx1 differently from y, and yy1 differently from xx1, then xx2

differently from xx1, and yy2 differently from yy1. This colouring can be extended to a
total Λ-colouring of G, and this completes the proof of Lemma 5. 2

Lemma 6. If a nontrivial sepachain G1 is good for total 4-choosability, then the sepachain

G in Fig. 1(f) is very good for total 4-choosability.

Proof. Let Λ be a 4-list-assignment to G, and let colours λu, λux, λvy, λv be assigned to
u, ux, vy, v. For each uncoloured element z, let L(z) denote the set of colours that can now
be used on z, so that |L(z)| > 2 if z ∈ {x, y}, |L(z)| > 3 if z ∈ E0 := {xs, ys, xx1, yy1},
and |L(s)| = 4. There are two cases to consider, which are dealt with by rather similar
arguments.

Case 1: G1 has type A.

If we colour x and y with arbitrary colours µ, ν from their lists, and identify x1, y1 into a
new vertex w1, then it follows from Lemma 4(b) that we can colour the four edges in a
way that meets all the required conditions. The only problem is if x, xs, ys, y have been
given the four distinct colours in L(s). This will not happen if x and y are given the same
colour, or if one of them has been given a colour not in L(s), and so we may assume that
this is not possible; specifically, we assume that

L(x) = {a, b}, L(y) = {c, d}, L(s) = {a, b, c, d}.

If it is possible to colour x, xs, y so that xs and y have the same colour, do so, w.l.o.g.
with colours a, c, c, then colour xx1, yy1, ys, s in that order, which is possible since both
ys and s have two neighbours with the same colour. (Specifically, we colour xx1 with a
colour c1 ∈ L(xx1) \ {a, c}, yy1 with c2 ∈ L(yy1) \ {c, c1}, ys with c3 ∈ L(ys) \ {c, c2},
and s with c4 ∈ L(s) \ {a, c, c3}.) In view of this, we may suppose that L(xs)∩L(y) = ∅,
and similarly that L(x) ∩ L(ys) = ∅. Thus there exist colours e ∈ L(xs) \ L(s) and
e′ ∈ L(ys) \ L(s), where possibly e = e′.

Now colour x and y with arbitrary colours µ, ν from their lists, and extend this colour-
ing to the edges in E0 using Lemma 4(b). If xs or ys is coloured with e or e′ or any
other colour not in L(s), then this colouring can be extended to s and hence to a total
Λ-colouring of G. So we may assume that this is not so, and that

L(xs) = {a, b, e}, L(ys) = {c, d, e′}, L(xs) ∩ L(ys) = ∅,
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and xx1, yy1 are coloured with e, e′ respectively (so that e 6= e′), since otherwise we could
recolour xs or ys with e or e′ or some other colour not in L(s), without changing the colour
of any other element. But now we can recolour yy1 with a colour c1 ∈ L(yy1) \ {e, e

′}, y
with a colour in {c, d} \ {c1}, and ys with e′, and this colouring can be extended to s and
then to a total Λ-colouring of G.

Case 2: G1 does not have type A.

By reflecting left-right if necessary, we may assume that G1 does not have any of the types
in the right half of Table 2, so that it is possible to colour x (= u1) in such a way that,
whatever colour is given to y (= v1), G1 is standard. If this is done, then the standard
trick together with Lemma 4(a) shows that the edges in E0 can be coloured so that all
conditions are satisfied. As in Case 1, the only problem is if x, xs, ys, y have been given
the four distinct colours in L(s). This will not happen if x and y are given the same
colour, or if one of them has been given a colour not in L(s), and so we may assume that
this is not possible; specifically, we assume that

x has colour a, L(y) = {c, d}, L(s) = {a, b, c, d}.

If it is possible to colour xs and y with the same colour (and x with a), do so, then colour
xx1, yy1, ys, s in that order, which is possible since both ys and s have two neighbours
with the same colour. (The colour c1 given to xx1 rules out at most one colour c2 for
yy1, if (c1, c2) is the forbidden ordered pair; it is irrelevant whether or not c1 = c2.) In
view of this, we may suppose that L(xs) ∩ L(y) = ∅, so that there is at least one colour
e ∈ L(xs) \ L(s).

Now colour x with a and y with an arbitrary colour ν ∈ L(y), and extend this colouring
to the edges in E0 using the standard trick and Lemma 4(a). If xs or ys is coloured with
e or any other colour not in L(s), then this colouring can be extended to s and hence to
a total Λ-colouring of G. So we may assume that this is not so.

Suppose first that e ∈ L(ys). Then we can change the colour of xs or ys to e without
changing any other colour, unless xx1 and yy1 both have colour e. (This is after completing
the standard trick, when xx1 and yy1 may have the same colour.) In that case, recolour
xs with e and xx1 with a colour in L(xx1)\{a, e}; if this would cause xx1 and yy1 to have
the forbidden pair of colours, then, instead, recolour ys with e and yy1 with a colour in
L(yy1) \ {ν, e}, and note that now xx1 and yy1 cannot have the forbidden ordered pair of
colours. So the colouring can be extended to s and then to a total Λ-colouring of G.

So we may assume that e /∈ L(ys). Now recolour xs with e, xx1 with a colour
c1 ∈ L(xx1) \ {a, e}, yy1 with a colour c2 ∈ L(yy1) \ {ν} such that (c1, c2) is not the
forbidden ordered pair of colours, and ys with a colour in L(ys) \ {ν, c2}. This colouring
can be extended to s and then to a total Λ-colouring of G, and this completes the proof
of Lemma 6. 2

The following lemma is a special case of a result in [11], where it is proved by an
entirely different method. For completeness, we include here a proof using the methods
of the current paper.

Lemma 7. The sepachain G in Fig. 1(e) is very good for total 4-choosability.
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Proof. Let Λ be a 4-list-assignment to G, and let colours λu, λux, λvy, λv be assigned to
u, ux, vy, v. For each uncoloured element z, let L(z) denote a set of colours that can now
be used on z, where

|L(z)| =





2 if z = x or y,
3 if z is an edge,
4 if z = r or s.

(1)

Note that if we first colour x and y, then we can colour the four edges by Lemma 4(a)
since each edge has at least two usable colours in its list, and we can then colour r and s
unless either x, xr, ry, y have been coloured with the four distinct colours in L(r), or else
x, xs, sy, y have been coloured with the four distinct colours in L(s). This will not happen
if we can give x and y the same colour, and so we may assume that L(x) ∩ L(y) = ∅;
specifically, we choose

L(x) = {a, b} and L(y) = {c, d}. (2)

The same method of colouring will work if we can give x or y a colour that is not in
L(r) ∪ L(s), and so we may assume that

{a, b, c, d} ⊆ L(r) ∪ L(s). (3)

It will also work if we can give x a colour not in L(r) and y a colour not in L(s), or vice
versa, and so we may assume that

L(x) ⊂ L(r) or L(y) ⊂ L(s), and L(x) ⊂ L(s) or L(y) ⊂ L(r). (4)

Suppose that L(x)∩L(ry) 6= ∅. Then colour x and ry with the same colour µ, and let
L′(z) := L(z) \ {µ} for each uncoloured element z. By (1) and (2), |L′(z)| > 2 for each z,
and |L′(z)| > 3 if z ∈ {r, s}. If it is now possible to colour xs and y with the same colour,
do so, and then colour xr, r, sy, s in that order. If however this is not possible, then either
|L′(s)| = 4, or else L′(xs) or L′(y) contains a colour not in L′(s); in either case, colour
xs, sy and y in that order, using a colour not in L′(s) if possible, and then colour s, xr
and r in that order. In view of this and symmetric arguments, we may assume that

L(x) ∩ L(ry) = L(x) ∩ L(sy) = L(y) ∩ L(xr) = L(y) ∩ L(xs) = ∅. (5)

If L(r) = L(s) = {a, b, c, d}, then by (1), (2) and (5) we can colour xr with a colour f /∈
L(r) and sy with a colour f ′ /∈ L(s), and we can then colour the elements xs, ry, x, y, r, s
in that order, since f /∈ L(x) and f ′ /∈ L(y) by (2).

If L(r) = {a, b, c, d} and L(s) 6= {a, b, c, d}, say d /∈ L(s), then we can colour xr with
a colour f /∈ L(r) and y with the colour d /∈ L(s), and we can then colour the elements
ry, sy, xs, x, r, s in that order, since f /∈ L(x).

So we may assume that L(r) 6= {a, b, c, d} and L(s) 6= {a, b, c, d}. By (1)–(4) and
symmetry we may therefore assume that L(r) = {a, b, c, e} and L(s) = {a, b, d, e′}, where
possibly e = e′ but e, e′ /∈ {a, b, c, d}.

Note that if three mutually adjacent elements each have a list of two colours, then
they can be coloured from these lists unless the lists are all identical. Thus if we colour
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ry and sy with colours p and q, then we can extend this colouring to xr, x and xs unless
L(xr) = {a, b, p} and L(xs) = {a, b, q}. We will use this idea in conjunction with the
following table, which we will explain shortly.

Colouring for At least one
ry, y, sy extends because

(i) f d c or d c g d /∈ L(r) and c /∈ L(s).
(ii) f d c or f c d f /∈ L(r) and c /∈ L(s).
(iii) f d c or f c g f /∈ L(r) and c /∈ L(s).
(iv) f c d or f c g f /∈ L(r) and c /∈ L(s).
(v) f c g1 or f c g2 f /∈ L(r) and c /∈ L(s).

By (2) and (5), {a, b} ∩ L(ry) = ∅, and so there is a colour f ∈ L(ry) \ {a, b, c, d}.
Similarly, there is a colour g ∈ L(sy) \ {a, b, c, d}, where possibly g = f . If d ∈ L(ry)
and c ∈ L(sy), then we can colour ry, y, sy respectively with either f, d, c or d, c, g as
in row (i) of the table; at least one of these colourings can be extended to xr, x, xs as
explained in the previous paragraph (since L(xs) cannot equal both {a, b, c} and {a, b, g}),
and then to r and s since d /∈ L(r) and c /∈ L(s). So we may suppose that d /∈ L(ry) or
c /∈ L(sy), w.l.o.g. d /∈ L(ry). It follows that there are at least two possible choices for
f ∈ L(ry) \ {a, b, c, d}, and we can ensure f 6= e, so that f /∈ L(r). If {c, d} ⊂ L(sy),
we can complete the colouring by using one of the schemes for ry, y, sy in row (ii) of the
table; thus we may assume that {c, d} 6⊂ L(sy), which means that there are at least two
choices for g, and we can choose g 6= f . Now if c ∈ L(sy) or d ∈ L(sy) we can complete
the colouring using row (iii) or (iv) of the table respectively, and so we may assume that
neither of these happens. This means that there are three choices for g, and we can choose
distinct colours g1, g2 ∈ L(sy) \ {a, b, c, d, f}. Finally we can complete the colouring using
row (v) of the table, and this completes the proof of Lemma 7. 2

5 The harder parallel constructions

Lemma 8. The sepachain G in Fig. 1(g) is good for total 4-choosability.

Proof. Let Λ be a 4-list-assignment to G, and let colours λu, λux, λvy, λv be assigned to

u, ux, vy, v. For each uncoloured element z, let L̂(z) denote the set of all colours that can

now be used on z, and let L(z) ⊆ L̂(z) where

|L(z)| =





2 if z = x, xy or y,
3 if z = wx or wy,
4 if z = w.

Up to left-right reflections, the lists L(x), L(xy), L(y) fall into one of the patterns (i)–(xii)
shown in Table 3 (where for brevity we have written ab instead of {a, b}, etc.). Here (i) is
the pattern with all three lists the same, (ii)–(v) are the patterns with two lists the same
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L(x) L(xy) L(y) wx x xy y wy

(i) ab ab ab No possibility

(ii) ab ac ab 2 a c b 2
2 b c a 2

(iii) ac ab ab 2 c a b
2 c b a

(iv) ab cd cd 2 a c d
2 a d c
2 b c d

(v) ab cd ab 2 a c b 2
2 a d b 2
2 b c a 2

(vi) ac ab bc 2 a b c 2
2 c a b 2

(vii) ac ab ad 2 a b d
2 c a d 2

c b a 2

(viii) ac ab bd 2 a b d
c a b 2

(ix) ab cd ac 2 a d c
b d a 2

2 b c a 2

(x)
(xi)
(xii)

ab
ab
ab

cd
cd
cd

eb
ed
ef









a
a
b
b

c
d
c
d

e
e
e
e

Table 3
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Row Λ(x) Λ(xy) Λ(y)
Bad colourings Avoided by

λuλuxλvyλv condition

1 {a, b, c, d} {a, b, c, d} {a, b, c, d} µ ν µ ν A
2 {a, b, c, d} {a, b, c, d} {a, b, d, e} µ c µ e C ′(c, e)
3 {a, b, c, e} {a, b, c, d} {a, b, c, d} e ν d ν C(e, d)
4 {a, b, c, e} {a, b, c, d} {a, b, d, e} e c d e D(c, d)
5 {a, b, c, e} {a, b, c, d} {a, b, d, f} e c d f D(c, d)

Table 4

and the third different, and (vi)–(xii) are those with no two lists the same; of these, (vi)
is the only one where the union of the lists contains exactly three colours, (vii)–(ix) are
where it contains four colours, (x) and (xi) contain five colours, and (xii) has six colours.

For each pattern, some of the ways of colouring x, xy, y from their lists are also shown
in Table 3. After such a colouring, there is at least one colour available for wx, at least
one for wy, and at least two for w. If wy can be given the same colour as x, then the
colouring can be extended to wx and then w to give the required total colouring of G. We
will assume henceforth that this is not possible. This means that if there is a colouring in
which x is coloured with a, say, then we may assume that a /∈ L(wy), and so if there is a
different colouring in which xy or y is coloured with a, then this second colouring can be
extended to wy in at least two different ways; this is indicated by a figure 2 in the column
for wy, and it means that if we colour wx first, we can then colour wy differently from
wx. The same holds with x and y interchanged, as indicated by a figure 2 in the column
for wx. It follows that all the colourings listed for the patterns (ii)–(ix) can be extended
to wx and wy.

Now suppose that for one of these patterns there is a colouring shown in which xy
is coloured with a, say, and a second colouring in which x or y is coloured with a. If
a ∈ L(w) then the first colouring can be extended to w by giving w colour a, while if
a /∈ L(w) then the second colouring can be extended because one of the four neighbours
of w has a colour not in L(w). This argument shows that the patterns in (iii), (iv) and
(vi)–(ix) all allow for total colourings of G, whatever lists have been assigned to wx, wy
and w. For pattern (v), we may assume by the same argument that c, d /∈ L(w), so that
if wy can be coloured with c or d then wx and w can be coloured. But if L(wy) does
not contain c or d, then, since we are already assuming it does not contain a or b, we can
colour wx and w first and still have a colour to give to wy. Thus we have shown that all
the patterns in (iii)–(ix) allow for total colourings of G.

We can deal with patterns (x)–(xii) all together. Suppose first that a /∈ L(wx). Then
the colourings a, c, e and a, d, e of x, xy, y both extend to wx after wy. By a previous
argument we may therefore suppose that c, d /∈ L(w). If c ∈ L(wx) then we can use
c on wx or wy in the second of these extensions and then colour w; and if c /∈ L(wx)
then, since a /∈ L(wx), we can use the colouring a, c, e and then colour wy, w, wx in that
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order. So we may assume that a ∈ L(wx), and similarly b ∈ L(wx). Therefore one of
c, d, w.l.o.g. c, /∈ L(wx). Thus the colourings a, c, e and b, c, e of x, xy, y both extend to
wx after wy, and one of them can be extended to w unless L(w) = {a, b, e, d′} for some
colour d′ /∈ {a, b, c, e}, and L(wx) = {a, b, d′} and L(wy) = {c, e, d′}. But then we can
colour x, xy, y with a, d, e and wx, w, wy with b, d′, c (whether or not d′ = d). This proves
the result for patterns (x)–(xii).

We have now dealt with patterns (iii)–(xii), and so we must consider patterns (i) and
(ii). We deal with (i) first. When we chose L(x), L(xy), L(y) at the start of the proof, it

is not possible that we were forced into pattern (i) unless L̂(x) = L̂(xy) = L̂(y) = {a, b},
which implies λux 6= λvy, say λux = c and λvy = d, and Λ(x) = {a, b, c, λu}, Λ(xy) =
{a, b, c, d}, and Λ(y) = {a, b, d, λv}. The essentially different possibilities for (λu, λv) are
then (d, c), (d, e), (e, c), (e, e) and (e, f) (where distinct letters represent distinct colours),
giving the lists shown in Table 4. In each case, if a (possibly different) assignment of
colours λu, λux, λvy, λv to u, ux, vy, v puts us into pattern (i), that is,

Λ(x) \ {λu, λux} = Λ(xy) \ {λux, λvy} = Λ(y) \ {λvy, λv} = X, say,

where |X| = 2, then this ‘bad colouring’ λu, λux, λvy, λv must match the pattern shown
in the penultimate column of Table 4, and it can be avoided by imposing the condition
given in the final column.

We now deal with pattern (ii). When we chose L(x), L(xy), L(y) at the start of the
proof, if we were forced into pattern (ii), or the only way of avoiding it would put us into

pattern (i) instead, then L̂(x) = L̂(y) = {a, b} and c ∈ L̂(xy) ⊆ {a, b, c}. By arguments
similar to those used above, one of the two colourings in (ii) will extend to the whole of G

if c ∈ L̂(w) or if a or b ∈ L̂(wx) or L̂(wy). It is not difficult to see that neither colouring
extends if and only if the lists are as shown in Fig. 3(a). Here the colours a, b, c are distinct
by definition, but the only restriction on the other letters is that each list must contain
four distinct colours. The pairs of letters that could represent the same colour are shown
by the edges in the graph in Fig. 3(b). So h, λu, λv could all be equal, for example; or
λu could equal c or λvy and/or λv could equal c or λux; and λux can equal λvy only if
{a, b, c} ⊂ Λ(xy). Various pairs of colours are determined by the lists, as follows:
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Colourings Colourings
(λu, λv) Λ(x) Λ(xy) Λ(y) λuλuxλvyλv

Row of
λuλuxλvyλv

Avoided by

bad for (ii)
Table 4

bad for (i)
condition

(c, c) a b d c a b c d a b e c c d e c 2 µ d µ e D′(d, e)
a b d c a b c e a b e c c d e c 3 d ν e ν D(d, e)
a b d c a c d e a b e c c d e c 4 b d e b D(d, e)

(c, d) a b d c a b c d a b e d c d e d 2 µ c µ e F ′(c, e, d)
a b d c a b c e a b e d c d e d 4 d c e d P ′(d, c, e)
a b d c a c d e a b e d c d e d 4 b c e b D(c, e)

(c, f) a b d c a b c d a b e f c d e f –
a b d c a b c e a b e f c d e f 5 d c e f B̄′(c, d, e, f)
a b d c a c d e a b e f c d e f –

(e, d) a b d e a b c d a b e d e d e d –
a b d e a b c e a b e d e d e d –
a b d e a c d e a b e d e d e d –

(e, f) a b d e a b c d a b e f e d e f –
a b d e a b c e a b e f e d e f –
a b d e a c d e a b e f e d e f –

Case 2 a b d e a b c d a b c d e d d c 3 e ν c ν C(e, c)

Case 3 a b c d a b c d a b c d

{
c d d c
d c c d

}
1 µ ν µ ν A

Table 5

{h, k} = Λ(wx) ∩ Λ(w), {c, λvy} = Λ(wy) \ {h, k},

{a, b} = Λ(w) \ {h, k}, {λu, λux} = Λ(x) \ {a, b},

{c, λux} = Λ(wx) \ {h, k}, {λvy, λv} = Λ(y) \ {a, b}.





(6)

We now distinguish three cases.

Case 1: Λ(wx) 6= Λ(wy).

Then λux 6= λvy and {c} = (Λ(wx) ∩ Λ(wy)) \ {h, k}, so that λu, λux, λvy, λv are uniquely
determined by (6). This shows that there is only one colouring of u, ux, vy, v that will
not extend to the whole of G because it gives rise to pattern (ii), although there may be
other colourings that fail to extend because they give rise to pattern (i). We can avoid
the colouring that is bad for pattern (ii) by imposing an appropriate condition on the
colours of u, ux, vy, v (condition D(λux, λvy), for example), but we need to show that this
condition can be chosen so as to avoid also any colourings that give rise to pattern (i).
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For convenience write λux as d and λvy as e, so that Λ(x) = {a, b, d, λu} and Λ(y) =
{a, b, e, λv}. Since c ∈ Λ(xy) ⊂ {a, b, c, d, e}, we may assume that Λ(xy) = {a, b, c, d} or
{a, b, c, e} or {a, c, d, e}. (Note that {b, c, d, e} would be essentially the same as {a, c, d, e},
since a and b are interchangeable.) In each row of Table 4, |Λ(x) ∪ Λ(xy) ∪ Λ(y)| 6 6,
with equality only in row 5, where |Λ(x) ∩ Λ(y)| = 2. It therefore suffices to consider
the following five essentially different possibilities for (λu, λv): (c, c), (c, d), (c, f), (e, d)
and (e, f) (where distinct letters represent distinct colours; note that (e, c), (f, c) and
(f, d) would be essentially the same as (c, d), (c, f) and (e, f), respectively, under left-
right reflection). The corresponding sets Λ(x), Λ(xy), Λ(y) are listed in the top 15 lines
of Table 5 (omitting braces and commas for brevity), together with the colourings of
u, ux, vy, v that are bad for pattern (ii) or for pattern (i). Note that in the first row
of Table 5, for example, choosing (λu, λux, λvy, λv) = (a, d, e, a) or (b, d, e, b) instead of

(c, d, e, c) would put us into pattern (ii) with L̂(x) = L̂(y) = {b, c} or {a, c} in place of
{a, b}. However, this is not bad because the colouring will extend to a total Λ-colouring

of G unless L̂(x) and L̂(y) are both equal to the set {a, b} = Λ(w) \ Λ(wx), as given
by (6). In contrast, pattern (i) is always bad. In checking Table 5, it may help to
observe that in every row of Table 4, |Λ(x) ∩ Λ(xy)| > 3 and |Λ(xy) ∩ Λ(y)| > 3, and if
|Λ(x) ∩ Λ(xy) ∩ Λ(y)| > 3 then Λ(xy) is equal to Λ(x) or Λ(y). In each row of Table 5
where pattern (i) can arise, an appropriate condition is given which rules out all the
bad colourings, so that any colouring satisfying that condition will extend to a total
Λ-colouring of G.

Case 2: Λ(wx) = Λ(wy) and c 6= λu or c 6= λv, w.l.o.g. c 6= λu.

From Fig. 3(a), λux = λvy = d, say, and Λ(xy) = {a, b, c, d} and Λ(x) = {a, b, d, λu}, and
so {c} = Λ(xy) \ Λ(x). Now λu, λux, λvy, λv are uniquely determined by (6), and so any
colouring satisfying an appropriate condition (condition A, for example) will extend to the
whole of G, unless it gives rise to pattern (i). Since Λ(x) 6= Λ(xy) but Λ(x), Λ(xy), Λ(y)
all have a, b, d in common, the only row of Table 4 that could correspond is row 3 with c
and d interchanged, when λu = e and λv = c, as given in the penultimate row of Table 5.

Case 3: Λ(wx) = Λ(wy) and c = λu = λv.

As in Case 2, λux = λvy = d, say, and so Λ(x) = Λ(xy) = Λ(y) = {a, b, c, d}, putting us
in row 1 of Table 4. We cannot distinguish between c and d, and so the bad colourings
for pattern (ii) are c, d, d, c and d, c, c, d, as in the last row of Table 5.

In every case, there is one of the conditions in Table 1 such that, provided the colouring
of u, ux, v, vy satisfies that condition, it can be extended to a total Λ-colouring of G. This
shows that G is good for total 4-choosability, and it completes the proof of Lemma 8. 2

Lemma 9. If a nontrivial sepachain G1 is good for total 4-choosability, then so is the

sepachain G in Fig. 1(h).

Proof. Let Λ be a 4-list-assignment to G, and let colours λu, λux, λvy, λv be assigned to

u, ux, vy, v. For each uncoloured element z, let L̂(z) denote the set of all colours that can
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now be used on z, and for z ∈ {sx, x, xy, y, yt} choose L(z) ⊆ L̂(z) such that

|L(z)| =

{
2 if z = x, xy or y,
3 if z = sx or yt.

We wish to prove that, by imposing a suitable restriction on the colours λu, λux, λvy, λv if
necessary, we can colour sx, x, xy, y, yt from these lists in such a way that this colouring
can be extended to the whole of G1. Up to left-right reflections, the lists L(x), L(xy), L(y)
fall into one of the patterns (i)–(xii) shown in Table 3. (The columns headed wx and wy
are not now relevant and should be ignored.)

The proof is in two parts. In Part 1 we show that every colouring λu, λux, λvy, λv of
u, ux, vy, v extends to the whole of G unless it gives rise to pattern (i) or (up to left-right
reflection and relabelling of the colours) to one of the following six ‘problem cases’; in
Part 2 we examine these problem cases in more detail.

L̂(x) = {a, c}, L̂(xy) = {a, b}, L̂(y) = {b, c},

L̂(sx) = {a, c, d}, L̂(yt) = {a, b, c},
G1 has type J ′(d, b, a, c);



 (7)

L̂(x), L̂(xy), L̂(y) ⊆ L̂(sx) = L̂(yt) = {a, b, c},

G1 has type A, B or B′, or, if L̂(xy) = L̂(y) = {a, b},
type G′(b, a, c), H ′(c, b, a), J ′(b, ?, c, a), K ′(c, ?, b, a),

L′(?, b, c, a) or N ′(?, ?, c, a, b);





(8)

c ∈ L̂(x) ⊆ {a, b, c}, L̂(xy) = L̂(y) = {a, b},

L̂(sx) = {a, b, c}, L̂(yt) = {a, b, d},
G1 has one of types C–N with first two parameters c, d,

or type S ′(c, b, d, a) or X ′(c, ?, d, b, a) or Ā′(c, b, d, a);





(9)

c ∈ L̂(x) ⊆ {a, b, c}, L̂(xy) = L̂(y) = {a, b},

a, d ∈ L̂(sx) ⊆ {a, b, c, d}, L̂(yt) = {a, b, c},

G1 has type B(c, d) or, if L̂(sx) = {a, c, d},
type G′(d, a, c) or J ′(d, ?, c, a);





(10)

c ∈ L̂(x) ⊆ {a, b, c}, L̂(xy) = L̂(y) = {a, b},

a, d ∈ L̂(sx) ⊆ {a, b, c, d}, L̂(yt) = {a, b, d},
G1 has type C(c, d);



 (11)

c ∈ L̂(x) ⊆ {a, b, c}, L̂(xy) = L̂(y) = {a, b},

a, d ∈ L̂(sx) ⊆ {a, b, c, d}, L̂(yt) = {a, b, e},

G1 has type E(c, e, d) or, if L̂(sx) = {a, c, d},
type S ′(c, d, e, a) or Ā′(c, d, e, a).





(12)

Note that more than one of these cases may arise for the same pair (G, Λ), with different
choices of λu, λux, λvy, λv and (therefore) different labellings of the colours.
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Part 1. In this part of the proof we show that if the colouring λu, λux, λvy, λv does not
give rise to pattern (i) or to any of (7)–(12), then it extends to the whole of G1. We
consider four cases.

Case 1.1: The pattern is (ii) or (vi), and L(sx) = L(yt) = {a, b, c}.

These patterns permit the colourings

sx x xy y yt sx x xy y yt

(ii) b a c b a (vi) c a b c a
a b c a b b c a b c

respectively. Rearranged in the appropriate order for comparison with Table 1 (applied
to G1—note that (x, sx, yt, y) = (u1, u1x1, v1y1, v1)), these become

x sx yt y x sx yt y

(ii) a b a b (vi) a c a c
b a b a c b c b

respectively. A comparison with Table 1 shows that if G1 has any type other than A or
B or B′, then at least one colouring in each set will extend to the whole of G1. If any
of the sets L̂(sx), L̂(x), L̂(xy), L̂(y), L̂(yt) contains any colour other than a, b, c (and the
hypotheses of Case 1.1 hold), then it is easy to see that there is a colouring that will
extend even if G1 has type A or B or B ′; that is, the colouring λu, λux, λvy, λv extends to
the whole of G1 unless (8) holds. (The last part of (8) is not relevant at this point.)

Case 1.2: The pattern is (vii) or (viii), and L(sx) = {a, b, c} and L(yt) = {a, b, d}.

The four possible colourings are

sx x xy y yt sx x xy y yt

(vii) c a b d a (viii) c a b d a
a c b d a a c b d a
b c a d b b c a d b
a c b a d b c a b d

respectively. Rearranged, these become

x sx yt y x sx yt y

(vii) a c a d (viii) a c a d
c a a d c a a d
c b b d c b b d
c a d a c b d b

and it is easy to see that at least one of them must extend to the whole of G1: the two
colourings in which sx and yt have the same colour must extend unless G1 has type A, C,

the electronic journal of combinatorics 13 (2006), #R97 21



Condition
Forbidden colourings Bad pair of

of sx, x, y, yt colourings

B(a, b) ν µ ν µ b a · a (b/ν) a ν a
C(a, b) ν a ν b ξ a · ξ (b/ν) a ν b

E(a, b, c) ν a ν b c a · b (c/ν) a ν b
G′(a, b, c) a µ b µ a c · c b c b c (a/b) c b c

J ′(a, b, c, d) a µ b µ a c · c d c d c (a/d) c d c
L′(a, b, c, d) a µ b µ b c b c d c d c (a/b) c b c
M ′(a, b, c, d) a µ b µ d c b c (a/d) c b c

O(a, b, c) b a a c ξ a a ξ (b/c) a a c
S ′(a, b, c, d) b · · c d a d c (b/d) a d c
U ′(a, b, c, d) b a a c d a a c (b/d) a a c
Z(a, b, c, d) b a d c ξ a d ξ (b/c) a d c
Ā′(a, b, c, d) b a · c d · d c (b/d) a d c

D̄′(a, b, c, d, e) b a d c e · d c (b/e) a d c

Table 6

C ′ or Z, in which case at least one of the other colourings in each column must extend.
This completes Case 1.2.

Case 1.3: Cases 1.1 and 1.2 do not apply, and the pattern is not (iii) (or (i), of course).

Up to permutations of the letters, patterns (ii), (vi), (vii) and (viii) are left-right symmet-
ric. In view of this and the results of Cases 1.1 and 1.2, we may assume that if the pattern
is one of these four then L(sx) 6= {a, b, c}. Then in all cases it is possible to choose a
colouring for x, xy, y, yt that can be extended to sx in at least two different ways. (For
example, in patterns (iv), (v) and (ix)–(xii), L(sx) cannot contain all of a, b, c, d, and
whichever one it omits, at least one of the colourings a, c and b, d for x, xy will extend
to sx in two different ways, regardless of the colours we give to y and yt.) A study of
Table 1 (or, more briefly, Table 2) shows that at least one of these two colourings must
extend to the whole of G1, unless G1 has one of the types listed in Table 6. Here we
have listed the restrictions on the colourings in the order sx, x, y, yt, which is convenient
for our present purpose, although it does not correspond to the order in Table 1; note
however that the letters used in Table 6 agree with those in Table 1 and not necessarily
with those in Table 3.

In Table 6, types O and U ′ are irrelevant and are included only for completeness, since
x and y are adjacent in G and so cannot be given the same colour. Types Z and D̄′ are
also easily dismissed, since in each of these cases every forbidden colouring for G1 has a
fixed pair of colours on some pair of adjacent elements (a, d on x, y for type Z, and d, c
on y, yt for type D̄′), but every pattern allows for a colouring avoiding any such fixed pair
of colours.
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If G1 has type C or E, then every forbidden colouring has the same colour a on x,
and every pattern allows for a colouring avoiding any such fixed colour on x (except for
pattern (iii), which we are not considering in Case 1.3). If G1 has type S ′ or Ā′, then every
forbidden colouring has a fixed colour c on yt, and every pattern allows for a colouring
avoiding any such fixed colour on yt except for pattern (iv). However, if the pattern is
(iv) then we can choose the colour of y to be different from the colour that is called d in
Table 6, to avoid the second forbidden colouring in S ′ or Ā′, and we can then choose the
colour of x so that sx can be given a different colour from the colour called b in Table 6,
to avoid the first forbidden colouring in each case; then the resulting colouring can be
extended to the whole of G1.

Finally, the forbidden colourings for conditions B, G′, J ′, L′ and M ′ all require x and
yt to have the same colour, and this can be avoided unless the lists are as in pattern
(ii) or (vi) with L(yt) = {a, b, c}. However, by assumption in Case 1.3 there is a colour
d ∈ L(sx) \ {a, b, c}, so that these patterns permit the colourings

sx x xy y yt sx x xy y yt

(ii) d a c b a (vi) d a b c a
d b c a b d c a b c

respectively. Of the stated conditions, the only ones that can rule out both colourings for
the same pattern are G′(d, b, a) and J ′(d, b, a, ?), with pattern (vi). However, |L(sx)| > 3,
and so pattern (vi) permits another colouring for sx, x, xy, y, yt, either c′, a, b, c, a (where
c′ could equal c) or b′, c, a, b, c (where b′ could equal b). Condition G′(d, b, a) cannot rule
out either of these, and J ′(d, b, a, ?) cannot rule out the second; but it can rule out the
first if (and only if) it occurs as J ′(d, b, a, c) and c′ = c. This problem arises only if the
lists are exactly as in (7); in all other cases one of the colourings can be extended to the
whole of G1. This completes the discussion of Case 1.3.

Case 1.4: The pattern is (iii).

Since we have already dealt with every other pattern, we may assume that c ∈ L̂(x) ⊆

{a, b, c} and L̂(xy) = L̂(y) = {a, b}. Suppose first that L̂(sx) = L̂(yt) = {a, b, c}. Then
we have the colourings on the left below, rearranged on the right:

sx x xy y yt x sx yt y

a c b a c c a c a
b c a b c c b c b

(13)

Comparison with Table 1 shows that the conditions that forbid both of these colourings
are precisely those listed in (8), together with those obtained from the last six of these
by interchanging a and b. However, a and b are otherwise equivalent in (8), and so, by
interchanging them if necessary, we may assume that at least one of the above colourings
extends to the whole of G1 unless (8) holds.
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Now suppose that L̂(yt) 6= L̂(sx) = {a, b, c}, so that there is a colour d ∈ L̂(yt) \
{a, b, c}. Then we have the colourings on the left below, rearranged on the right:

sx x xy y yt x sx yt y

a c b a d c a d a
b c a b d c b d b

(14)

Comparison with Table 1 shows that the conditions that forbid both of these colourings
are precisely those listed in (9), together with those obtained from the last three of these
by interchanging a and b. Since a and b are otherwise equivalent in (9), we may assume

that if L̂(yt) = {a, b, d} then at least one of these colourings extends to the whole of G1

unless (9) holds. If however L̂(yt) 6= {a, b, d}, then there is a different colour, either c or

a new colour e, available for yt. If c ∈ L̂(yt) then we can give x, sx, yt, y the colours in
(13) as well as those in (14), and least one of these colourings must extend to the whole

of G1 since the types listed in (8) are disjoint from those in (9). If e ∈ L̂(yt) then we can
give x, sx, yt, y the colours c, a, e, a or c, b, e, b as well as those in (14), and it is easy to
see from Table 1 that none of the conditions listed in (9) can rule out both of these new
colourings.

We have now dealt with the possibility that L̂(sx) = {a, b, c}, and so we may assume

there is a colour d ∈ L̂(sx) \ {a, b, c}. Thus at least one colouring of x, xy, y, yt can be
extended to sx in two different ways, and (as in Case 1.3) at least one of these extensions
will extend to the whole of G1 unless G1 has one of the types listed in Table 6. As in
Case 1.3, types O and U ′ are irrelevant, and types Z and D̄′ are easily dismissed. We
must consider the remaining nine conditions.

Since a and b are interchangeable in pattern (iii), we may assume that there exists a

colour a′ ∈ L̂(sx) \ {b, c, d}, and then we have the colourings shown in the three columns

below, depending on whether L̂(yt) \ {a, b} contains c, d or a new colour e.

sx x xy y yt sx x xy y yt sx x xy y yt

a′ c b a c a′ c b a d a′ c b a e
d c b a c d c b a d d c b a e
d c a b c d c a b d d c a b e

It is easy to see that none of the nine remaining conditions in Table 6 can rule out all
three colourings in any column if a 6= a′, and so we may assume that L̂(sx) ⊆ {a, b, c, d}
and a = a′. Then only conditions B(c, d), G′(d, a, c) and J ′(d, ?, c, a) can rule out all three
colourings in the first column, only condition C(c, d) can rule out all three in the second
column, and only E(c, e, d), S ′(c, d, e, a) and Ā′(c, d, e, a) can rule out all three in the

third column. It immediately follows that if |L̂(yt) \ {a, b}| > 2, so that all the colourings
in two different columns are possible, or else there are two different choices for e in the
third column, then no condition can rule out all these colourings; thus we may assume
that L̂(yt) = {a, b, c}, {a, b, d} or {a, b, e}, for the three columns, respectively. Moreover,

if b ∈ L̂(sx) then conditions G′(d, a, c) and J ′(d, ?, c, a) cannot rule out the colouring
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Eqn Λ(sx) Λ(x) Λ(xy) Λ(y) Λ(yt)

(7) a c d λux a c λu λux a b λux λvy b c λvy λv a b c λvy

(8) a b c λux a b c λu λux a b c λux λvy a b c λvy λv a b c λvy

(9) a b c λux a b c λu λux a b λux λvy a b λvy λv a b d λvy

(10) a b c d λux a b c λu λux a b λux λvy a b λvy λv a b c λvy

(11) a b c d λux a b c λu λux a b λux λvy a b λvy λv a b d λvy

(12) a b c d λux a b c λu λux a b λux λvy a b λvy λv a b e λvy

Table 7

b, c, a, b, c for sx, x, xy, y, yt, and conditions S ′(c, d, e, a) and Ā′(c, d, e, a) cannot rule out

the colouring b, c, a, b, e; thus in these four cases we may assume that L̂(sx) = {a, c, d}. In
the other three cases, a and b are interchangeable, and so there is no loss of generality in
assuming that a ∈ L̂(sx). In other words, at least one colouring will extend unless (10),
(11) or (12) holds.

Part 2. We have now shown that every colouring λu, λux, λvy, λv of u, ux, vy, v extends to
the whole of G unless it gives rise to pattern (i) or (up to left-right reflection) to one of (7)–
(12). We must now examine (7)–(12), which we do in four cases. The lists corresponding
to (7)–(12) are given in Table 7; when five colours are given for a particular list, that
means that the list contains four of the five colours, including any that are underlined.

We work mainly with the lists, referring to the type of G1 only when it seems that
more than one of (7)–(12) may arise for the same pair (G, Λ). Note that (7)–(12) have
been specified up to left-right reflection, and so it appears possible that, for a given pair
(G, Λ), one choice of λu, λux, λvy, λv may put us into one of these problem cases as shown,
and another choice may put us into a different case in reflected form. This can happen
only if the type of G1 is, up to reflection, one of those listed in Case 2.1 below, with first
two parameters d, c (not c, d), and some choice of λu, λux, λvy, λv puts us into the reflected
form of (9), which we denote by (9′), and a different choice puts us into the unreflected
form of (7), (8) or (10). In Case 2.1 we show that in fact this cannot happen, and we also
deal completely with (7).

Case 2.1: The type of G1 is G′, H ′, J ′, K ′, L′ or N ′, and the lists permit (7) or (9′) to
hold.

In this case, if (8) holds, then L̂(xy) = L̂(y) = {a, b}; (9) can arise only in its reflected

form (9′); if (10) holds then L̂(sx) = {a, c, d}; and (11) and (12) cannot arise. Thus, for
this case only, we have the following modified form of Table 7.
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Eqn Λ(sx) Λ(x) Λ(xy) Λ(y) Λ(yt)

(7) a c d λux a c λu λux a b λux λvy b c λvy λv a b c λvy

(8) a b c λux a b c λu λux a b λux λvy a b λvy λv a b c λvy

(9′) a b d λux a b λu λux a b λux λvy a b c λvy λv a b c λvy

(10) a c d λux a b c λu λux a b λux λvy a b λvy λv a b c λvy

Table 7′

In Case 2.2 we will consider the possibility that the lists permit (8) only to arise; in Case 2.3
we will consider the possibility that (9′) or (10) (but not both) can arise (although we will
consider (9′) in its reflected form, i.e. (9), with the type of G1 similarly reflected); and in
Case 2.4 we will consider the possibility that (8) and (10) can both arise. In the present
case, we will deal with all other possibilities. We will defer until last the discussion of the
more complicated types G′ and J ′.

Subcase 2.1.1: G1 has type H ′(p, q, r), K ′(p, q, r, s̄), L′(p, q, r, s̄) or N ′(p, q, r, s̄, t̄), and (8)
and (9′) can both arise.

Then, in (8), (a, b, c) is equal to (r, q, p) if the type of G1 is H ′, to (s̄, r, p) if it is K ′, to
(s̄, q, r) if it is L′, and to (s̄, t̄, r) if it is N ′, while, in (9′), (d, c) = (p, q) in all cases. Thus
the relevant lists from Table 7′ can be written as follows.

Type Eqn Λ(sx) Λ(x) Λ(xy) Λ(y) Λ(yt)

H ′ (8) p q r λ1

ux p q r λ1

u λ1

ux q r λ1

ux λ1

vy q r λ1

vy λ1

v p q r λ1

vy

K ′ (8) p r s̄ λ1

ux p r s̄ λ1

u λ1

ux r s̄ λ1

ux λ1

vy r s̄ λ1

vy λ1

v p r s̄ λ1

vy

L′ (8) q r s̄ λ1

ux q r s̄ λ1

u λ1

ux q s̄ λ1

ux λ1

vy q s̄ λ1

vy λ1

v q r s̄ λ1

vy

N ′ (8) r s̄ t̄ λ1

ux r s̄ t̄ λ1

u λ1

ux s̄ t̄ λ1

ux λ1

vy s̄ t̄ λ1

vy λ1

v r s̄ t̄ λ1

vy

All (9′) a2b2p λ2

ux a2b2λ2

u λ2

ux a2b2λ2

ux λ2

vy a2b2q λ2

vy λ2

v a2b2q λ2

vy

Here every colour not occurring as a parameter in the type is given a superscript, since
we do not know, for example, that the colour called λux in (8) is the same as the colour
called λux in (9′).

Suppose first that G1 has type H ′ or K ′. Note that p, q, r, s̄ are distinct by definition,
since a, b, c, d represent distinct colours in Table 1. We see from the entries for Λ(yt) that
p ∈ {a2, b2, λ2

vy}, so that p ∈ Λ(xy). Thus p = λ1

ux or λ1

vy. But then either Λ(sx) or Λ(yt)
does not contain four distinct colours. Since we are assuming in the present subcase that
the type of G1 is such that (8) and (9′) can both arise, this contradiction shows that G1

does not have type H ′ or K ′.
If, however, G1 has type L′ or N ′, then we can get exactly the same contradiction

by using r instead of p. We see from the entries for Λ(yt) that r ∈ {a2, b2, λ2

vy}, so that
r ∈ Λ(xy). Thus r = λ1

ux or λ1

vy. But then either Λ(sx) or Λ(yt) does not contain four
distinct colours. This contradiction shows that Subcase 2.1.1 cannot arise.

Subcase 2.1.2: G1 has type G′(p, q, r), and either (8) or (10) can arise together with (9′).

Then (p, q, r) is equal to (b, a, c) in (8) or (d, a, c) in (10), while (p, q) = (d, c) in (9′). So
the relevant lists from Table 7′ can be written as follows.
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Eqn Λ(sx) Λ(x) Λ(xy) Λ(y) Λ(yt)

(8) p q r λ1

ux p q r λ1

u λ1

ux p q λ1

ux λ1

vy p q λ1

vy λ1

v p q r λ1

vy

(9′) a2b2p λ2

ux a2b2λ2

u λ2

ux a2b2λ2

ux λ2

vy a2b2q λ2

vy λ2

v a2b2q λ2

vy

(10) p q r λ3

ux b3q r λ3

u λ3

ux b3q λ3

ux λ3

vy b3q λ3

vy λ3

v b3q r λ3

vy

Whether it is (8) and (9′) that both hold, or (10) and (9′), we get a contradiction in exactly
the same way as for types L′ and N ′ in Subcase 2.1.1, using the fact that r ∈ {a2, b2, λ2

vy}
but r /∈ Λ(xy). (Note that r 6= b3 in (10).)

Subcase 2.1.3: G1 has type J ′(p, q, r, s̄).

Then (p, r, s̄) is equal to (b, c, a) in (8) or (d, c, a) in (10), and (p, q, r, s̄) = (d, b, a, c) in (7),
while (p, q) = (d, c) in (9′). So the relevant lists from Table 7′ can be written as follows.

Eqn Λ(sx) Λ(x) Λ(xy) Λ(y) Λ(yt)

(7) p r s̄ λ0

ux r s̄ λ0

u λ0

ux q r λ0

ux λ0

vy q s̄ λ0

vy λ0

v q r s̄ λ0

vy

(8) p r s̄ λ1

ux p r s̄ λ1

u λ1

ux p s̄ λ1

ux λ1

vy p s̄ λ1

vy λ1

v p r s̄ λ1

vy

(9′) a2b2p λ2

ux a2b2λ2

u λ2

ux a2b2λ2

ux λ2

vy a2b2q λ2

vy λ2

v a2b2q λ2

vy

(10) p r s̄ λ3

ux b3r s̄ λ3

u λ3

ux b3s̄ λ3

ux λ3

vy b3s̄ λ3

vy λ3

v b3r s̄ λ3

vy

If (7) and (9′) hold, we get a contradiction in the same way as before, by deducing that
s̄ ∈ {a2, b2, λ2

vy} but s̄ /∈ Λ(xy). If (8) or (10) holds, along with (9′), then we get a
contradiction because r ∈ {a2, b2, λ2

vy} but r /∈ Λ(xy). If (8) or (10) holds as well as (7),
then s̄ ∈ Λ(xy) and so s̄ = λ0

ux or λ0

vy, which is impossible from the lists for Λ(sx) and
Λ(yt). The remaining possibilities for (8), (9′) and (10) to hold will be considered in Cases
2.2–2.4.

To complete Case 2.1 we consider the possibility that (7) holds. Note that p, q, r, s̄
are known from the type of G1, and so λ0

u, λ
0

ux, λ
0

vy, λ
0

v are determined by the lists, since
{λ0

ux} = Λ(sx) \ {p, r, s̄}, {λ0

u} = Λ(x) \ {r, s̄, λ0

ux}, etc. Thus there is exactly one assign-
ment of colours λ0

u, λ
0

ux, λ
0

vy, λ
0

v to u, ux, vy, v that can cause (7) to hold, and it can be
avoided by imposing a suitable condition on G, e.g. condition D(λ0

ux, λ
0

vy). However, we
must consider also the possibility that pattern (i) can arise, as in Table 4. Note that s̄ is
in Λ(x) and Λ(y) but not Λ(xy), and the only row of Table 4 in which there is such an
element is row 4. As in every row of Table 4, |Λ(x) ∩ Λ(xy)| > 3, and so to match this
row λ0

u must equal q or λ0

vy. Similarly |Λ(xy)∩Λ(y)| > 3, and so λ0

v must equal r or λ0

ux.
Rewriting q, r, s̄, λ0

ux, λ
0

vy as b, a, c, d, e, we have the four possibilities in the following table.
In every case there is a condition that avoids all the bad colourings, and this completes
the discussion of Subcase 2.1.3 and hence of Case 2.1.

Colourings
λuλuxλvyλv Avoided by

Λ(x) Λ(xy) Λ(y)
bad for condition

(7) (i)

a c d b a b d e b c e a b d e a c d e c D(d, e)
a c d e a b d e b c e a e d e a c d b c X(c, d, b, e, ?)
a c d b a b d e b c e d b d e d c a e c X ′(c, a, e, d, ?)
a c d e a b d e b c e d e d e d c a b c Y (c, a, b, e, d)
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Case 2.2: The lists, and the type of G1, permit (8) to hold, but none of (9)–(12).

We see from Table 7 (not Table 7′) that if Λ(sx) = Λ(yt) then (8) arises only when
λux = λvy, and it can be avoided by imposing condition A on G. If Λ(sx) 6= Λ(yt) then
(8) arises only when {λux} = Λ(sx) \ Λ(yt) and {λvy} = Λ(yt) \ Λ(sx), and it can be
avoided by imposing condition D(λux, λvy) on G. However, we must check the possibility
that pattern (i) arises, as in Table 4. A complete list of all the possibilities as in Table 5
would be too long, because Λ(x), Λ(xy) and Λ(y) are not uniquely determined by the
values of λux and λvy that give rise to (8); and so we need a different approach. We
consider two subcases.

Subcase 2.2.1: Λ(sx) = Λ(yt) = {a, b, c, d}, say, and (8) arises when λux = λvy = d.

Then Λ(xy) = {a, b, c, d}, Λ(x) ⊆ {a, b, c, d, λu} and Λ(y) ⊆ {a, b, c, d, λv}. For the
purpose of tabulating possibilities for the sets Λ(x) and Λ(y), it is convenient to assume
that λu ∈ Λ(x) and λv ∈ Λ(y), since if λu /∈ Λ(x) then the set Λ(x) is the same as
it would be if λu = a, say. So, using a and b to denote ‘anything in {a, b, c, d}’, the
essentially different possibilities for (λu, λv) are (a, b), (e, b), (e, e) and (e, f), where distinct
letters denote distinct colours as usual, since (a, e) is equivalent to (e, b) under left-right
reflection. If λu = e then we may assume that Λ(x) = {a, b, c, e}, since (as far as the sets
are concerned) a, b, c, d are all interchangeable; and then, if λv = e or f , Λ(y) is either
{a, b, c, λv} or {a, b, d, λv}. The possibilities for the lists Λ(x), Λ(xy), Λ(y) are given in
the top six rows of Table 8, together with the colourings λu, λux, λvy, λv that will cause

the lists L̂(x), L̂(xy), L̂(y) to be as in (8) or (i) (up to colour permutations), and the
conditions from Table 1 that will prevent this from happening.

Subcase 2.2.2: Λ(sx) 6= Λ(yt), say Λ(sx) = {a, b, c, d} and Λ(yt) = {a, b, c, e}, and (8) can
arise if (and only if) λux = d and λvy = e.

Then Λ(xy) ⊂ {a, b, c, d, e}, Λ(x) ⊆ {a, b, c, d, λu} and Λ(y) ⊆ {a, b, c, e, λv}. Note that
each of a, b, c must occur in at least one of these sets, since otherwise we could not have (8)
except as pattern (i). As in Subcase 2.1.1, we will assume that λu ∈ Λ(x) and λv ∈ Λ(y).

Suppose first that d does not occur in any of these sets, so that Λ(xy) = {a, b, c, e},
Λ(x) = {a, b, c, λu}, λu /∈ {a, b, c, d}, and λv 6= d. The possibilities for (λu, λv) now (using
b to denote ‘anything in {a, b, c, e}’) are (e, b), (e, f), (f, b), (f, f) and (f, g), and if λv 6= b
then we may assume that Λ(y) is either {a, b, c, λv} or {a, b, e, λv}, since (as far as the
other sets are concerned) a, b, c are all interchangeable. The possibilities are listed in the
next eight rows of Table 8, together with the colourings λu, λux, λvy, λv that will cause

the lists L̂(x), L̂(xy), L̂(y) to be as in (8) or (i) (up to colour permutations—but since

Λ(sx) ∩ Λ(yt) = {a, b, c}, (8) requires that λux = d, λvy = e and L̂(x), L̂(xy), L̂(y) ⊆
{a, b, c}, and so the lists must be exactly as in (8)). In each case there is an appropriate
condition that will prevent this from happening. In view of this, we may assume that d
occurs in at least one of the sets Λ(x), Λ(xy), Λ(y), and similarly, by symmetry, that e
also occurs in at least one set. Thus each of a, b, c, d, e occurs in at least one set.

Suppose now that there is another colour f in one of the sets, w.l.o.g. λv = f (f /∈
{a, b, c, d, e}). Then we cannot have pattern (i) except as row 5 of Table 4. Note that
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Colourings Colourings
(λu, λv) Λ(x) Λ(xy) Λ(y) λuλuxλvyλv

Row of
λuλuxλvyλv

Avoided by

bad for (8)
Table 4

bad for (i)
condition

(a, b) a b c d a b c d a b c d · ξ ξ · 1 µ ν µ ν A
(e, b) a b c e a b c d a b c d e ξ ξ · 3 e ν d ν C(e, d)
(e, e) a b c e a b c d a b c e e ξ ξ e –

a b c e a b c d a b d e e ξ ξ e 4 e c d e O(e, c, d)
(e, f) a b c e a b c d a b c f e ξ ξ f –

a b c e a b c d a b d f e ξ ξ f 5 e c d f Z(e, c, d, f)

(e, b) a b c e a b c e a b c e e d e · 1 µ ν µ ν B(e, d)
(e, f) a b c e a b c e a b c f e d e f 2 µ e µ f I ′(e, f, d)

a b c e a b c e a b e f e d e f 2 µ c µ f M ′(c, f, e, d)
(f, b) a b c f a b c e a b c e f d e · 3 f ν e ν E(f, e, d)
(f, f) a b c f a b c e a b c f f d e f –

a b c f a b c e a b e f f d e f 4 f c e f U ′(f, c, e, d)
(f, g) a b c f a b c e a b c g f d e g –

a b c f a b c e a b e g f d e g 5 f c e g D̄′(f, c, e, g, d)

(a, f) a b c d a b c e a b e f · d e f 5 d c e f B̄′(d, c, e, f)
a b c d a b d e a b e f · d e f 5 c d e f D(d, e)

(e, f) a b d e a b c d a b c f e d e f 5 e d c f E ′(d, f, c)
a b d e a b c e a b c f e d e f 5 d e c f C̄ ′(d, e, c, f)
a b d e a b c e a c e f e d e f 5 d b c f Ē ′(d, b, c, f, e)
a b d e a c d e a c e f e d e f 5 b d c f E ′(d, f, c)

a b c d a b c d a b c e · d e · 2 µ d µ e D′(d, e)
a b c d a b c d a b d e · d e d 2 µ c µ e F ′(c, e, d)
a b c e a b c e a b c d e d e d 2 µ e µ d H ′(e, d, ?)
a b c e a b c e a b d e e d e d 2 µ c µ d L′(c, d, e)
a b d e a b d e a b c d e d e d 2 µ e µ c H ′(e, c, d)
a b d e a b d e a b c e e d e · 2 µ d µ c J ′(d, c, e, ?)
a b d e a b d e a c d e e d e d 2 µ b µ c N ′(b, c, e, d, ?)

Table 8
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Colourings Colourings
Common

λuλuxλvyλv λuλuxλvyλv

Avoided by
colours

bad for (i) bad for (8)
condition

{a, b} c d e c · d e · D(d, e)
d e c d e d e d Q′(d, e, c)
e c d e e d e d Q(e, c, d)
c e d c e d e d R(c, e, d)
e d c e e d e · P (e, d, c)
d c e d · d e d P ′(d, c, e)

{c, d} a b e a · d e d Ā′(a, b, e, d)
b e a b e d e d W (b, e, a, d)
e a b e e d e d V (e, a, b, d)

{d, e} a b c a e d e d Y (a, b, c, e, d)

Table 9

in this row there is no colour that belongs to Λ(x) and Λ(y) but not to Λ(xy), and so
we do not need to consider the possibility that λu = λv = f ; and also there is no colour
that belongs to Λ(xy) but not to Λ(x) or Λ(y), and so, since d is in at least one set, we
may assume that d ∈ Λ(x). Since a, b, c are all interchangeable, and λu 6= λux = d, we
may assume that (λu, λv) = (a, f) or (e, f), and in the latter case Λ(x) = {a, b, d, e} and
Λ(y) = {a, b, c, f} or {a, c, e, f}, since |Λ(x) ∩ Λ(y)| = 2. The possibilities are listed in
the next six rows of Table 8.

Finally we assume that all three sets are subsets of {a, b, c, d, e}, and we consider rows
1, 2 and 4 of Table 4 in turn (row 3 being essentially the same as row 2). For row 1, we
have already considered the case when all three sets equal {a, b, c, e}. The only essentially
different case is when they all equal {a, b, d, e}; but in this case (8) cannot arise except
as (i) (when u, ux, vy, y have colours e, d, e, d), and so there is nothing more to consider.
For row 2, the three essentially different possibilities for the first two (equal) sets are
{a, b, c, d}, {a, b, c, e} and {a, b, d, e}; the first two each give two possibilities for Λ(y)
(since a, b, c are interchangeable), and the last gives three possibilities (since only a, b are
interchangeable), as listed in the last seven rows of Table 8.

In row 4 of Table 4, there are two colours that belong to all three sets, and every
other colour belongs to two sets. The three essentially different possibilities for the two
colours in all three sets are {a, b} (which is equivalent to {a, c} and {b, c}), {c, d} (which
is equivalent to {a, d}, {b, d}, {a, e}, {b, e} and {c, e}), and {d, e}; and for each of these
the other three colours can be used in 3! different ways. However, in the second case the
other three colours are a, b, e, and since a and b are interchangeable there are only three
essentially different ways of ordering these; and in the last case the other three colours are
a, b, c, and all six orderings of these are essentially equivalent. The possibilities are listed
in Table 9. The three sets are not given in the table, but can easily be reconstructed: if
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the common colours are p, q and the bad colouring for (i) is i j k i, then Λ(x) = {p, q, i, j},
Λ(xy) = {p, q, j, k} and Λ(y) = {p, q, k, i}, and the first element of the bad colouring for
(8) is e if e ∈ Λ(x) and · otherwise, and the last element is d if d ∈ Λ(y) and · otherwise.
In every case there is an appropriate condition that rules out all the bad colourings, and
this completes the discussion of Case 2.2.

Case 2.3: The lists, and the type of G1, permit at least one of (9)–(12) to hold, but
not (8).

We start by proving the following claim.

Claim. For a given pair (G, Λ), there is at most one choice of colour for ux, and at most

two choices of colour for vy, that can give rise to any of (9)–(12). Moreover, if any of

(9)–(12) holds when vy is given colour c, then there is no other choice of colour for vy
that can give rise to any of (9)–(12).

Proof. We consider two subcases.

Subcase 2.3.1: G1 has type E(c, p, q), S ′(c, q, p, ?) or Ā′(c, q, p, ?), and both (9) and (12)
can hold, with different labellings of the colours (p = d in (9), and (p, q) = (e, d) in (12)).

From Table 7 we see that the lists are as follows.

Eqn Λ(sx) Λ(x) Λ(xy) Λ(y) Λ(yt)

(9) a1b1c λ1

ux a1b1c λ1

u λ1

ux a1b1λ1

ux λ1

vy a1b1λ1

vy λ1

v a1b1p λ1

vy

(12) a2b2c q λ2

ux a2b2c λ2

u λ2

ux a2b2λ2

ux λ2

vy a2b2λ2

vy λ2

v a2b2p λ2

vy

Note that a, b, c, d are distinct colours in (9) and a, b, c, d, e are distinct colours in (12),
and so a1, b1, c, p are distinct and a2, b2, c, q, p are distinct. From the lists for Λ(yt) we see
that {a1, b1, λ1

vy} = {a2, b2, λ2

vy}, so that, from Λ(xy), λ1

ux = λ2

ux, = λux, say; thus there
is only one choice of colour for ux that can cause (9) or (12) to hold. Now, λux 6= a2 or

q, since a, d ∈ L̂(sx) in (12), and c 6= a2 or q; thus {a1, b1} = {a2, q}. Since a1 and b1

are interchangeable in (9), we may suppose w.l.o.g. that a1 = a2 and b1 = q. (Note that,
in order to achieve this, we do not need to interchange the colours themselves, but only
their names.) From Λ(xy) it now follows that {b1, λ1

vy} = {b2, λ2

vy}, so that there are at
most two choices for the colour of vy (namely, the two elements of this set) that can give

rise to (9) or (12). Finally, if λ1

vy = c or λ2

vy = c then c ∈ Λ(yt), but c /∈ L̂(yt) in (9) or
(12) and so λ1

vy = λ2

vy = c; thus in this case there is only one choice of colour for vy that
can give rise to (9) or (12). This proves the Claim in Subcase 2.3.1.

Subcase 2.3.2: (G, Λ) and the type of G1 are such that (9) and (12) cannot both arise.

If none of (9)–(12) can arise then there is nothing to prove; so assume that at least one
can arise. If more than one can arise then G1 must have type C(c, d), and it is (9) and
(11) that can arise. Note however that c and d have the same meaning in (9) as in (11).
This differs from Subcase 2.3.1, where d has different meanings (i.e., it represents different
parameters in the type of G1) in (9) and (12).

So consider a labelling of the colours that agrees with one of (9)–(12). Then c and
d, and e if (12) holds, are given to us in the type of G1. It is now clear from Table 7
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that from this knowledge and the lists we can uniquely determine the set {a, b, λvy} as
Λ(yt)\{p}, where p = c, d or e as appropriate. Hence we can determine λux as the unique
colour in Λ(xy) \ X, where X := {a, b, λvy} = Λ(yt) \ {p}.

Let Y := Λ(sx) \ {c, d, λux}. Then Y = {a} or {a, b}, and we know which, since these
sets have different cardinality. But {λvy} = X \ {a, b}, and so if |Y | = 2 then λvy is
uniquely determined. If |Y | = 1 then X \ Y = {b, λvy}, and there may be two different
choices of colour for vy (namely, the two colours in X \ Y ) that can give rise to (9)–(12).
If however c ∈ X, then necessarily λvy = c, and so in this case there is only one choice
for the colour of vy that can give rise to any of (9)–(12). This completes the proof of the
Claim. 2

If G1 has type B or G′ or J ′, then it is possible that recolouring vy with colour b will
move us from (10) to (8); but we will consider this possibility in Case 2.4, since it is ruled
out by the hypotheses of Case 2.3. We will now examine the one or two possible bad
colourings for (9)–(12), at the same time as we consider the possibility that (i) arises, as
in Table 4.

For convenience, let us relabel d as d∗ and e (if it exists) as e∗, and relabel λux as d. (It
is irrelevant whether or not d or e (introduced below) is equal to d∗ or e∗, since we will have
no further use for the sets Λ(sx) and Λ(yt).) Then, from Table 7, Λ(xy) = {a, b, d, λvy},
Λ(y) = {a, b, λvy, λv}, and λu, c ∈ Λ(x) ⊆ {a, b, c, d, λu}. (As in Case 2.2, for the purpose
of listing the sets, we may assume that λu ∈ Λ(x).) The possibilities for λvy are that
it equals c or a new colour e /∈ {a, b, c, d}. The possibilities are listed in Table 10, with
λvy = c in the top 11 lines and λvy = e in the remainder. Note that λv /∈ {a, b, λvy},
since otherwise |Λ(y)| 6 3. So, using a to denote ‘anything in {a, b, c, d}’, the essentially
different possibilities for (λu, λv) are (a, c), (a, d), (a, f), (λvy, c), (λvy, d), (λvy, f), (f, c),
(f, d), (f, f) and (f, g). However, if λvy = c then we can rule out the five pairs in which
λu = λvy or λv = c, since the former is then equivalent to λu = a and the latter is not
then possible. In Table 10, the entries in the second of the two columns headed ‘bad for
(9)–(12)’ assume that there is a choice of two bad colours (b and e) for vy; if there is only
one bad colour then these second entries simply disappear. Note that there is only one
bad colour for vy, and so there is only one colouring that is bad for (9)–(12), if λvy = c,
or if λvy = e and {b, c, f} ⊂ Λ(x) (since it does not matter if vy is given colour b, so that

L̂(xy) = L̂(y) = {a, e}, if L̂(x) contains more than one colour not in {a, e}). In every case
there is an appropriate condition that rules out all the bad colourings, and this completes
the discussion of Case 2.3.

Case 2.4: The lists, and the type of G1, permit (8), and at least one of (9)–(12), to hold.

Then G1 must have type B or G′ or J ′, and it must be (8) and (10) that can both hold.
Assume that the colours are labelled as in (10). Then c and d are given to us in the type
of G1. As in Subcase 2.3.2, from the row for (10) in Table 7 we see that λux is the unique
colour in Λ(xy) \X, where X := Λ(yt) \ {c}; and if Y := Λ(sx) \ {c, d, λux} then Y = {a}
or {a, b} and λvy ∈ X \ Y . Thus if b ∈ Λ(sx) then the colours of ux and vy that can
cause (10) to hold are uniquely determined, while if b /∈ Λ(sx) then the colour of ux is
uniquely determined and there are at most two different possible colours for vy that can
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Colourings Colourings
λuλuxλvyλv Row of λuλuxλvyλv Avoided by

(λu, λv) Λ(x) Λ(xy) Λ(y)
bad for Table 4 bad for condition
(9)–(12) (i)

(a, d) a b c d a b c d a b c d · d c d 1 µ ν µ ν B ′(c, d)
(a, f) a b c d a b c d a b c f · d c f 2 µ d µ f E ′(d, f, c)
(f, d) a b c f a b c d a b c d f d c d 3 f ν d ν I(f, d, c)

a c d f a b c d a b c d f d c d 3 f ν b ν M(f, b, d, c)
b c d f a b c d a b c d f d c d 3 f ν a ν M(f, a, d, c)

(f, f) a b c f a b c d a b c f f d c f –
a c d f a b c d a b c f f d c f 4 f d b f U(f, d, b, c)
b c d f a b c d a b c f f d c f 4 f d a f U(f, d, a, c)

(f, g) a b c f a b c d a b c g f d c g –
a c d f a b c d a b c g f d c g 5 f d b g D̄(f, d, b, g, c)
b c d f a b c d a b c g f d c g 5 f d a g D̄(f, d, a, g, c)

(a, c) a b c d a b d e a b e c · d e c b d b c 4 c d e c Ā(b, d, e, c)
(a, d) a b c d a b d e a b e d · d e d b d b d 3 c ν e ν J(c, e, d, b)
(a, f) a b c d a b d e a b e f · d e f b d b f 5 c d e f Ā(b, d, e, f)
(e, c) a b c e a b d e a b e c e d e c b d b c – — E ′(d, c, b)

a c d e a b d e a b e c e d e c b d b c 4 c d b c E ′(d, c, b)
b c d e a b d e a b e c e d e c b d b c 4 c d a c E ′(d, c, a)

(e, d) a b c e a b d e a b e d e d e d b d b d 3 c ν d ν K(c, d, b, e)
a c d e a b d e a b e d e d e d b d b d 3 c ν b ν J(c, b, d, e)
b c d e a b d e a b e d e d e d b d b d 3 c ν a ν N(c, a, d, b, e)

(e, f) a b c e a b d e a b e f e d e f b d b f – — E ′(d, f, b)
a c d e a b d e a b e f e d e f b d b f 5 c d b f E ′(d, f, b)
b c d e a b d e a b e f e d e f b d b f 5 c d a f E ′(d, f, a)

(f, c) a b c f a b d e a b e c f d e c –
a c d f a b d e a b e c f d e c f d b c – — D̄(f, d, b, c, e)
b c d f a b d e a b e c f d e c –

(f, d) a b c f a b d e a b e d f d e d –
a c d f a b d e a b e d f d e d f d b d – — M(f, b, d, e)
b c d f a b d e a b e d f d e d –

(f, f) a b c f a b d e a b e f f d e f –
a c d f a b d e a b e f f d e f f d b f – — U(f, d, b, e)
b c d f a b d e a b e f f d e f –

(f, g) a b c f a b d e a b e g f d e g –
a c d f a b d e a b e g f d e g f d b g – — D̄(f, d, b, g, e)
b c d f a b d e a b e g f d e g –

Table 10
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Colourings Colourings
λuλuxλvyλv Row of λuλuxλvyλv Avoided by

Λ(x) Λ(xy) Λ(y)
bad for Table 4 bad for condition

(10) (8) (i)

a b c d a b d e a b c e · d e c c d c · 4 c d e c P (c, d, e)
a b c e a b d e a b c e e d e c c d c · – — P (c, d, e)
a c d e a b d e a b c e e d e c c d c · 4 c d b c T (c, d, b, e)
b c d e a b d e a b c e e d e c c d c · 4 c d a c T (c, d, a, e)
a c d f a b d e a b c e f d e c — –

a b c d a b d e a b d e · d e d c d c d 3 c ν e ν G(c, e, d)
a b c e a b d e a b d e e d e d c d c d 3 c ν d ν H(c, d, e)
a c d e a b d e a b d e e d e d c d c d 3 c ν b ν L(c, b, d, e)
b c d e a b d e a b d e e d e d c d c d 3 c ν a ν L(c, a, d, e)
a c d f a b d e a b d e f d e d — –

a b c d a b d e a b e f ′ · d e f ′ c d c f ′ 5 c d e f ′ Ā(c, d, e, f ′)
a b c e a b d e a b e f ′ e d e f ′ c d c f ′ – — Ā(c, d, e, f ′)
a c d e a b d e a b e f ′ e d e f ′ c d c f ′ 5 c d b f ′ E ′(d, f ′, b)
b c d e a b d e a b e f ′ e d e f ′ c d c f ′ 5 c d a f ′ E ′(d, f ′, a)
a c d f a b d e a b e f ′ f d e f ′ — –

a b c d a b d e a b c e · d e c b d b · 4 c d e c Ā(b, d, e, c)
a b c e a b d e a b c e e d e c b d b · – — Ā(b, d, e, c)
a c d e a b d e a b c e e d e c · d b · 4 c d b c S(e, d, b, c)
b c d e a b d e a b c e e d e c b d b · 4 c d a c X(c, d, a, b, e)
a c d f a b d e a b c e f d e c f d b · – — D̄(f, d, e, c, b)

a b c d a b d e a b d e · d e d b d b d 3 c ν e ν J(c, e, d, b)
a b c e a b d e a b d e e d e d b d b d 3 c ν d ν K(c, d, b, e)
a c d e a b d e a b d e e d e d · d b d 3 c ν b ν J(c, b, d, e)
b c d e a b d e a b d e e d e d b d b d 3 c ν a ν N(c, a, d, b, e)
a c d f a b d e a b d e f d e d f d b d – — M(f, b, d, e)

a b c d a b d e a b e f ′ · d e f ′ b d b f ′ 5 c d e f ′ Ā(b, d, e, f ′)
a b c e a b d e a b e f ′ e d e f ′ b d b f ′ – — Ā(b, d, e, f ′)
a c d e a b d e a b e f ′ e d e f ′ · d b f ′ 5 c d b f ′ Ā(e, d, b, f ′)
b c d e a b d e a b e f ′ e d e f ′ b d b f ′ 5 c d a f ′ E ′(d, f ′, a)
a c d f a b d e a b e f ′ f d e f ′ f d b f ′ – — U(f, d, e, b) (f = f ′)

D̄(f, d, e, f ′, b) (f 6= f ′)

Table 11
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cause (10) to hold. Note that λux 6= a or b in (10), since a, b ∈ L̂(xy) ⊂ Λ(xy) \ {λux};

nor c, since c ∈ L̂(x) ⊆ Λ(x) \ {λux}; nor d, since d ∈ L̂(sx) = Λ(sx) \ {λux}. Thus λux is
a new colour, say e. Note that λvy 6= λux and so e ∈ Λ(xy) \ Λ(yt).

Now, with the colours still labelled as in (10), consider what is necessary in order
for the lists in (8) to be possible as well (after relabelling of colours). (8) can arise only
when ux and vy are coloured with colours in Λ(sx) and Λ(yt) respectively, after which

L̂(xy) ⊆ L̂(yt); but if e /∈ Λ(sx) then, whatever colours we choose for ux and vy, L̂(xy)

will still contain e, which is not in L̂(yt), so that (8) cannot arise. Thus we may assume
that e ∈ Λ(sx), so that {a, d, e} ⊂ Λ(sx) ⊂ {a, b, c, d, e}, and b or c /∈ Λ(sx), from the
row for (10) in Table 7. From the row for (8) in Table 7 we see that (8) requires that
|Λ(sx)∩Λ(yt)| > 3, and the only way in which this is now possible in (10) is if λvy = d. For
consistency with earlier cases, we now interchange the roles of d and e, so that λux = d,
λvy = e, c ∈ Λ(x) ⊆ {a, b, c, d, λu}, Λ(y) = {a, b, e, λv}, and the lists become:

Λ(sx) Λ(x) Λ(xy) Λ(y) Λ(yt)

{a, b, d, e} {a, b, c, d} {a, b, d, e} {a, b, c, e} {a, b, c, e}
{a, c, d, e} {a, b, c, e} {a, b, d, e}

{a, c, d, e} {a, b, e, f ′}
{b, c, d, e}

[{a, b, c, f}]
{a, c, d, f}
[{b, c, d, f}]

This is because the possibilities for λu are that it is one of a, b, c, d, or e, or a new colour
f ; and λv, which cannot belong to {a, b, e}, is c, or d, or a new colour f ′; here distinct
letters represent distinct colours, except that f ′ is allowed to be the same as f . However,
not all the sets listed for Λ(x) need to be considered, as we will see.

In the top half of Table 11 we consider all the possibilities with Λ(sx) = {a, b, d, e},
when Λ(sx)∩Λ(yt) = {a, b, e}. Here (8) arises only when {λux} = Λ(sx)\{a, b, e} = {d},
{λvy} = Λ(yt) \ {a, b, e} = {c}, and Λ(x) \ {d, λu} ⊆ {a, b, e}; this implies that λu = c
(since c ∈ Λ(x) always), and it is impossible if Λ(x) = {a, b, c, f}, {a, c, d, f} or {b, c, d, f},
so that we do not need to consider these possibilities. Note that a and b are otherwise
interchangeable, and so if we consider Λ(x) = {a, c, d, e} then we do not also need to
consider Λ(x) = {b, c, d, e}, which will be obtained simply by interchanging a and b.
(However, the cases Λ(x) = {b, c, d, e} and {a, c, d, f} are included in the top half of
Table 11, even though they are not needed there, for consistency with the bottom half,
where they are needed.) In this case (10) arises only when λux = d and λvy = e, since (as
we saw at the start of Case 2.4) if b ∈ Λ(sx) then there is only one colour for λvy that
can cause (10) to arise.

In the bottom half of Table 11 we consider all the possibilities with Λ(sx) = {a, c, d, e},
when Λ(sx)∩Λ(yt) = {a, c, e}. Here (8) arises only when {λux} = Λ(sx)\{a, c, e} = {d},
{λvy} = Λ(yt) \ {a, c, e} = {b}, and Λ(x) \ {d, λu} ⊆ {a, c, e}; this is impossible if
Λ(x) = {a, b, c, f} or {b, c, d, f}, since λu cannot equal both b and f , and so we do not
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need to consider these possibilities. In this case (10) arises only when λux = d, but, as we
saw at the start of Case 2.4, since b /∈ Λ(sx) we cannot determine from the lists whether

λvy = e or b; however, choosing λvy = b gives L̂(sx) = L̂(yt) = {a, c, e} and so moves us
out of (10) and into (8), and so it is covered automatically in Table 11.

In each case there is a condition that we can impose on G in order to avoid all the
bad colourings. This completes the discussion of Case 2.4, and with it the proof of
Lemma 9. 2
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