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Abstract

It is shown that the (diagonal) size Ramsey numbers of complete m-partite
graphs Km(n) can be bounded from below by cn

22(m−1)n, where c is a positive
constant.
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1 Introduction

Let G, G1 and G2 be simple graphs with at least two vertices, and let

G → (G1, G2)

signify that in any edge-coloring of edge set E(G) of G in red and blue, there is either
a monochromatic red G1 or a monochromatic blue G2. With this notation, the Ramsey

number r(G1, G2) can be defined as

r(G1, G2) = min{N : KN → (G1, G2)}

= min{|V (G)| : G → (G1, G2)}.

As the number of edges of a graph is often called the size of the graph, Erdős, Faudree,
Rousseau and Schelp [2] introduced an idea of measuring minimality with respect to size
rather than order of the graphs G with G → (G1, G2). Let e(G) be the number of edges
of G. Then the size Ramsey number r̂(G1, G2) is defined as

r̂(G1, G2) = min{e(G) : G → (G1, G2)}.
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As usual, we write r̂(G, G) as r̂(G). Erdős and Rousseau in [3] showed

r̂(Kn,n) >
1

60
n22n. (1)

Gorgol [4] gave
r̂(Km(n)) > cn22mn/2, (2)

where and henceforth Km(n) is a complete m-partite graph with n vertices in each part,
and c > 0 is a constant. Bielak [1] gave

r̂(Kn,n,n) > cn n2 22n, (3)

where cn → 31/3

4e8/3 as n → ∞. We shall generalize (1) and (3) by improving (2) as

r̂(Km(n)) > cn22(m−1)n,

where c = cm > 0 that has a positive limit as n → ∞.

2 Main results

We need an upper bound for the number of subgraphs isomorphic to Km(n) in a graph
of given size. The following counting lemma generalizes a result of Erdős and Rousseau [3]
and we made a minor improvement for the case m = 2.

Lemma 1 Let n ≥ 2 be an integer. A graph with q edges contains at most A(m, n, q)
copies of complete m-partite graph Km(n), where

A(m, n, q) =
2eq

(m − 1)m!n

(

2e2q

n2

)mn/2 (
2m − 2

m

)(m−2)n/2

.

Proof. Let F denote Km(n) and let G be a graph of q edges on vertex set V . Set

s =

⌈

e(F )

2
log

2q

e(F )

⌉

,

where log x is the natural logarithmic function. Set ds+1 = ∞ and

dk = (m − 1)nek/e(F ), k = 0, 1, 2, · · · , s,

and
Xk = {x ∈ V : dk ≤ deg(x) < dk+1}.

Then X0, X1, . . . , Xs form a partition of the set W0 = {x ∈ V : deg(x) ≥ (m − 1)n}. Let

Wk = ∪s
j=kXj = {x ∈ V : deg(x) ≥ dk}.

Let us say that a subgraph F in G is of type k if k is the smallest index such that
Xk ∩ V (F ) 6= φ. Then
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• every vertex of V (F ) belongs to Wk;

• at least one vertex of V (F ) belongs to Xk.

Let Mk be the number of type k copies of F in G. Then M =
∑s

k=0 Mk is the total
number of copies of F . Notice that in a type k copy of F at least one vertex, say x,
belongs to Xk and every vertex belongs to Wk. Thus all F−neighbors of x belong to an
(m−1)n-element subset Y of the G−neighborhood of x in Wk. Moreover all other (n−1)
vertices of F belong to an (n−1)-element subset of Wk−Y −{x}. Since the neighborhood
of x in F is a complete (m − 1)-partite graph, say H, then we get at most

t(m, n) =
1

(m − 1)!

(

(m − 1)n

n

)(

(m − 2)n

n

)

· · ·

(

2n

n

)(

n

n

)

subgraphs isomorphic to H in the graph induced by the set Y . Furthermore, the m parts
in Km(n) can be interchanged arbitrarily. Note that a vertex x ∈ Xk has degree at most
dk+1, so

Mk ≤ |Xk|
t(m, n)

m

(

bdk+1c

(m − 1)n

)(

|Wk|

n

)

.

The elementary formulas
(

D

t

)(

t

n

)

=

(

D

n

)(

D − n

t − n

)

and
(

D

n

)

≤
Dn

n!
<
(

eD

n

)n

give

(

bdk+1c

(m − 1)n

)(

(m − 1)n

n

)(

(m − 2)n

n

)

· · ·

(

2n

n

)

≤

(

bdk+1c

n

)(

bdk+1c − (m − 1)n

(m − 2)n

)(

(m − 2)n

n

)

· · ·

(

2n

n

)

≤

(

bdk+1c

n

)(

bdk+1c

(m − 2)n

)(

(m − 2)n

n

)

· · ·

(

2n

n

)

≤

(

bdk+1c

n

)m−1

≤

(

edk+1

n

)(m−1)n

.

It implies that for k = 0, 1, 2, . . . , s − 1,

Mk ≤
|Xk|

m!





(

edk+1

n

)m−1
e|Wk|

n





n

≤
|Xk|

m!





em

n2

(

dk+1

n

)m−2

dk+1|Wk|





n

.
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From the definition of Wk, we have dk|Wk| ≤ 2q. Hence

dk+1|Wk| = dk|Wk|e
1/e(F ) ≤ 2qe1/e(F ),

and dk+1/n = (m − 1)e(k+1)/e(F ), so

Mk ≤
|Xk|

m!

(

2qem(m − 1)m−2

n2
exp

(

(m − 2)k + m − 1

e(F )

))n

.

As k ≤ s − 1 ≤ e(F )
2

log 2q
e(F )

and e(F ) = m(m − 1)n2/2,

exp

(

(m − 2)k + m − 1

e(F )

)

≤ e2/(mn2)

(

4q

m(m − 1)n2

)(m−2)/2

,

and hence

Mk ≤
e|Xk|

m!
·

(

2e2q

n2

)mn/2 (
2m − 2

m

)(m−2)n/2

.

Since ds ≥ 2e−1/e(F )
√

(m − 1)q/m, so |Xs| = |Ws| ≤ e1/e(F )
√

mq/(m − 1), and if the

subgraph F is of type s, then each vertex of V (F ) must belong to Xs. Thus we have

Ms ≤
t(m, n)

m

(

|Xs|

(m − 1)n

)(

|Xs|

n

)

<
1

m!

(

|Xs|

n

)m

≤
e

m!

(

2e2q

n2

)mn/2 (
m

2m − 2

)mn/2

.

If |Xs| = 0 then |Ms| = 0; thus we can write

Ms ≤
e|Xs|

m!

(

2e2q

n2

)mn/2 (
m

2m − 2

)mn/2

.

Hence for all k = 0, 1, . . . , s, we have

Mk ≤
e|Xk|

m!

(

2e2q

n2

)mn/2 (
2m − 2

m

)(m−2)n/2

.

Finally, we obtain

M =
s
∑

k=0

Mk ≤ |W0| ·
e

m!

(

2e2q

n2

)mn/2 (
2m − 2

m

)(m−2)n/2

≤
2eq

n(m − 1)m!

(

2e2q

n2

)mn/2 (
2m − 2

m

)(m−2)n/2

.

The assertion follows.
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Theorem 1 Let m ≥ 2 be fixed and n → ∞, then

r̂(Km(n)) > (c − o(1))n22(m−1)n,

where c = m
16e2(m−1)

(

4m−4
m

)2/m
.

Proof. We shall prove that

r̂(Km(n)) > c(m, n)n22(m−1)n,

where

c(m, n) =
m

16e2(m − 1)

(

4m − 4

m

)2/m
(

(m − 1)m!

4en

)2/(mn)

.

Let G be arbitrary graph with q edges, where q ≤ c(m, n) n22(m−1)n. Let us consider a
random red-blue edge-coloring of G, in which each edge is red with probability 1/2 and
the edges are colored independently. Then the probability P that such a random coloring
yields a monochromatic copy of Km(n) satisfies

P ≤
4eq

n(m − 1)m!

(

2e2q

n2

)mn/2 (
2m − 2

m

)(m−2)n/2 (1

2

)m(m−1)n2/2

<
4en22(m−1)n

n(m − 1)m!
(2e2)mn/2

(

2m − 2

m

)(m−2)n/2

cmn/2 = 1.

Thus G 6→ (Km(n), Km(n)), and the desired lower bound follows from the fact that
c(m, n) → c as n → ∞.
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