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Abstract

In this paper, we study the simple eigenvectors of two hypomorphic matrices

using linear algebra. We also give new proofs of results of Godsil and McKay.

1 Introduction

We start by fixing some notations ( [HE1]). Let A be a n× n real symmetric matrix. Let
Ai be the matrix obtaining by deleting the i-th row and i-th column of A. We say that
two symmetric matrices A and B are hypomorphic if, for each i, Bi can be obtained by
simultaneously permuting the rows and columns of Ai. Let Σ be the set of permutations.
We write B = Σ(A).

If M is a symmetric real matrix, then the eigenvalues of M are real. We write

eigen(M) = (λ1(M) ≥ λ2(M) ≥ . . . ≥ λn(M)).

If α is an eigenvalue of M , we denote the corresponding eigenspace by eigenα(M). Let 1
be the n-dimensional vector (1, 1, . . . , 1). Put J = 1t1. In [HE1], we proved the following
theorem.

Theorem 1 ( [HE1]) Let B and A be two real n × n symmetric matrices. Let Σ be a
hypomorphism such that B = Σ(A). Let t be a real number. Then there exists an open
interval T such that for t ∈ T we have

1. λn(A + tJ) = λn(B + tJ);

2. eigenλn
(A + tJ) and eigenλn

(B + tJ) are both one dimensional;

∗I would like to thank the referee for his valuable comments.
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3. eigenλn
(A + tJ) = eigenλn

(B + tJ).

As proved in [HE1], our result implies Tutte’s theorem which says that eigen(A + tJ) =
eigen(B + tJ). So det(A + tJ − λI) = det(B + tJ − λI).

In this paper, we shall study the eigenvectors of A and B. Most of the results in this
paper are not new. Our approach is new. We apply Theorem 1 to derive several well-
known results. We first prove that the squares of the entries of simple unit eigenvectors
of A can be reconstructed as functions of eigen(A) and eigen(Ai). This yields a proof of
a Theorem of Godsil-McKay. We then study how the eigenvectors of A change after a
perturbation of rank 1 symmetric matrices. Combined with Theorem 1, we prove another
result of Godsil-McKay which states that the simple eigenvectors that are perpendicular
to 1 are reconstructible. We further show that the orthogonal projection of 1 onto higher
dimensional eigenspaces is reconstructible.

Our investigation indicates that the following conjecture could be true.

Conjecture 1 Let A be a real n × n symmetric matrix. Then there exists a subgroup
G(A) ⊆ O(n) such that a real symmetric matrix B satisfies the properties that eigen(B) =
eigen(A) and eigen(Bi) = eigen(Ai) for each i if and only if B = UAU t for some
U ∈ G(A).

This conjecture is clearly true if rank(A) = 1. For rank(A) = 1, the group G(A) can be
chosen as Zn

2 , all in the form of diagonal matrices. In some other cases, G(A) can be a
subgroup of the permutation group Sn.

2 Reconstruction of Square Functions

Theorem 2 Let A be a n × n real symmetric matrix. Let (λ1 ≥ λ2 ≥ · · · ≥ λn) be the
eigenvalues of A. Suppose λi is a simple eigenvalue of A. Let pi = (p1,i, p2,i, . . . , pn,i)

t

be a unit vector in eigenλi
(A). Then for every m, p2

m,i can be expressed as a function of
eigen(A) and eigen(Am).

Proof: Let λi be a simple eigenvalue of A. Let pi = (p1,i, p2,i, . . . , pn,i)
t be a unit vector

in eigenλi
(A). There exists an orthogonal matrix P such that P = (p1,p2, · · · ,pn) and

A = PDP t where

D =




λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...
0 0 · · · λn


 .

Then
A − λiI = PDP t − λiI = P (D − λiI)P t =

∑

j 6=i

(λj − λi)pjp
t
j.
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which equals




p1,1 · · · p̂1,i · · · p1,n

p2,1 · · · p̂2,i · · · p2,n

...
. . .

...
. . .

...
pn,1 · · · p̂n,i · · · pn,n







λ1 − λi · · · 0 · · · 0
...

. . .
...

. . .
...

0 · · · λ̂i − λi · · · 0
...

. . .
...

. . .
...

0 · · · 0 · · · λn − λi







p1,1 p2,1 · · · pn,1
...

...
. . .

...
p̂1,i p̂2,i · · · p̂n,i

...
...

. . .
...

p1,n p2,n · · · pn,n




.

Deleting the m-th row and m-th column, we obtain




p1,1 · · · p̂1,i · · · p1,n

...
. . .

...
. . .

...
p̂m,1 · · · p̂m,i · · · p̂m,n

...
. . .

...
. . .

...
pn,1 · · · p̂n,i · · · pn,n







λ1 − λi · · · 0 · · · 0
...

. . .
...

. . .
...

0 · · · λ̂i − λi · · · 0
...

. . .
...

. . .
...

0 · · · 0 · · · λn − λi







p1,1 · · · p̂m,1 · · · pn,1
...

. . .
...

. . .
...

p̂1,i · · · p̂m,i · · · p̂n,i

...
. . .

...
. . .

...
p1,n · · · p̂m,n · · · pn,n




.

This is Am − λiIn−1. Notice that P is orthogonal. Let Pm,i be the matrix obtained by
deleting the m-th row and i-th column. Then det P 2

m,i = p2
m,i where pm,i is the (m, i)-th

entry of P . Taking the determinant, we have

det(Am − λiIn−1) = p2
m,i

∏

j 6=i

(λj − λi).

It follows that

p2
m,i =

∏n−1
j=1 (λj(Am) − λi)∏

j 6=i(λj − λi)
.

Q.E.D.

Corollary 1 Let A and B be two n×n real symmetric matrices. Suppose that eigen(A) =
eigen(B) and eigen(Ai) = eigen(Bi). Let λi be a simple eigenvalue of A and B. Let
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pi = (p1,i, p2,i, . . . , pn,i)
t be a unit vector in eigenλi

(A) and qi = (q1,i, q2,i, . . . , qn,i)
t be a

unit vector in eigenλi
(B). Then

p2
j,i = q2

j,i ∀j ∈ [1, n].

Corollary 2 (Godsil-McKay, see Theorem 3.2, [GM]) Let A and B be two n × n
real symmetric matrices. Suppose that A and B are hypomorphic. Let λi be a simple
eigenvalue of A and B. Let pi = (p1,i, p2,i, . . . , pn,i)

t be a unit vector in eigenλi
(A) and

qi = (q1,i, q2,i, . . . , qn,i)
t be a unit vector in eigenλi

(B). Then

p2
j,i = q2

j,i ∀j ∈ [1, n].

3 Eigenvalues and Eigenvectors under the perturba-

tion of a rank one symmetric matrix

Let A be a n × n real symmetric matrix. Let x be a n-dimensional row column vector.
Let M = xxt. Now consider A + tM . We have

A + tM = PDP t + tM = P (D + tP tMP )P t = P (D + tP txxtP )P t.

Let P tx = q. So qi = (pi, x) for each i ∈ [1, n]. Then

A + tM = P (D + tqqt)P t.

Put D(t) = D + tqqt.

Lemma 1 det(D + tqqt − λI) = det(A − λI)(1 +
∑

i

tq2
i

λi−λ
).

Proof: det(D − λI + tqqt) can be written as a sum of products of λi − λ and qiqj. For
each S a subset of [1, n], combine the terms containing only

∏
i∈S(λi − λ). Since the rank

of qqt is one, only for |S| = n, n − 1, the coefficients may be nonzero. We obtain

det(D + tqqt − λI) =
n∏

i=1

(λi − λ) +
n∑

i=1

tq2
i

∏

j 6=i

(λi − λ).

The Lemma follows. �

Put Pt(λ) = 1 +
∑

i

tq2
i

λi−λ
.

Lemma 2 Fix t < 0. Suppose that λ1, λ2, . . . , λn are distinct and qi 6= 0 for every i.
Then Pt(λ) has exactly n roots (µ1, µ2, · · · , µn) satisfying an interlacing relation:

λ1 > µ1 > λ2 > µ2 > · · · > µn−1 > λn > µn.
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Proof: Clearly, dPt(λ)
dλ

=
∑

i

tq2
i

(λi−λ)2
< 0. So Pt(λ) is always decreasing. On the interval

(−∞, λn), limλ→−∞ Pt(λ) = 1 and limλ→λ−

n
Pt(λ) = −∞. So Pt(λ) has a unique root

µn ∈ (−∞, λn). Similar statement holds for each (λi−1, λi). On (λ1,∞), limλ→∞ Pt(λ) = 1
and limλ→λ+

1
Pt(λ) = ∞. So Pt(λ) does not have any roots in (λ1,∞). Q.E.D.

Theorem 3 Fix t < 0 and x ∈ Rn. Let M = xxt. Let l be the number of dis-
tinct eigenvalues satisfying (x, eigenλ(A)) 6= 0. Choose an orthonormal basis of each
eigenspace of A so that one of the eigenvectors is a multiple of the orthogonal projection
of x onto the eigenspace if this projection is nonzero. Denote this basis by {pi} and let
P = (p1,p2, . . . , pn). Let

S = {i1 > i2 > · · · > il}

such that (x,pi) 6= 0 for every i ∈ S and (x,pi) = 0 for every i /∈ S. Then there exists
(µ1, . . . , µl) such that

λi1 > µ1 > λi2 > µ2 > · · · > λil > µl

and
eigen(A + tM) = {λi(A) | i /∈ S} ∪ {µ1, µ2 . . . , µl}.

Furthermore, eigenµj
(A + tM) contains

∑

i∈S

pi

qi

λi − µj

.

Here the index set {i1, i2, · · · , il} may not be unique. I shall also point out a similar
statement holds for t > 0 with

µ1 > λi1 > µ2 > λi2 > · · · > µl > λil.

Proof: Recall that qi = (pi, x). Since (x, eigenλij
(A)) 6= 0, qij 6= 0. For i /∈ S, qi = 0.

Notice

Pt(λ) = 1 +

l∑

j=1

tq2
ij

λij − λ
.

Applying Lemma 2 to S, we obtain the roots of Pt(λ), {µ1, µ2, . . . , µl}, satisfying

λi1 > µ1 > λi2 > µ2 > · · · > λil > µl.

It follows that the roots of det(A + tM − λI) = Pt(λ)
∏n

i=1(λi − λ) can be obtained from
eigen(A) be changing {λi1 > λi2 > · · · > λil} to {µ1, µ2 . . . , µl}. Therefore,

eigen(A + tM) = {λi(A) | i /∈ S} ∪ {µ1, µ2 . . . , µl}.
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Fix a µj. Let {ei} be the standard basis for Rn. Notice that

(A + tM)
∑

i∈S

qi

λi − µj

pi

=P (D + tqqt)P t
∑

i∈S

qi

λi − µj

pi

=P (D + tqqt)
∑

i∈S

qi

λi − µj

ei

=P



∑

i∈S

λiqi

λi − µj

ei + t




q1
...
qn



∑

i∈S

q2
i

λi − µj




=P

(∑

i∈S

λiqi

λi − µj

ei −
∑

i∈S

qiei

)

=P
∑

i∈S

µjqi

λi − µj

ei

=µj

∑

i∈S

qi

λi − µj

pi

(1)

Notice that here we use the fact that Pt(µj) =
∑

i∈S

tq2
i

λi−µj
+ 1 = 0. We have obtained

that (A + tM)
∑

λi∈S
qi

λi−µj
pi = µj

∑
i∈S

qi

λi−µj
pi. Therefore,

∑

i∈S

qi

λi − µj

pi ∈ eigenµj
(A + tM).

Q.E.D.

4 Reconstruction of Simple Eigenvectors not perpen-

dicular to 1

Now let M = J = 11t. Theorem 3 applies to A + tJ and B + tJ.

Theorem 4 (Godsil-McKay, [GM]) Let B and A be two real n × n symmetric ma-
trices. Let Σ be a hypomorphism such that B = Σ(A). Let S ⊆ [1, n], A = PDP t and
B = UDU t be as in Theorem 3. For i ∈ S, we have pi = ui or pi = −ui. In particular,
if λi is a simple eigenvalue of A and (eigenλi

(A), 1) 6= 0, then eigenλi
(A) = eigenλi

(B).

Proof: • By Tutte’s theorem, eigen(A) = eigen(B). Let A = PDP t and B = UDU t.
Since det(A + tJ − λI) = det(B + tJ − λI), by Lemma 1,

det(A − λI)(1 +
∑

i

t(1,pi)
2

λi − λ
) = det(B − λI)(1 +

∑

i

t(1,ui)
2

λi − λ
).
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It follows that for every λi,
∑

λj=λi
(1,pj)

2 =
∑

λj=λi
(1,uj)

2. Consequently, the l for A is
the same as the l for B. Let S be as in Theorem 3 for both A and B. Without loss of
generality, suppose that A = PDP t and B = UDU t as in Theorem 3. In particular, for
every i ∈ [1, n], we have

(pi, 1)2 = (ui, 1)2. (2)

• Let T be as in the proof of Theorem 1 in [HE1] for A and B. Without loss of generality,
suppose T = (t1, t2) ⊆ R−. Let t ∈ T and let µl(t) be the µl in Theorem 3 for A and
B. Notice that the lowest eigenvectors of A + tJ and B + tJ are in R+n

(see Lemma 1,
Theorem 7 and Proof of Theorem 2 in [HE1]). So they are not perpendicular to 1. By
Theorem 3, µl(t) = λn(A + tJ) = λn(B + tJ). By Theorem 1,

eigenµ1(t)(A + tJ) = eigenµl(t)(B + tJ) ∼= R.

So
∑

i∈S pi
(pi,1)

λi−µl(t)
is parallel to

∑
i∈S ui

(ui,1)
λi−µl(t)

. Since {pi} and {ui} are orthonormal, by
Equation 2,

‖
∑

i∈S

pi

(pi, 1)

λi − µl(t)
‖2 = ‖

∑

i∈S

ui

(ui, 1)

λi − µl(t)
‖2.

It follows that for every t ∈ T ,

∑

i∈S

pi

(pi, 1)

λi − µl(t)
= ±

∑

i∈S

ui

(ui, 1)

λi − µl(t)
.

• Recall that − 1
t

=
∑

i

q2
i

λi−µl(t)
. Notice that the function ρ →

∑
i

q2
i

λi−ρ
is a continuous

and one-to-one mapping from (−∞, λn) onto (0,∞). There exists a nonempty interval

T0 ⊆ (−∞, λn) such that if ρ ∈ T0, then
∑

i

q2
i

λi−ρ
∈ (− 1

t1
,− 1

t2
). So every ρ ∈ T0 is a µl(t)

for some t ∈ (t1, t2). It follow that for every ρ ∈ T0,

∑

i∈S

pi

(pi, 1)

λi − ρ
= ±

∑

i∈S

ui

(ui, 1)

λi − ρ
.

Notice that both vectors are nonzero and depend continuously on ρ. Either,

∑

i∈S

pi

(pi, 1)

λi − ρ
=
∑

i∈S

ui

(ui, 1)

λi − ρ
∀ (ρ ∈ T0);

or, ∑

i∈S

pi

(pi, 1)

λi − ρ
= −

∑

i∈S

ui

(ui, 1)

λi − ρ
∀ (ρ ∈ T0);

•. Notice that the functions {ρ → 1
λij

−ρ
}|ij∈S are linearly independent. For every i ∈ S,

we have
pi(pi, 1) = ±ui(ui, 1).

Because pi and ui are both unit vectors, pi = ±ui. In particular, for every simple λi with
(pi, 1) 6= 0 we have eigenλi

(A) = eigenλi
(B). Q.E.D.
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Corollary 3 Let B and A be two real n×n symmetric matrices. Suppose that B = Σ(A)
for a hypomorphism Σ. Let λi be an eigenvalue of A such that (eigenλi

(A), 1) 6= 0. Then
the orthogonal projection of 1 onto eigenλi

(A) equals the orthogonal projection of 1 onto
eigenλi

(B).

Proof: Notice that the projections are pi(pi, 1) and ui(ui, 1). Whether pi = ui or pi =
−ui, we always have

pi(pi, 1) = ui(ui, 1).

Q.E.D.

Conjecture 2 Let A and B be two hypomorphic matrices. Let λi be a simple eigenvalue
of A. Then there exists a permutation matrix τ such that τeigenλi

(A) = eigenλi
(B).

This conjecture is apparently true if eigenλi
(A) is not perpendicular to 1.
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