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Abstract

In this paper, we study the simple eigenvectors of two hypomorphic matrices
using linear algebra. We also give new proofs of results of Godsil and McKay.

1 Introduction

We start by fixing some notations ( [HE1]). Let A be a n X n real symmetric matrix. Let
A; be the matrix obtaining by deleting the i-th row and i-th column of A. We say that
two symmetric matrices A and B are hypomorphic if, for each i, B; can be obtained by

simultaneously permuting the rows and columns of A;. Let X be the set of permutations.
We write B = X(A).

If M is a symmetric real matrix, then the eigenvalues of M are real. We write
eigen(M) = (M (M) > X(M) > ... > N\ (M)).

If « is an eigenvalue of M, we denote the corresponding eigenspace by eigen,(M). Let 1
be the n-dimensional vector (1,1,...,1). Put J = 1'1. In [HE1], we proved the following
theorem.

Theorem 1 ( [HE1]) Let B and A be two real n X n symmetric matrices. Let ¥ be a
hypomorphism such that B = %(A). Let t be a real number. Then there exists an open
interval T' such that for t € T we have

1. M(A+tT) =\ (B+tJ);

2. eigeny, (A+tJ) and eigeny, (B +tJ) are both one dimensional;

*I would like to thank the referee for his valuable comments.
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3. eigeny, (A +tJ) = eigen,, (B +tJ).

As proved in [HE1], our result implies Tutte’s theorem which says that eigen(A +tJ) =
eigen(B +tJ). So det(A+tJ — A) =det(B +tJ — \I).

In this paper, we shall study the eigenvectors of A and B. Most of the results in this
paper are not new. Our approach is new. We apply Theorem 1 to derive several well-
known results. We first prove that the squares of the entries of simple unit eigenvectors
of A can be reconstructed as functions of eigen(A) and eigen(A;). This yields a proof of
a Theorem of Godsil-McKay. We then study how the eigenvectors of A change after a
perturbation of rank 1 symmetric matrices. Combined with Theorem 1, we prove another
result of Godsil-McKay which states that the simple eigenvectors that are perpendicular
to 1 are reconstructible. We further show that the orthogonal projection of 1 onto higher
dimensional eigenspaces is reconstructible.

Our investigation indicates that the following conjecture could be true.

Conjecture 1 Let A be a real n X n symmetric matriz. Then there exists a subgroup
G(A) C O(n) such that a real symmetric matriz B satisfies the properties that eigen(B) =
eigen(A) and eigen(B;) = eigen(A;) for each i if and only if B = UAU" for some
U e G(A).

This conjecture is clearly true if rank(A) = 1. For rank(A) = 1, the group G(A) can be
chosen as Z7, all in the form of diagonal matrices. In some other cases, G(A) can be a
subgroup of the permutation group S,.

2 Reconstruction of Square Functions

Theorem 2 Let A be a n X n real symmetric matriz. Let (A > Ao > -+ > \,) be the
eigenvalues of A. Suppose \; is a simple eigenvalue of A. Let p; = (PrisD2iy- -+ Pni)t
be a unit vector in eigeny,(A). Then for every m, pfm can be expressed as a function of
eigen(A) and eigen(A,,).

Proof: Let \; be a simple eigenvalue of A. Let p; = (p14, p2ss-- -, Pni)’ be a unit vector
in eigeny,(A). There exists an orthogonal matrix P such that P = (py,p2, -+, P,) and
A = PDP! where

MO - 0
0 X -+ 0
0 0 - M\,

Then
A= NI =PDP'— \I=P(D- NP =) (A —\)p;p’.
J#i
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which equals

. A — N\ 0 0
Pia - Pii 0 DPin : .o
P21ttt P2 DPon ) R,
. . ) 0 i — A 0
pn71 o p/T:Z o pn7n
0 0 )\n - )\Z
P11 P21 - D
Pri D2i vt P
Pin P2n " Pnn

Deleting the m-th row and m-th column, we obtain

pi1 e p’ljl o Pim )\1._)% () 0
Dot o B Dum 0 o YRy
[ R ]m R
Pin %\n o Dnn

This is A,, — A\il,—1. Notice that P is orthogonal. Let P, ; be the matrix obtained by
deleting the m-th row and i-th column. Then det P} ; = p2, ; where py,; is the (m,i)-th
entry of P. Taking the determinant, we have

det(Ay — MiLo—1) = pZ, [T = M.
J#i
It follows that -
PR (= CMEI Y
e Hj;éi(kj - Ai)

Q.E.D.

Corollary 1 Let A and B be two nxXn real symmetric matrices. Suppose that eigen(A) =
eigen(B) and eigen(A;) = eigen(B;). Let \; be a simple eigenvalue of A and B. Let
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Pi = (PLisD2is - Pni)’ be a unit vector in eigeny,(A) and q; = (q14,@2is - - - Gni)' be a
unit vector in eigeny,(B). Then

pfl = qfl Vi € [1,n].

Corollary 2 (Godsil-McKay, see Theorem 3.2, [GM]) Let A and B be two n x n
real symmetric matrices. Suppose that A and B are hypomorphic. Let \; be a simple
eigenvalue of A and B. Let p; = (P14, P2y ---,Pni)’ be a unit vector in eigeny,(A) and
Qi = (q1.4, Q2 - - -+ Gni)" be a unit vector in eigeny,(B). Then

p?z = quz Vi € [1,n].

3 Eigenvalues and Eigenvectors under the perturba-
tion of a rank one symmetric matrix

Let A be a n x n real symmetric matrix. Let x be a n-dimensional row column vector.
Let M = zat. Now consider A + tM. We have

A+tM = PDP' +tM = P(D + tP'MP)P' = P(D + tP'azz' P)P".
Let P’z = q. So ¢; = (ps, ) for each i € [1,n]. Then
A+tM = P(D + tqq") P'.

Put D(t) = D + tqq".

Lemma 1 det(D + tqq" — \[) = det(A — NI)(1+ >, Ai-q—?x)'

Proof: det(D — A + tqq") can be written as a sum of products of \; — A and ¢;q;. For
each S a subset of [1,n], combine the terms containing only [],. (A — ). Since the rank
of qq" is one, only for |S| = n,n — 1, the coefficients may be nonzero. We obtain

det(D +tqq" = AI) = [Tv =2 + Y ta? v = .
i=1 i=1 j#i

The Lemma follows. [

Put P(\) = 1+ 3, 5245

Lemma 2 Fizt < 0. Suppose that \1, s, ..., \, are distinct and q; # 0 for every i.
Then P,(X) has exactly n roots (p1, pia, -+ , i) Satisfying an interlacing relation:

AL > > Ag > g > > o1 > Ay > .
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d};t)(\’\) => (/\fiy < 0. So P,()) is always decreasing. On the interval

(=00, An), limy—. o P(A) = 1 and lim,_,- P(A\) = —oo. So P;(\) has a unique root
fn € (—00, \,). Similar statement holds for each (A;_1, A;). On (Aq, 00), limy o, P;(A) =1
and lim,_,+ P(A) = 00. So P;(A) does not have any roots in (A, 00). Q.E.D.

Proof: Clearly,

Theorem 3 Fizt < 0 and v € R™. Let M = za'. Let | be the number of dis-
tinct eigenvalues satisfying (z,eigeny(A)) # 0. Choose an orthonormal basis of each
eigenspace of A so that one of the eigenvectors is a multiple of the orthogonal projection
of x onto the eigenspace if this projection is nonzero. Denote this basis by {p;} and let
P =(p1,p2,---,pn) Let
S:{i1>i2>"'>il}
such that (x,p;) # 0 for every i € S and (z,p;) = 0 for every i ¢ S. Then there ezists
(1, .-, ) such that
Nig > 1 > Njy > g > oo >N >y

and
eigen(A +tM) = {Ni(A) | i ¢ ST U {p1, p2. .., u}.
Furthermore, eigen,, (A +tM) contains

Zpi g

ies Ai = Ky

Here the index set {ij,ds,---,4} may not be unique. I shall also point out a similar
statement holds for ¢ > 0 with

/~L1>)\i1>/~L2>)\i2>"'>,ul>>\il-

Proof: Recall that ¢; = (p;,z). Since (z, etgeny, (A)) #0, ¢, #0. Fori ¢ S, ¢ = 0.

Notice
2

l
PN =1+) —1_.
N = A

Applying Lemma 2 to S, we obtain the roots of P,;(\), {u1, pa, - . ., pu}, satisfying

Nip > o1 > N > g > - > N, > .

It follows that the roots of det(A + tM — AI) = Py(A\) [[;—; (A — A) can be obtained from
eigen(A) be changing {\;;, > A\, > -+ > A\, } to {1, o ..., }. Therefore,

eigen(A +tM) = {Ni(A) | i ¢ SYU{p1, p2. .., u}.
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Fix a p;. Let {e;} be the standard basis for R". Notice that

(A+M) Y ——p,

ies T M
:P(D—l—tqqt)PtZ y g P;
ies i Hi
=P(D +tqq") S e ;
ies "t H
q1
)‘iQZ
(S 0 Y e
(iES Ai = 11 ics
K5 qi
=P e;
qi
ies 7t J

Notice that here we use the fact that Pi(u;) = >, g Ati + 1 = 0. We have obtained
i Hyj

that (A+tM) >, co ﬁpi = [1j Y ics /\(i—ujp’ Therefore,

Z & pi € eigeny (A +tM).

ies J

Q.E.D.

4 Reconstruction of Simple Eigenvectors not perpen-
dicular to 1

Now let M = J = 11, Theorem 3 applies to A+ tJ and B + tJ.

Theorem 4 (Godsil-McKay, [GM]) Let B and A be two real n X n symmetric ma-
trices. Let X be a hypomorphism such that B = X(A). Let S C [1,n], A= PDP" and
B =UDU" be as in Theorem 3. Fori € S, we have p; = u; or p; = —u;. In particular,
if \i is a simple eigenvalue of A and (eigeny,(A),1) # 0, then eigeny,(A) = eigeny,(B).

Proof: e By Tutte’s theorem, eigen(A) = eigen(B). Let A = PDP' and B = UDU".
Since det(A +tJ — A\I) = det(B +tJ — A\I), by Lemma 1,

det(A— A1+ t(;’fiz) =det(B—A)(1+ > t(;f;)
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It follows that for every A;, >, _, (1,p;)* = > Yy (1,u;)?. Consequently, the [ for A is
the same as the [ for B. Let S be as in Theorem 3 for both A and B. Without loss of
generality, suppose that A = PDP! and B = UDU"! as in Theorem 3. In particular, for
every i € [1,n], we have

(P, 1)° = (w;, 1) (2)
e Let T be as in the proof of Theorem 1in [HE1] for A and B. Without loss of generality,
suppose T = (t1,t3) € R™. Let ¢t € T and let 1(t) be the p; in Theorem 3 for A and
B. Notice that the lowest eigenvectors of A + tJ and B + tJ are in R™" (see Lemma 1,
Theorem 7 and Proof of Theorem 2 in [HE1]). So they are not perpendicular to 1. By
Theorem 3, w(t) = M\(A+tJ) = A\ (B +tJ). By Theorem 1,

eigeny, (A +tJ) = eigen,, (B +tJ) = R.

SO > s p”( = ()t) is parallel to ;¢ u”( u . Since {p;} and {u;} are orthonormal, by

Equation 2,
pZ? u’l?
ISP P = S w e

€S €S
It follows that for every t € T,

p27 ul?
T u

ies )‘_'L” ies >‘_'ul

2

2
e Recall that —% => /\_‘17:”@) Notice that the function p — . /\?ip is a continuous

and one-to-one mapping from (—oo, \,,) onto (O o0). There exists a nonempty interval
Ty C (=00, A\,) such that if p € Ty, then >, = pw— (—i, ——) So every p € Tp is a pu(t)
for some t € (t1,12). It follow that for every p € To,
(pi;1) (u;, 1)
7 =4 i .
Sl py, el

i€s ¢ i€s

Notice that both vectors are nonzero and depend continuously on p. Either,

(1), (wi1) .
Zpl}\i—p_zul)\i—P V(p€T0)7

€S €8
or,
AR Nt v (peTy):
Zp&‘—P Zu&‘—p (b€ To)
€S €S

e. Notice that the functions {p — ﬁ}meg are linearly independent. For every i € .S,
we have

pi(p;, 1) = +u;(u;, 1).
Because p; and u; are both unit vectors, p; = +u;. In particular, for every simple \; with
(pi, 1) # 0 we have eigeny, (A) = eigen,,(B). Q.E.D.
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Corollary 3 Let B and A be two real n X n symmetric matrices. Suppose that B = 3(A)
for a hypomorphism ¥. Let \; be an eigenvalue of A such that (eigeny,(A),1) # 0. Then
the orthogonal projection of 1 onto eigeny,(A) equals the orthogonal projection of 1 onto
eigeny,(B).

Proof: Notice that the projections are p;(p;, 1) and u;(u;,1). Whether p; = u; or p; =
—u;, we always have

pi(pPi; 1) = u;(uy, 1).
Q.E.D.

Conjecture 2 Let A and B be two hypomorphic matrices. Let \; be a simple eigenvalue
of A. Then there exists a permutation matriz T such that Teigeny,(A) = eigeny,(B).

This conjecture is apparently true if eigen,,(A) is not perpendicular to 1.
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