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Abstract

The idea of graph compositions, which was introduced by A. Knopfmacher and

M. E. Mays, generalizes both ordinary compositions of positive integers and par-

titions of finite sets. In their original paper they developed formulas, generating

functions, and recurrence relations for composition counting functions for several

families of graphs. Here we show that some of the results involving compositions of

bipartite graphs can be derived more easily using exponential generating functions.
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1 Introduction

A composition of a graph G is a partition of the vertex set of G into vertex sets of
connected induced subgraphs of G. Knopfmacher and Mays [2] found an explicit formula
for C(Km,n), the number of compositions of the complete bipartite graph Km,n in the
form

C(Km,n) =
m+1
∑

i=1

am,ii
n, (1)

where (ai,j) is an array defined via the recurrences am,0 = 0 for any nonnegative integer
m, a0,1 = 1, a0,n = 0 for any n > 1, and otherwise

am,n =

m−1
∑

i=0

(

m − 1

i

)

am−1−i,n−1 −
m−1
∑

i=1

(

m − 1

i

)

am−1−i,n−1.

We will derive this result using exponential generating functions and also show that we
can express the coefficients am,i explicitly in terms of the Stirling numbers of the second
kind. We first need to describe some basic properties of exponential generating functions
in two variables. We will use Stanley’s notation [4] throughout this paper.

the electronic journal of combinatorics 14 (2007), #N15 1



2 Exponential generating function in two variables

Proposition 1. Given functions f, g : N × N → K, where K is a field of characteristic

0, we define a new function h : N × N → K by

h(#X, #Y ) =
∑

f(#S, #T )g(#U, #V )

where X and Y are finite sets and the sum is over all S, T, U and V such that X = S ]U

and Y = T ] V ; i.e., X and Y are disjoint unions of S, U and T, V respectively.

Then

Eh(x, y) = Ef(x, y)Eg(x, y), (2)

where the exponential generating function of f is defined by

Ef (x, y) =
∞

∑

m,n=0

f(m, n)
xm

m!

yn

n!
.

Proof. If #X = m and #Y = n, then there are
(

m

i

)

pairs (S, U) and
(

n

j

)

pairs (T, V ),
where X = S ] U and Y = T ] V with #S = i, #T = j, #U = m − i and #V = n − j.
Then h(m, n) is given by

h(m, n) =

m,n
∑

i,j=0

(

m

i

)(

n

j

)

f(i, j)g(m − i, n − j)

and this is equivalent to (2).

Corollary. Given functions f1, . . . , fk : N × N → K, we can define a new function
h : N × N → K by

h(#X, #Y ) =
∑

k
∏

i=1

fi(#Si, #Ti)

where the sum is over all (S1, . . . , Sk) and (T1, . . . , Tk) such that X = ]k
i=1Si and Y =

]k
i=1Ti. Then

Eh(x, y) =

k
∏

i=1

Efi
(x, y). (3)

Proposition 2. Given the function f : N × N → K, where K is a field of characteristic

0 and f(0, 0) = 0, define a new function h : N × N → K such that for disjoint finite sets

X and Y ,

h(#X, #Y ) =
∑

{S1,...,Sk}

k
∏

i=1

f(#(Si ∩ X), #(Si ∩ Y )). (4)

where the sum is taken over all partitions {S1, . . . , Sk} of the set X ∪ Y . Then

Eh(x, y) = exp(Ef (x, y)).
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Proof. Let k be fixed. Then the blocks of the partition {S1, . . . , Sk} are all distinct and
so are the pairs (Si ∩ X, Si ∩ Y ) for i = 1, . . . , k. So there are k! ways of linearly ordering
them. If we define hk(#X, #Y ) by

hk(#X, #Y ) =
∑

{S1,...,Sk}

k
∏

i=1

f(#(Si ∩ X), #(Si ∩ Y ))

for a fixed value of k then by the Corollary to Proposition 1 we get

Ehk
(x, y) =

(Ef(x, y))k

k!
.

Therefore summing over all k ≥ 0 gives the desired result.

Example. Let X and Y be disjoint sets with #X = m and #Y = n and let C(m, n) be
the number of connected bipartite graphs between the sets X and Y . Then

exp

( ∞
∑

m,n=0

C(m, n)
xm

m!

yn

n!

)

=
∞

∑

m,n=0

2mn xm

m!

yn

n!
. (5)

This can be seen easily because the coefficient of
xm

m!

yn

n!
in the right-hand side of (5)

is the number of bipartite graphs with bipartition (X, Y ). On the other hand the number
of such graphs in which the vertex sets of the connected components are {S1, S2, . . . , Sk}
is

∏k

i=1 C(#(Si ∩X), #(Si ∩Y )). So summing over all partition {S1, S2, . . . , Sk} of X ∪Y

and applying Proposition 2 shows that the number of bipartite graphs with bipartition

(X, Y ) is the coefficient of
xm

m!

yn

n!
in the left-hand side.

3 Compositions of bipartite graphs

Let G be a labelled graph with vertex set V (G). A composition of G is a partition of
V (G) into vertex sets of connected induced subgraphs of G. Thus a composition provides
a set of connected induced subgraphs of G, {G1, G2, · · · , Gm}, with the properties that
⋃m

i=1 V (Gi) = V (G) and for i 6= j, V (Gi)
⋂

V (Gj) = ∅.
Let C(G) denote the number of distinct compositions of the graph G. For example,

the complete bipartite graph K2,3 has exactly 34 compositions. In this section we will
consider complete bipartite graph only.

Consider a function f : N × N → Q as follows: Given m, n ∈ N we define

f(m, n) =



















1, if m > 0 and n > 0

or m = 1 and n = 0

or m = 0 and n = 1

0, otherwise.
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In other words f(m, n) = 1 if Km,n is connected and 0 if Km,n is not connected. We also
define h : N × N → Q by

h(m, n) =
∑

{S1,...,Sk}

k
∏

i=1

f(#(Si ∩ X), #(Si ∩ Y )),

where #X = m and #Y = n. Then h(m, n) = C(Km,n) and thus by Proposition 2 we
get

∞
∑

m,n=0

C(Km,n)
xm

m!

yn

n!
= exp(Ef(x, y)). (6)

But from the definition of Ef(x, y) we have

Ef (x, y) =

∞
∑

m,n=0

f(m, n)
xm

m!

yn

n!
=

∞
∑

m,n=1

xm

m!

yn

n!
+ x + y

=

∞
∑

m=1

xm

m!

∞
∑

n=1

yn

n!
+ x + y

= (ex − 1)(ey − 1) + x + y.

So
∞

∑

m,n=0

C(Km,n)
xm

m!

yn

n!
= e(ex−1)(ey−1)+x+y. (7)

Knopfmacher and Mays [2] showed that

C(Km,n) =

m+1
∑

i=1

am,ii
n. (8)

for some integers am,i. We will derive the same result here from (7).
We start by defining integers am,i by

λe(ex−1)(λ−1)+x =

∞
∑

m=0

xm

m!

∞
∑

i=0

am,iλ
i. (9)

Now equating the constant term in x on both sides we get

λ =

∞
∑

i=0

a0,iλ
i,

which shows that a0,1 = 1 and a0,i = 0 for i 6= 1. We observe that am,0 = 0. Now we
equate the coefficients of λn on both sides of (9).
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On the left we have

[λn]λe(ex−1)λex−(ex−1) = [λn−1]e(ex−1)λex−(ex−1)

=
(ex − 1)n−1

(n − 1)!
ex−(ex−1).

On the right we have

[λn]

∞
∑

m=0

xm

m!

∞
∑

i=0

am,iλ
i =

∞
∑

m=0

xm

m!
am,n.

So
(ex − 1)n−1

(n − 1)!
ex−(ex−1) =

∞
∑

m=0

xm

m!
am,n.

Thus am,n = 0 for m < n − 1, i.e., n > m + 1. So we may write (9) as

λe(ex−1)(λ−1)+x =
∞

∑

m=0

xm

m!

m+1
∑

i=1

am,iλ
i. (10)

Letting λ = ey in equation (10) and using (7) we get

∑

m,n

C(Km,n)
xm

m!

yn

n!
=

∞
∑

m=0

xm

m!

m+1
∑

i=1

am,ie
iy.

Equating coefficients of
xm

m!

yn

n!
we get

C(Km,n) =

m+1
∑

i=1

am,ii
n,

which is the desired result.

4 Relation with Stirling numbers of the second kind

The Stirling number of the second kind S(n, m) counts the number of ways of partitioning
a set of n elements into m nonempty sets. We can also get an expression for am,i involving
the Stirling numbers of the second kind. To do this let

ρm(z) =
m+1
∑

i=1

am,iz
i.

Then setting λ = z + 1 in (10) we get

(1 + z)exe(ex−1)z =
∞

∑

m=0

xm

m!
ρm(1 + z)

the electronic journal of combinatorics 14 (2007), #N15 5



or

exe(ex−1)z =

∞
∑

m=0

xm

m!

ρm(z + 1)

z + 1
.

Using the previous equation gives

d

dx
e(ex−1)z = zexe(ex−1)z =

∞
∑

m=0

xm

m!

z

z + 1
ρm(z + 1). (11)

The generating function for the Stirling numbers of the second kind is
∑

m,k

S(m, k)
xm

m!
zk = e(ex−1)z . (12)

So from (11) and (12) we get

∑

m,k

S(m + 1, k)
xm

m!
zk =

d

dx

∑

m,k

S(m, k)
xm

m!
zk =

∞
∑

m=0

xm

m!

z

z + 1
ρm(z + 1).

Equating coefficients of
xm

m!
we get

∑

k

S(m + 1, k)zk =
z

z + 1
ρm(z + 1).

So
ρm(z) = z

∑

k

S(m + 1, k)(z − 1)k−1.

From this we can easily extract the coefficient of zi to get

am,i =
∑

k

(

k − 1

i

)

(−1)k−iS(m + 1, k).

5 Generalization

The generalization of (7) to complete multipartite graphs is easy if we use the generating
function method. A complete multipartite graph is a multipartite graph such that any two
vertices that are not in the same part have an edge connecting them. The number of edges
for such graphs are given by the formula a1(a2 + · · ·+an)+a2(a3 + · · ·+an)+ · · ·+an−1an,
where each ai is the number of vertices in that part. If Ka1,a2,...,an

is a complete multipartite
graph with a1 + a2 + · · · + an vertices then the number of compositions for this graph is
given by the generating function

∞
∑

a1,a2,...,an=0

C(Ka1,a2,...,an
)
x1

a1

a1!

x2
a2

a2!
· · ·

xn
an

an!
= y1y2 · · · yne

y1y2...yn−y1−y2···−yn+n−1, (13)

where yi = exi.
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