A conjecture of Stanley on alternating permutations

Robin Chapman and Lauren K. Williams
Department of Mathematics, University of Bristol, Bristol, BS§ 1TW, UK
Department of Mathematics, Harvard University, Cambridge, MA 02138
mar jc@bristol.ac.uk

lauren@math.harvard.edu

Submitted: Apr 3, 2007; Accepted: Jul 18,2007; Published: Jul 26, 2007
Mathematics Subject Classification: 05Axx

Abstract

We give two simple proofs of a conjecture of Richard Stanley concerning the
equidistribution of derangements and alternating permutations with the maximal
number of fixed points.

1 Introduction

We write [n] = {1,...,n} and S, for the set of permutations of [n]. A permutation is
alternating if a1 > as < az > ay < .... Similarly, define w to be reverse alternating if
ar < ag >az3 < Q4> ....

In [2], Richard Stanley used the theory of symmetric functions to enumerate various
classes of alternating permutations w of {1,2,...n}. One class that he considered were
alternating permutations w with a specified number of fixed points.

Write di(n) (respectively, df(n)) for the number of alternating (respectively, reverse
alternating) permutations in S,, with & fixed points.

As observed in [2|, it is not hard to see that

max{k : di(n) # 0} = [n/2],n >4
max{k : di(n) #0} = [(n+1)/2],n > 5.
Stanley conjectured the following in |2].

Conjecture 1. [2, Conjecture 6.3] Let D,, denote the number of derangements (permu-
tations without fized points) in S,. Then

dfny21(n) = Dipyaj,n > 4
d?(n+1)/2l (n) = D\n-1)/2/,n > 5.
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Figure 1: The bijection ¥ for n = 8

In this note we will give two proofs of his conjecture relating the number of derange-
ments to the number of alternating permutations with the maximal number of fixed points.
Both proofs use the same bijection W. The first proof works directly with permutations
and shows that U is injective and surjective. The second proof works with permutation
tableaux, certain tableaux which are naturally in bijection with permutations, and explic-
itly constructs the inverse to W. The bijection (for alternating permutations) is illustrated
in Figure 1, in terms of both permutations and permutation tableaux.

2 The first proof

As we will show subsequently, the main case that one needs to consider concerns alter-
nating permutations on an even number of letters.

Theorem 2. For each nonnegative integer m
dn(2m) = Dy,.

Proof. Let A,, denote the set of alternating permutations of [2m| with exactly m fixed
points and let D,, denote the set of derangements of [m]|. We shall define an explicit
bijection ¥ : A,, — D,,.

Let m € Sy, be an alternating permutation. We partition the set [2m] into m two-
element subsets Iy,..., I, by setting [; = {25 — 1,25}. As 7 is alternating, 7(2j — 1) >
7m(2j) and so 2j — 1 and 2j cannot both be fixed points of 7. Hence 7 has at most m
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fixed points, and if 7 € A,, then 7 fixes exactly one point in each I; and moves the other
point. Write I; = {a;,b;} where 7(a;) = a; and m(b;) # b;. Thus 7 permutes the b; with
no fixed points, that is there is a unique derangement o € D,, with 7(b;) = by(;). Set
U(r) =o.

To prove that U is a bijection we prove that it is injective and surjective. Suppose
T €A, and ¥(7) = 0. If 0(j) > j then

W(bj) = bo(j) > 20'(]) —1> 2] > a; = W(aj).

As 7 is decreasing on I; then b; = 2j—1 and a; = 2j. Similarly if o(j) < j then a; = 2j—1
and b; = 2j. Hence o determines the a; and b;. Then as 7(a;) = a; and 7(b;) = by(j)
then o also determines 7. Thus W is injective.

To prove WV is surjective take o € D,,. Define

Y (2,25 = 1) ifo(j) > 7.
Then each element of [m] is labelled as either an a; or a b;. Define m € Sy, by 7(a;) = a;

and 7(b;) = by(j). As o is a derangement then 7 has exactly m fixed points. We claim
that 7 is alternating. First of all if o(j) < j then

m(2]) = m(bj) = bo(j) < 20(j) <2j —1=m(2j—1).

A similar argument works also when o(j) > j. We also need to prove that 7(2j5) <
w25+ 1) for 1 < j < m—1. Now as 7(2j) < m(2j — 1) and one of 7(2j) = 2j
and 7(25 — 1) = 25 — 1 holds then 7(2j) < 2j. Similarly 7(2j + 1) > 25 + 1. Hence
m(27) < w(2j + 1) and 7 is alternating. It follows that 7 € A,, and clearly V(7)) = o.
Hence ¥ is a bijection and this concludes the proof. O

Regarding a permutation as the list of its values we can describe the action of ¥ in a
simple way. Take a permutation m € A, and first delete all fixed points. Then replace
each number £ in the remaining list by [k/2]. For example take m = 52318674. Deleting
its fixed points gives 5184, and halving and rounding up each entry gives W(m) = 3142.

The remaining cases are simple consequences of this.

Theorem 3. For each positive integer m
din+1(2m) = Dy

and
dm(2m—1)=d;,(2m —1) = Dp,_;.

Proof. A reverse alternating permutation of [2m| having m + 1 fixed points must fix 1
and 2m. Also it restricts to an alternating permutation of {2,...,2m — 1} with m — 1
fixed points and so d,,,(2m) = d,,—1(2m — 2) = D,,,_;. Conjugating with the reversal
permutation p : j — 2m — j of [2m — 1] interchanges alternating permutations in S,
with m fixed points with reverse alternating permutations in Sy,,—; with m fixed points.
Hence d,,(2m — 1) = d},(2m — 1). Also an alternating permutation of [2m — 1] with m
fixed points must fix 2m — 1 and so restricts to an alternating permutation of [2m — 2]
with m — 1 fixed points. Hence d,,(2m — 1) = d,,—1(2m — 2) = D, 1. O

THE ELECTRONIC JOURNAL OF COMBINATORICS 14 (2007), #N16 3



ot
8§ 7 6
Figure 2: The diagram of a tableau.

3 Permutation Tableaux

A partition A = (Ay,..., \) is a weakly decreasing sequence of nonnegative integers. For
a partition A\, the Young diagram Y, of shape X is a left-justified diagram of boxes, with
A; boxes in the i-th row.

A permutation tableau T |1, 3] is a partition A\ together with a filling of each box of
Y, with either a (black) dot or nothing such that the following holds:

1. Each column of Y, contains at least one dot.

2. There is no empty box which has a dot above it in the same column and a dot to
its left in the same row.

Figure 2 gives an example of a permutation tableau.

We now recall the bijection ® from permutation tableaux to permutations. More
precisely, ® is a bijection from the set of permutation tableaux with k rows and n — k
columns to permutations in the symmetric group S, with k& weak excedances. Here, a
weak excedance of a permutation 7 is a value 7(i) such that m(z) > i. If we define the
semiperimeter of a tableau to be the number of columns plus the number of rows, then
maps the set of permutation tableaux of semiperimeter n to permutations in S,,.

We define the diagram D(7T) associated with 7 as follows. Label the edges of the
northeast border of the Young diagram with the numbers from 1 to n, as in Figure 2.
From each black dot v, draw an edge to the east and an edge to the south; each such edge
should connect v to either a closest vertex in the same row or column, or to one of the
labels from 1 to n. The resulting picture is the diagram D(7).

We now define the permutation 7 = ®(7) via the following procedure. For each
i € {1,...,n}, find the corresponding position on D(7) which is labeled by i. If the label
1 is on a vertical step of P, start from this position and travel straight west as far as
possible on edges of D(7). Then, take a “zig-zag” path southeast, by traveling on edges
of D(T) south and east and turning at each opportunity (i.e. at each new vertex). This
path will terminate at some label j > i, and we let 7(i) = 5. If 7 is not connected to any
edge then we set m(i) = 4. Similarly, if the label 7 is on a horizontal step of P, start from
this position and travel north as far as possible on edges of D(7). Then, as before, take

THE ELECTRONIC JOURNAL OF COMBINATORICS 14 (2007), #N16 4



o< o 1
91—
¢ + ® |3
g
8§ 7 6

Figure 3: The paths taken by 1 and 6: 7(1) =7, 7(6) = 2.

a zig-zag path south-east, by traveling on edges of D(7) east and south, and turning at
each opportunity. This path will terminate at some label j < i, and we let 7(7) = j.
See Figure 3 for a picture of the path taken by i.

Example 4. If 7 is the permutation tableau whose diagram is given in Figures 2 and 3,
then ®(7") = 74836215.

The following lemma is clear from the construction above.

Lemma 5. [3] The positions of the weak excedances of m = ®(T) are precisely the labels
on the vertical edges of P. The positions of non-excedances of m are precisely the labels
on the horizontal edges of P. Furthermore, in ®(T), the letter i is a fized point if and
only if the row in T whose right hand edge is labeled by i does not contain any dots (is

“empty").

4 The second proof

Let AT, (2n) denote the set of permutation tableaux corresponding to alternating permu-
tations in S, with n fixed points, and let DT'(n) denote the set of permutation tableaux
corresponding to derangements in S,,. We will describe ¥ on the level of tableaux and
prove that it is a bijection between AT, (2n) and DT (n).

By Lemma 5, the set DT'(n) consists of permutation tableaux with semiperimeter n
such that no row is empty (i.e. each row contains at least one black dot). We define ¥ on
the set AT, (2n): it acts on a tableau 7 by deleting all empty rows. See Figure 1. Clearly
U(7T) € DT'(n) for some n.

We now define a map © on DT'(n) (illustrated in Figure 4), which will be the inverse
of U, and acts by inserting precisely n empty rows into the tableau 7. More specifically, if
7T € DT(n) with partition shape (A1, Ao, ..., Ax), then ©(7) is the tableau which results
after performing the following algorithm:

e For every ¢ such that 1 <i <k —1, insert A\; — \;11 + 1 empty rows between the ith
and (i+1)st rows of 7, whose rows lengths are (X\;, \;, Ai—1, \;—2, A;—3, ..., Ain1+1).
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e Insert Ay + 1 empty rows after the kth (last) row of 7, whose row lengths are
Moy Ay Ak — LA —2,...,2,1).

—

Figure 4:

The following lemma is obvious.

Lemma 6. Let m be an alternating permutation. If k consecutive entries are fized points,
then k < 2. Furthermore, if two consecutive entries a; and a;y1 are fized points, then
a; < a;1 and 1 18 even.

We now give a second proof of Theorem 2.

Proof. We need to prove that W gives a bijection from AT,,(2n) to DT'(n), whose inverse
is ©. It is obvious that © is an injection, that W o © is the identity, and that if 7 is a
tableau corresponding to a derangement then ©(7) has n fixed points. However, we need
to show that ©(7) is alternating and that ¥ is an injection.

We will first show that ¥ is an injection. Suppose we are trying to insert n empty
rows into 7, so as to get a tableau 7' corresponding to an alternating permutation .
Clearly the first row of the resulting tableau 7’ cannot be empty, because then w(1) =1
violates the requirement than w(1) > 7(2). Additionally, by Lemma 6, we cannot have
three consecutive empty rows of the same length.

Consider two consecutive rows in 7 which have lengths ¢t > s. Let us try to maximize
the number of empty rows that we can insert between these rows, such that the resulting
permutation 7w will be alternating. Suppose these rows have lengths ry, 79, ..., 1y, with
t>ry >ry>--->r, >s. As before, there cannot be three consecutive r;’s which are
equal. Furthermore, note that after the rows of length ¢, there cannot be two empty rows
of the same length. Indeed, if there were two such rows (say with vertical edge labels j
and j+1) then since j — 1 is the label of a horizontal step of the tableau — i.e. the position
of a nonexcedance — we would have 7(j — 1) < j — 1,7(j) = j, and n(j) = 7 + 1. This
violates the requirement that m be alternating.

So the best we could hope for is to have empty rows of lengths ¢,¢,t—1,t—2,...,s+1,s.
But in fact we cannot have an empty row of length s. If we did, then if j is the label of
the vertical step of this row, then we would have 7(j —1) < j—1 (since j —1 would be the
label of a horizontal step, hence a position of a nonexcedance). Additionally, we would
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have (j) = j and m(j +1) > j+ 1, and these three entries would violate the requirement
that 7 be alternating.

Therefore if we want to insert n empty rows into 7 such that the resulting permutation
is alternating, then our only choice is to use the algorithm described in the definition of
©. Therefore ¥ is an injection.

Finally it remains to show that the permutation corresponding to ©(7) is alternating,.
Consider two consecutive rows of lengths \; and ;11 in 7', and suppose that the vertical
column labels corresponding to these rows are 7 and k. We will show that the entries of
the corresponding permutation from positions j to k are alternating. Since the row of
length \; has at least one dot, we have 7(j) > j. Since j + 1 and j + 2 label the vertical
steps of empty rows, we have m(j +1) = j + 1 and 7(j + 2) = j + 2. Since j + 3 labels a
horizontal step, m(j +3) < j+ 3 (and hence less than j + 2 since 7(j 4+ 2) = j + 2). Since
J + 4 labels a vertical step, w(j +4) = j + 4. Continuing in this fashion, we finally check
that m(k —2) =k —2, m(k — 1) < k — 1 (hence less than k — 2), and 7(k) > k. Clearly =
is alternating between the positions 7 and £, and since the same argument can be applied
to the remaining positions of 7, we are done.

O
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