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Abstract

In this paper, we derive an interesting identity from the Rogers-Fine identity by

applying the g-exponential operator method.

1 Introduction and main result

Following Gasper and Rahman [7], we write

(a;CDO = 1, (a;q)n = (1 —(Z)(l —aq>~-~(1 —aq"_l)7n: 1,...7007

r(I)s < ag, -+, ar g, ) _ i (a17a27 t '7CLT;Q)TL [(_1)nqn(n—1)/2}1+s_r "

bl’”'7b5 n=0 (q7b17"'7bs;q)n
For convenience, we take |¢| < 1 in this paper.

Recall that the Rogers-Fine identity [1, 2, 6, 10] is expressed as follows:
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This identity (1) is one of the fundamental formulas in the theory of the basic hyper-
geometric series. In this paper, we derive an interesting identity from (1) by applying the
g-exponential operator method. As application, we give an extension of the terminating

very-well-poised ¢®5 summation formula. The main result of this paper is:
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Theorem 1.1. Let a_y,ag,aq, a9, - -, ayr2 be complex numbers, |ag| < 1 with i =

0,1,2,---,t+ 1, then for any non-negative integer M, we have
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n=0 (57 b7a17a37"'7a2t+1;q)n
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1 (g, 7™ agi, ¢t agi—a fagi—s; q)

m1+m2+~~~+mt+2’ (2)
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where t = —1,0,1,2,---,00, c=ag and b =a_;.

2 The proof of the theorem and its application

Before our proof, let’s first make some preparations. The g-differential operator D,
and g¢-shifted operator n (see [3, 4, 8, 9]), acting on the variable a, are defined by:

f(a) — f(aq)

Dy{f(a)} = and 7 {f(a)} = f(aq).

Rogers [9] first used them to construct the following g-operator

o (n—1)n/2 n
B(db) = (=i = 3 %

: (3)

where § = n~'D,. Note that, Rogers used the symbol ¢ to denote 6 [9]. Then he
applied it to derive relationships between special functions involving certain fundamental
g-symmetric polynomials. This operator theory was developed by Chen and Liu [4] and
Liu [8]. They employed (3) to obtain many classical g-series formulas. Later Bowman
[3] studied further results of this operator and gave convergence criteria. He used it to
obtain results involving ¢-symmetric expansions and g-orthogonal polynomials. Inspired
by their work, we constructed the following g-exponential operator [5]

Definition 2.1. Let # = n~'D,, b, ¢ are complex numbers. We define

b o~ (b3 @)n(=cO)"

1<I>o< ; g, —cl ) =) (4)
nz:% (¢ 9)n

In [5], we have applied it to obtain some formal extensions of g-series formulas. Notice
that the operator E(df) follows (4) by setting ¢ = dh, b = 1/h, and taking h = 0. The
following operator identities were given in [5]:
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Lemma 2.1. If s/w = ¢, |cst/w| < 1, where N is a non-negative integer, then

b . (as, at; q)oo
1%(— - 9>{ (aw; ¢)os }

(as, at,bet; q) oo b, s/w, q/at
— (b ) ) . . 5

Lemma 2.2. For |cs| < 1,

(as,bes; @)oo
(€55 q)oo

b
@ "5 et ) (s -
Now let’s return to the proof of Theorem 1.1. Employing

(q/a;q), = (—a)"g"" ™/ 27@(;:(2)200’ (7)

and setting a = ¢~ in (1), we rewrite the new expression as follows:

> (a¥50) Bea)m = 2 (001 = g7 ) (=g M7?)"
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Applying the operator 19, < E :q,—cl ) to both sides of (8) with respect to the
variable 3 then we have
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By (5) and (6), we have the relation

M@™eaq)n n (g™ @)l ™M7)B,c;0)n (L =T M) e
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Using (7) again , we rewrite (9) as follows:
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Applying the operator 1P a_l ; q, —a9f ) to both sides of (10) with respect to the

variable b, from (5) and (6) and simplifying then we have

q
T =
B, be, arasc; Q) n=0 (ﬁa be, arasc; Q)n(TE Q)n+1

ni
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Replacing be by b in (9), we have the case of t = —1. If we replace (bc, asc, ajasc) by
(b, as,ay) in (11) respectively, we obtain the case of ¢ = 0.
By induction, similar proof can be performed to get the equation (2).

Letting t = —1 in (2), and then setting b = ¢! =7/, we have the following identity:
Corollary 2.1. If |¢| < 1, then

l G On
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Combined with (12), we can get the following extension of the terminating very-well-
poised ®5 summation formula:

Theorem 2.1. For |¢| <1, |e] < 1and |7| < 1

n, n(n—1)>2 (Q/C eT; q)

1—Tq N1 q ™M q)n " (—erg™Yg A
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Proof. Setting 3 = ¢ and replacing 7 by 7¢* in (12), we have

L (=7 (1, q/c; ™ @n _
( Z — )( / Ty ) (_CTqM>nqn(n 1)/2. (14)
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Employing (7), we rewrite (14) as follows:

M 2n —M —-n n
L —7¢"") (T, q)n n 2 (Cq™"cTq"; @)oo
3 )( ET )oo.
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(Ta: @) a(cmq™s @)e =
Applying the operator ;9P < ﬁ : q,—el ) to both sides of (15) with respect to the
variable ¢, using (5) and (6) and simplifying then we complete the proof.
Taking d = ¢/c then setting e = c¢f/q in (13), we have
Corollary 2.2 (The terminating very-well-poised ¢®; summation formula).

G(I)5 ( q_M>T> qﬁv _q\/?v Q/Cv Q/f Cq Cf7_qM—1 ) — (TQ7CfT/Q; q)M
g™ T, —/T, e, fr T (er, fTq)m
Remark: In the context of this paper, convergence of the basic hypergeometric series
is no issue at all because they are terminating g-series.
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