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Abstract

Using a recent result of Chudnovsky, Seymour, and Sullivan, we slightly improve
two bounds related to the Caccetta-Haggkvist Conjecture. Namely, we show that
if @ > 0.35312, then each n-vertex digraph D with minimum outdegree at least an
has a directed 3-cycle. If § > 0.34564, then every n-vertex digraph D in which the
outdegree and the indegree of each vertex is at least Gn has a directed 3-cycle.

1 Introduction

In this note we follow the notation of [5]. For a vertex u in a digraph D = (V, E), let
Nt(u)={veV:(uv) € E} and N~ (u) = {v € V: (v,u) € E}. Every digraph in this
note has no parallel or antiparallel edges.

Caccetta and Héggkvist [2] conjectured that each n-vertex digraph with minimum
outdegree at least d contains a directed cycle of length at most [n/d]. The following
important case of the conjecture is still open: Fach n-vertex digraph with minimum out-
degree at least n/3 contains a directed triangle. Caccetta and Héggkvist [2] proved the
following weakening of the conjecture.

Theorem 1. [2] If a > (3 —/5)/2 ~ 0.38196..., then each n-vertex digraph D with
mainimum outdegree at least an has a directed 3-cycle.
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Then Bondy [1] relaxed the restriction on a in Theorem 1 to a > (2v/6—3)/5 ~ 0.37979
and Shen [5] relaxed it to a > 3 — V7 ~ 0.354248.

De Graaf, Schrijver, and Seymour [4] considered the corresponding problem for di-
graphs in which both the outdegrees and indegrees are bounded from below. They proved
that every n-vertex digraph in which the outdegree and the indegree of each vertex is
at least 0.34878n has a directed 3-cycle. Shen’s bound [5] on « implies an improvement
of the de Graaf—Schrijver—Seymour bound to 0.347785n. Here we use a recent result of
Chudnovsky, Seymour, and Sullivan [3] to somewhat improve these results as follows.

Theorem 2. If a > 0.35312, then each n-vertex digraph D with minimum outdegree at
least an has a directed 3-cycle.

Theorem 3. If 3 > 0.34564, then each n-vertexr digraph D in which both minimum
outdegree and minimum indegree is at least Bn has a directed 3-cycle.

In the next section, we cite the Chudnovsky—Seymour—Sullivan result and a conjecture
of theirs, and derive a useful consequence. In Section 3, we outline Shen’s proof of his
bound on « in [5]. In Sections 4 and 5 we prove Theorem 2. In Section 6 we outline a
part of the proof in [4] and prove Theorem 3.

2 A result on dense digraphs

Chudnovsky, Seymour, and Sullivan [3] proved the following fact.

Lemma 4. If a digraph D is obtained from a tournament by deleting k edges and has no
directed triangles, then one can delete from D an additional k edges so that the resulting
digraph D' is acyclic.

We use this fact for the following lemma.

Lemma 5. If a digraph D is obtained from a tournament by deleting k edges and has no
directed triangles, then it has a vertex with outdegree less than 2k (and a vertex with
indegree less than /2k).

Proof. Let m = (\/ﬁ} By Lemma 4, D contains an acyclic digraph D’ with at least
|E(D)| — k edges. Arrange the vertices of D’ in an order wy,us,...,u, so that there
are no backward edges. If D has no vertices with outdegree less than m, then for each
i =0,1,...,m, the set E(D) — E(D’) contains at least m — ¢ edges starting at vertex
uq—;. Hence

2

a contradiction. O
In fact, Chudnovsky, Seymour, and Sullivan [6, Conjecture 6.27] conjectured the fol-
lowing improvement of Lemma 4.

1 2
k21+2+...+m:<m+ )>m72k;,
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Conjecture 6. If a digraph D is obtained from a tournament by deleting k edges and has
no directed triangles, then one can delete from D at most k/2 additional edges so that the
resulting digraph D' is acyclic.

If true, this conjecture would imply the following strengthening of Lemma 5: Fach
digraph D obtained from a tournament by deleting k edges, that has no directed triangles,
has a vertex with outdegree less than v/k. This in turn would imply some improvements
in the bounds of Theorems 2 and 3.

3 A sketch of Shen’s proof

In this section, we outline the proof in [5]. Assume that there exists an n-vertex digraph
D = (V,E) without directed triangles with deg™(u) = r = [na] for all v € V(D). We
may assume that D has the fewest vertices among digraphs with this property.

For each arc (u,v) € E, set
P(u,v) := N*(v) \ N*(u),
p(u,v) := |P(u,v)|, the number of induced directed 2-paths whose first edge is (u,v);
Qu,v) = N~(u) \ N~ (u),
q(u,v) := |Q(u,v)|, the number of induced directed 2-paths whose last edge is (u, v);
T(u,v) := NT(u) N N*t(v),
t(u,v) := |T(u,v)|, the number of transitive triangles having edge (u,v) as “base.”

Let t be the number of transitive triangles in D. Note that
t= Z t(u,v). (1)
(u,w)EE(D)
It was proved in [5] that
n > 2r +deg” (v) + q(u,v) — at(u,v) — p(u,v) (2)

for every (u,v) € E(D). The idea is the following: the sets N*(v), N~ (v), and Q(u,v) are
disjoint. Moreover, every vertex in 7'(u,v) cannot have outneighbors in N~ (v) U Q(u, v).
By the minimality of D, some vertex w € T'(u,v) (if T'(u, v) is non-empty) has fewer than
at(u,v) outneighbors in T'(u,v). Hence w has at least r — p(u, v) — at(u, v) outneighbors
outside of N7 (v) U Q(u,v). This yields (2).

Summing inequalities (2) over all edges in D and observing that

Z (2r —n) =rn(2r —n),

(u,w)EE(D)
> deg (v)= ) (deg™(v))* =rn, (3)
(u,v)EE(D) veV (D)
S g = Y ), (1)
(u,v)EE(D) (u,v)EE(D)
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by (1), Shen concludes that
at > rn(3r —n). (5)

Noting that ¢ < n( ) Shen derives the inequality a* — 6+ 2 > 0 and concludes that

a<3—+/T.

4 Preliminaries

In this and the next sections, we will follow Shen’s scheme and use Lemma 5 to prove
Theorem 2.
So, let @ > 0.35312 and let D be the smallest counterexample to Theorem 2. Below
we use notation from the previous section.

Lemma 7. If |V(D)| = n, then t > 0.476r*n.
Proof. If t < 0.476r%n, then by (5)

0.476r°na > rn(3r — n).
Dividing by 7?n and rearranging we get

04760 + 2 > 3.
T

Since * < é and a > 0 we have

0.4760” — 3o+ 1 > 0.
This means that o < 0.35312, a contradiction. Il
Lemma 8. For every v € V(D), [N~ (v)| < 1.1867.

Proof. Suppose that [N~ (v)| > 1.186r. By the minimality of D, some vertex w € N*(v)
has fewer than ar outneighbors in N (v). Since N*(w) and N~ (v) are disjoint,

n>|N~(v)] +2r —ar >r(3.186 — a).

Hence o?—3.186a+1 > 0 and therefore, o < 1.593—+/1.5932 — 1 < 0.353, a contradiction.

0

For each (u,v) € E(D), let f(u,v) be the number of missing edges in N (u) N Nt (v).
Similarly, for each u € V(D), let

Fu) = () LB and () = |E(DV @)

Clearly, f(u) is the number of missing edges in N (u) and ¢(u) is the number of transitive
triangles in D with source vertex u. By definition, ¢(u) 4+ f(u) = (3) for each u € V(D),

andt—zuev(m (u). Letf—zuev(p) f(u) and ~ zﬁ Then

t= <;>n — f= <;>n —yr*n < (0.5 — )r’n,
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and by Lemma 7,
t
7 <05 ——— <0.5—-0.476 = 0.024. (6)
r’n

Z f(u,v) 727" f =0.586r Z f(u)

(u,v)€E(D) ueV (D)

Lemma 9.

Proof. Let E(D) denote the set of non-edges of D, that is, the pairs zy € (V(QD)) such that
neither (z,y) nor (y,z) is an edge in D. Note that > . py f(u) = 32, cmp) [N (2) N

N~ (y)| and that >° ., cppy f(u,v) = 32, cup) [E(D(N™(z) N N~(y))|. Therefore, the
statement of the lemma holds if for every zy € E(D),

[E(D(N™(x) N N™(y)))] < 0.586r[N~(z) 0 N~ (y)]. (7)

Let |[N~(z) N N~ (y)| = ¢. Since |[E(D(N~(z) NN~ (y)))| < () = Lq, we see that

2
(7) is clearly true when g < r. Therefore we assume that ¢ > r. Let k denote the number

of edges missing from D(N~(z) N N~ (y)). Note that any acyclic digraph on ¢ vertices,

with maximum outdegree at most r, has at most (g) +r(g—r) = (g) — (q;’") edges. Since

D(N~(z) N N~ (y)) itself contains no directed triangle and has maximum outdegree at
most r, by Lemma 4 it contains an acyclic subgraph with at least (g) —2k edges. Therefore

N ope (7Y (177,

2 2 2
implying that k& > £(%,"). Therefore we find |E(D(N~(z) "N~ (y)))| < (%) —5(%)- To
verify (7) then, we simply need to check that for ¢ > r we have

q 1Tf(g—r
(2) 2( 5 )<0.586rq.
O\ _Lla=7Y S ) 556r
9) "2\ o ) =P

2q(q—1)—(¢g—7)(q —7’—1)>23447‘q
q +(27’—1—2344r)q—r(7“+1)
q —0344rq—r2>0

Suppose the contrary. Then

But this implies ¢ > (0.344r + r+/4.118336) /2 > 1.18667, contradicting Lemma 8. O

5 Proof of Theorem 2

Let (u,v) € E(D). By Lemma 5, some vertex w € N (u) N N*(v) has at most \/2f(u, v)
outneighbors in N*(u) NN (v). Other outneighbors of w are in V(D) \ (T (u,v)UQ(u, v)U
N~ (v)U{u}). Thus, we have

n > 2r +deg” (v) + q(u,v) — p(u,v) — \/2f(u,v). ()

THE ELECTRONIC JOURNAL OF COMBINATORICS 14 (2007), #N19 )



Summing over all (u,v) € E(D), we get

ren® > 2rin + Z deg™ (v) + Z (q(u,v) — p(u,v)) — Z V2f(u,v).

(u,w)EE(D) (u,v)EE(D) (u,v)EE(D)

Applying (3) and (4), we get

r-n? > 3r’n — Z V2f(u,v) >3rn—rn\/ ZMEE (uv) 9)

(u,w)EE(D)

By Lemma 9,

2 uw u,v) 1.172 1.172
m\/ Lwnen) rny ) ——— f_ M2 o 1727.
™

Plugging this in (9) and dividing both sides by 7°n, we get

g >3- /11727, (10)

From this and (6), we have

1

< < 0.35307,
n o 3—\1172-0.024 ~

a contradiction.

6 Digraphs with bounded indegrees and outdegrees

Let k£ = [nf] and assume that there exists an n-vertex digraph D = (V| E) without
directed triangles with deg™ (u) > k and deg™(u) > k for all u € V(D). We may assume
that after deleting any edge, some vertex will have either indegree or outdegree less than
k.

For each edge (u,v) € E, set T (u,v) := N (u)NNT(v), T~ (u,v) := N~ (u)NN~(v),
tt(u,v) = |TF(u,v)|, t~(u,v) == |T~ (u,v)].

Let s = 1/ca, where « is the smallest positive real such that for each n every n-vertex
digraph with minimum outdegree greater than an has a directed triangle. By Theorem 2,
a < 0.35312.

The following properties of D are proved in [4].

(i) There exists a vertex v with both indegree and outdegree equal to k (see Equation

(4) on p. 280).
(ii) For all u,v,w € V, if (u,v), (v,w), (u,w) € E(D), then

t~(u,v) +tT(v,w) > 4k —n  (see Equation (5) on p. 281). (11)
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(iii) For each edge (u,v) € F,

k — E—

= (u,0) > (3% —n)s = " and £ (u,0) > (3% —n)s = S~ (see (6) on p. 281).
« «

(12)

(iv) k* > 2(3k —n)(5k —n — 2(3k —n)s)s (see the equation between (14) and (16) on

p. 282).

In fact, the k% on the left-hand side of the last inequality is simply the upper bound
for the total number of edges, |E(D(N~(v")))| + |E(D(N*(v")))], in the in-neighborhood
and the out-neighborhood of v’. Thus, if the total number of edges in the in-neighborhood
and the out-neighborhood of v is (1 — v)k?, then instead of (iv) we can write

(1 —9)k* > 2(3k — n)(5k —n — 2(3k — n)s)s. (13)
Dividing both sides of (13) by k? and rearranging, we get the following slight variation
of Inequality (16) in [4]:
(45* — 25)(n/k)? — (245 — 165)(n/k) + (365* — 305 + 1 — ) > 0.
Note that there is a misprint in [4]: the last summand in (16) is (36s — 20s + 1) instead
of (36s? — 30s + 1). Letting z = n/k and A = 2s = 2/a, we have
(A2 = N)a? — 2307 — 4Nz + (9N — 15A + 1 —7) > 0. (14)
The roots of (14) are

BAZ — 4N £ /(3A2 =402 — (A2 = \)(9N2 — 15N + 1 — )

T2 = N2\
_3>\2—4)\i\/7>\2+(1—7)/\_3 Lt/ +(1—7)/A
B A2 — A B A—1 '
Since z = n/k and we know from [4] that n/k > 2.85, we conclude that
11—/ 1—9)/A
r >3- 7;_(1 NIA (15)

Let f; be the number of non-edges in N*(v') and f; be the number of non-edges in
N~ (v"). Then, by the definition of v, f; + fo + (1 — v)k? = k* — k, and hence

VK > fi+ fo

Comparing Lemma 5 with (iii), we have

V2fi > (3k—n)s and /2f, > (3k —n)s.

Hence
VE* > fi+ fo > (3k —n)’s* = k*((3 — 1)%s°). (16)
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Assume now that § > 0.34564. Then z =n/[fn]| < 1/5 < 2.893184. By Theorem 2,
s > 1/0.35312. Then by (16),

3 2.893184
7 0.35312

2
) > (.3024922 > 0.0915.

Since the right-hand side of (15) grows with v, plugging v = 0.0915 and A = 2s =
2/0.35312 into (15) gives a lower bound on x, namely

g 1—\/00915 + (1 -00915)0.35312/2 _,, 1-/0.0915 +0.9085 -0.17656

(2/0.35312) — 1 (2 —0.35312)/0.35312
1 —+/0.25190476 1—0.5019
=3—0.35312 >3 —0.35312————— > 2.8931
3—0.353 164683 >3—0.353 164683 > 2.89319,
a contradiction to our assumption. This proves Theorem 3. U

We conclude with a remark on the explicit relation between a and ( that we use here.
Combining (16) with (14) and simplifying, we obtain

(3 —2a)2® — (18 — 16a)x + 27 — 30a + o > 0.

This implies
- 9 —8a+ avl+ 2«
3 — 2«

so since [ < 1/x we find
3 — 2«

9—8a+ av1+2a

Observe that even if we knew the best possible value o = 1/3 for «, the bound on 3 given
by this formula is only .34498.

b <

(17)
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