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Abstract

Using a recent result of Chudnovsky, Seymour, and Sullivan, we slightly improve

two bounds related to the Caccetta-Haggkvist Conjecture. Namely, we show that

if α ≥ 0.35312, then each n-vertex digraph D with minimum outdegree at least αn

has a directed 3-cycle. If β ≥ 0.34564, then every n-vertex digraph D in which the

outdegree and the indegree of each vertex is at least βn has a directed 3-cycle.

1 Introduction

In this note we follow the notation of [5]. For a vertex u in a digraph D = (V, E), let
N+(u) = {v ∈ V : (u, v) ∈ E} and N−(u) = {v ∈ V : (v, u) ∈ E}. Every digraph in this
note has no parallel or antiparallel edges.

Caccetta and Häggkvist [2] conjectured that each n-vertex digraph with minimum
outdegree at least d contains a directed cycle of length at most dn/de. The following
important case of the conjecture is still open: Each n-vertex digraph with minimum out-
degree at least n/3 contains a directed triangle. Caccetta and Häggkvist [2] proved the
following weakening of the conjecture.

Theorem 1. [2] If α ≥ (3 −
√

5)/2 ∼ 0.38196 . . . , then each n-vertex digraph D with
minimum outdegree at least αn has a directed 3-cycle.
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Then Bondy [1] relaxed the restriction on α in Theorem 1 to α ≥ (2
√

6−3)/5 ∼ 0.37979
and Shen [5] relaxed it to α ≥ 3 −

√
7 ∼ 0.354248.

De Graaf, Schrijver, and Seymour [4] considered the corresponding problem for di-
graphs in which both the outdegrees and indegrees are bounded from below. They proved
that every n-vertex digraph in which the outdegree and the indegree of each vertex is
at least 0.34878n has a directed 3-cycle. Shen’s bound [5] on α implies an improvement
of the de Graaf–Schrijver–Seymour bound to 0.347785n. Here we use a recent result of
Chudnovsky, Seymour, and Sullivan [3] to somewhat improve these results as follows.

Theorem 2. If α ≥ 0.35312, then each n-vertex digraph D with minimum outdegree at
least αn has a directed 3-cycle.

Theorem 3. If β ≥ 0.34564, then each n-vertex digraph D in which both minimum
outdegree and minimum indegree is at least βn has a directed 3-cycle.

In the next section, we cite the Chudnovsky–Seymour–Sullivan result and a conjecture
of theirs, and derive a useful consequence. In Section 3, we outline Shen’s proof of his
bound on α in [5]. In Sections 4 and 5 we prove Theorem 2. In Section 6 we outline a
part of the proof in [4] and prove Theorem 3.

2 A result on dense digraphs

Chudnovsky, Seymour, and Sullivan [3] proved the following fact.

Lemma 4. If a digraph D is obtained from a tournament by deleting k edges and has no
directed triangles, then one can delete from D an additional k edges so that the resulting
digraph D′ is acyclic.

We use this fact for the following lemma.

Lemma 5. If a digraph D is obtained from a tournament by deleting k edges and has no
directed triangles, then it has a vertex with outdegree less than

√
2k (and a vertex with

indegree less than
√

2k).

Proof. Let m = d
√

2ke. By Lemma 4, D contains an acyclic digraph D′ with at least
|E(D)| − k edges. Arrange the vertices of D′ in an order u1, u2, . . . , uq so that there
are no backward edges. If D has no vertices with outdegree less than m, then for each
i = 0, 1, . . . , m, the set E(D) − E(D′) contains at least m − i edges starting at vertex
uq−i. Hence

k ≥ 1 + 2 + . . . + m =

(

m + 1

2

)

>
m2

2
≥ k,

a contradiction. �

In fact, Chudnovsky, Seymour, and Sullivan [6, Conjecture 6.27] conjectured the fol-
lowing improvement of Lemma 4.

the electronic journal of combinatorics 14 (2007), #N19 2



Conjecture 6. If a digraph D is obtained from a tournament by deleting k edges and has
no directed triangles, then one can delete from D at most k/2 additional edges so that the
resulting digraph D′ is acyclic.

If true, this conjecture would imply the following strengthening of Lemma 5: Each
digraph D obtained from a tournament by deleting k edges, that has no directed triangles,
has a vertex with outdegree less than

√
k. This in turn would imply some improvements

in the bounds of Theorems 2 and 3.

3 A sketch of Shen’s proof

In this section, we outline the proof in [5]. Assume that there exists an n-vertex digraph
D = (V, E) without directed triangles with deg+(u) = r = dnαe for all u ∈ V (D). We
may assume that D has the fewest vertices among digraphs with this property.

For each arc (u, v) ∈ E, set
P (u, v) := N+(v) \ N+(u),
p(u, v) := |P (u, v)|, the number of induced directed 2-paths whose first edge is (u, v);
Q(u, v) := N−(u) \ N−(v),
q(u, v) := |Q(u, v)|, the number of induced directed 2-paths whose last edge is (u, v);
T (u, v) := N+(u) ∩ N+(v),
t(u, v) := |T (u, v)|, the number of transitive triangles having edge (u, v) as “base.”

Let t be the number of transitive triangles in D. Note that

t =
∑

(u,v)∈E(D)

t(u, v). (1)

It was proved in [5] that

n > 2r + deg−(v) + q(u, v) − αt(u, v) − p(u, v) (2)

for every (u, v) ∈ E(D). The idea is the following: the sets N+(v), N−(v), and Q(u, v) are
disjoint. Moreover, every vertex in T (u, v) cannot have outneighbors in N−(v) ∪ Q(u, v).
By the minimality of D, some vertex w ∈ T (u, v) (if T (u, v) is non-empty) has fewer than
αt(u, v) outneighbors in T (u, v). Hence w has at least r − p(u, v)− αt(u, v) outneighbors
outside of N−(v) ∪ Q(u, v). This yields (2).

Summing inequalities (2) over all edges in D and observing that
∑

(u,v)∈E(D)

(2r − n) = rn(2r − n),

∑

(u,v)∈E(D)

deg−(v) =
∑

v∈V (D)

(deg−(v))2 ≥ r2n, (3)

∑

(u,v)∈E(D)

q(u, v) =
∑

(u,v)∈E(D)

p(u, v), (4)
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by (1), Shen concludes that
αt > rn(3r − n). (5)

Noting that t ≤ n
(

r

2

)

, Shen derives the inequality α2 − 6α + 2 > 0 and concludes that

α < 3 −
√

7.

4 Preliminaries

In this and the next sections, we will follow Shen’s scheme and use Lemma 5 to prove
Theorem 2.

So, let α ≥ 0.35312 and let D be the smallest counterexample to Theorem 2. Below
we use notation from the previous section.

Lemma 7. If |V (D)| = n, then t > 0.476r2n.

Proof. If t ≤ 0.476r2n, then by (5)

0.476r2nα > rn(3r − n).

Dividing by r2n and rearranging we get

0.476α +
n

r
> 3.

Since n
r
≤ 1

α
and α > 0 we have

0.476α2 − 3α + 1 > 0.

This means that α < 0.35312, a contradiction. �

Lemma 8. For every v ∈ V (D), |N−(v)| < 1.186r.

Proof. Suppose that |N−(v)| ≥ 1.186r. By the minimality of D, some vertex w ∈ N+(v)
has fewer than αr outneighbors in N+(v). Since N+(w) and N−(v) are disjoint,

n > |N−(v)| + 2r − αr ≥ r(3.186 − α).

Hence α2−3.186α+1 > 0 and therefore, α < 1.593−
√

1.5932 − 1 < 0.353, a contradiction.
�

For each (u, v) ∈ E(D), let f(u, v) be the number of missing edges in N+(u)∩N+(v).
Similarly, for each u ∈ V (D), let

f(u) =

(

r

2

)

− |E(D(N+(u)))| and t(u) = |E(D(N+(u)))|.

Clearly, f(u) is the number of missing edges in N+(u) and t(u) is the number of transitive
triangles in D with source vertex u. By definition, t(u) + f(u) =

(

r

2

)

for each u ∈ V (D),

and t =
∑

u∈V (D) t(u). Let f =
∑

u∈V (D) f(u) and γ = f

r2n
. Then

t =

(

r

2

)

n − f =

(

r

2

)

n − γr2n ≤ (0.5 − γ)r2n,
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and by Lemma 7,

γ ≤ 0.5 − t

r2n
< 0.5 − 0.476 = 0.024. (6)

Lemma 9.
∑

(u,v)∈E(D)

f(u, v) <
1.172

2
r f = 0.586r

∑

u∈V (D)

f(u).

Proof. Let E(D) denote the set of non-edges of D, that is, the pairs xy ∈
(

V (D)
2

)

such that
neither (x, y) nor (y, x) is an edge in D. Note that

∑

u∈V (D) f(u) =
∑

xy∈E(D) |N−(x) ∩
N−(y)| and that

∑

(u,v)∈E(D) f(u, v) =
∑

xy∈E(D) |E(D(N−(x) ∩ N−(y))|. Therefore, the

statement of the lemma holds if for every xy ∈ E(D),

|E(D(N−(x) ∩ N−(y)))| < 0.586r|N−(x) ∩ N−(y)|. (7)

Let |N−(x) ∩ N−(y)| = q. Since |E(D(N−(x) ∩ N−(y)))| ≤
(

q

2

)

= q−1
2

q, we see that
(7) is clearly true when q < r. Therefore we assume that q ≥ r. Let k denote the number
of edges missing from D(N−(x) ∩ N−(y)). Note that any acyclic digraph on q vertices,
with maximum outdegree at most r, has at most

(

r

2

)

+ r(q− r) =
(

q

2

)

−
(

q−r

2

)

edges. Since
D(N−(x) ∩ N−(y)) itself contains no directed triangle and has maximum outdegree at
most r, by Lemma 4 it contains an acyclic subgraph with at least

(

q

2

)

−2k edges. Therefore
(

q

2

)

− 2k ≤
(

q

2

)

−
(

q − r

2

)

,

implying that k ≥ 1
2

(

q−r

2

)

. Therefore we find |E(D(N−(x) ∩ N−(y)))| ≤
(

q

2

)

− 1
2

(

q−r

2

)

. To
verify (7) then, we simply need to check that for q ≥ r we have

(

q

2

)

− 1

2

(

q − r

2

)

< 0.586rq.

Suppose the contrary. Then
(

q

2

)

− 1

2

(

q − r

2

)

≥ 0.586rq

2q(q − 1) − (q − r)(q − r − 1) ≥ 2.344rq

q2 + (2r − 1 − 2.344r)q − r(r + 1) ≥ 0

q2 − 0.344rq − r2 > 0.

But this implies q > (0.344r + r
√

4.118336)/2 > 1.1866r, contradicting Lemma 8. �

5 Proof of Theorem 2

Let (u, v) ∈ E(D). By Lemma 5, some vertex w ∈ N+(u)∩N+(v) has at most
√

2f(u, v)
outneighbors in N+(u)∩N+(v). Other outneighbors of w are in V (D)\(T (u, v)∪Q(u, v)∪
N−(v) ∪ {u}). Thus, we have

n > 2r + deg−(v) + q(u, v) − p(u, v) −
√

2f(u, v). (8)
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Summing over all (u, v) ∈ E(D), we get

r · n2 > 2r2n +
∑

(u,v)∈E(D)

deg−(v) +
∑

(u,v)∈E(D)

(q(u, v) − p(u, v)) −
∑

(u,v)∈E(D)

√

2f(u, v).

Applying (3) and (4), we get

r · n2 > 3r2n −
∑

(u,v)∈E(D)

√

2f(u, v) ≥ 3r2n − rn

√

2
∑

(u,v)∈E(D) f(u, v)

rn
. (9)

By Lemma 9,

rn

√

2
∑

(u,v)∈E(D) f(u, v)

rn
≤ rn

√

1.172r · f
rn

= rn

√

1.172γr2n

n
= r2n

√

1.172γ.

Plugging this in (9) and dividing both sides by r2n, we get

n

r
> 3 −

√

1.172γ. (10)

From this and (6), we have

r

n
<

1

3 −
√

1.172 · 0.024
≤ 0.35307,

a contradiction.

6 Digraphs with bounded indegrees and outdegrees

Let k = dnβe and assume that there exists an n-vertex digraph D = (V, E) without
directed triangles with deg+(u) ≥ k and deg−(u) ≥ k for all u ∈ V (D). We may assume
that after deleting any edge, some vertex will have either indegree or outdegree less than
k.

For each edge (u, v) ∈ E, set T +(u, v) := N+(u)∩N+(v), T−(u, v) := N−(u)∩N−(v),
t+(u, v) := |T +(u, v)|, t−(u, v) := |T−(u, v)|.

Let s = 1/α, where α is the smallest positive real such that for each n every n-vertex
digraph with minimum outdegree greater than αn has a directed triangle. By Theorem 2,
α ≤ 0.35312.

The following properties of D are proved in [4].
(i) There exists a vertex v′ with both indegree and outdegree equal to k (see Equation

(4) on p. 280).
(ii) For all u, v, w ∈ V , if (u, v), (v, w), (u, w) ∈ E(D), then

t−(u, v) + t+(v, w) ≥ 4k − n (see Equation (5) on p. 281). (11)

the electronic journal of combinatorics 14 (2007), #N19 6



(iii) For each edge (u, v) ∈ E,

t−(u, v) ≥ (3k − n)s =
3k − n

α
and t+(u, v) ≥ (3k − n)s =

3k − n

α
(see (6) on p. 281).

(12)
(iv) k2 > 2(3k − n)(5k − n− 2(3k − n)s)s (see the equation between (14) and (16) on

p. 282).
In fact, the k2 on the left-hand side of the last inequality is simply the upper bound

for the total number of edges, |E(D(N−(v′)))|+ |E(D(N+(v′)))|, in the in-neighborhood
and the out-neighborhood of v′. Thus, if the total number of edges in the in-neighborhood
and the out-neighborhood of v′ is (1 − γ)k2, then instead of (iv) we can write

(1 − γ)k2 > 2(3k − n)(5k − n − 2(3k − n)s)s. (13)

Dividing both sides of (13) by k2 and rearranging, we get the following slight variation
of Inequality (16) in [4]:

(4s2 − 2s)(n/k)2 − (24s2 − 16s)(n/k) + (36s2 − 30s + 1 − γ) > 0.

Note that there is a misprint in [4]: the last summand in (16) is (36s2 − 20s + 1) instead
of (36s2 − 30s + 1). Letting x = n/k and λ = 2s = 2/α, we have

(λ2 − λ)x2 − 2(3λ2 − 4λ)x + (9λ2 − 15λ + 1 − γ) > 0. (14)

The roots of (14) are

x1,2 =
3λ2 − 4λ ±

√

(3λ2 − 4λ)2 − (λ2 − λ)(9λ2 − 15λ + 1 − γ)

λ2 − λ

=
3λ2 − 4λ ±

√

γλ2 + (1 − γ)λ

λ2 − λ
= 3 − 1 ±

√

γ + (1 − γ)/λ

λ − 1
.

Since x = n/k and we know from [4] that n/k > 2.85, we conclude that

x > 3 − 1 −
√

γ + (1 − γ)/λ

λ − 1
. (15)

Let f1 be the number of non-edges in N+(v′) and f2 be the number of non-edges in
N−(v′). Then, by the definition of γ, f1 + f2 + (1 − γ)k2 = k2 − k, and hence

γk2 > f1 + f2.

Comparing Lemma 5 with (iii), we have

√

2f1 ≥ (3k − n)s and
√

2f2 ≥ (3k − n)s.

Hence
γk2 > f1 + f2 ≥ (3k − n)2s2 = k2

(

(3 − x)2s2
)

. (16)
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Assume now that β ≥ 0.34564. Then x = n/dβne ≤ 1/β ≤ 2.893184. By Theorem 2,
s ≥ 1/0.35312. Then by (16),

γ >

(

3 − 2.893184

0.35312

)2

≥ 0.3024922 > 0.0915.

Since the right-hand side of (15) grows with γ, plugging γ = 0.0915 and λ = 2s =
2/0.35312 into (15) gives a lower bound on x, namely

x > 3 − 1 −
√

0.0915 + (1 − 0.0915)0.35312/2

(2/0.35312) − 1
= 3 − 1 −

√
0.0915 + 0.9085 · 0.17656

(2 − 0.35312)/0.35312

= 3 − 0.35312
1 −

√
0.25190476

1.64688
≥ 3 − 0.35312

1− 0.5019

1.64688
> 2.89319,

a contradiction to our assumption. This proves Theorem 3. �

We conclude with a remark on the explicit relation between α and β that we use here.
Combining (16) with (14) and simplifying, we obtain

(3 − 2α)x2 − (18 − 16α)x + 27 − 30α + α2 > 0.

This implies

x >
9 − 8α + α

√
1 + 2α

3 − 2α

so since β ≤ 1/x we find

β <
3 − 2α

9 − 8α + α
√

1 + 2α
. (17)

Observe that even if we knew the best possible value α = 1/3 for α, the bound on β given
by this formula is only .34498.

Acknowledgment The authors thank an anonymous referee for the helpful suggestion
of stating (17) explicitly.
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