On Directed Triangles in Digraphs*

Peter Hamburger ${ }^{\dagger}$ Penny Haxell ${ }^{\ddagger}$ and Alexandr Kostochka ${ }^{\S}$

Submitted: May 31, 2006; Accepted: Sep 1, 2007; Published: Sep 7, 2007
Mathematics Subject Classification: 05C20, 05C35

Abstract

Using a recent result of Chudnovsky, Seymour, and Sullivan, we slightly improve two bounds related to the Caccetta-Haggkvist Conjecture. Namely, we show that if $\alpha \geq 0.35312$, then each n-vertex digraph D with minimum outdegree at least αn has a directed 3 -cycle. If $\beta \geq 0.34564$, then every n-vertex digraph D in which the outdegree and the indegree of each vertex is at least βn has a directed 3 -cycle.

1 Introduction

In this note we follow the notation of [5]. For a vertex u in a digraph $D=(V, E)$, let $N^{+}(u)=\{v \in V:(u, v) \in E\}$ and $N^{-}(u)=\{v \in V:(v, u) \in E\}$. Every digraph in this note has no parallel or antiparallel edges.

Caccetta and Häggkvist [2] conjectured that each n-vertex digraph with minimum outdegree at least d contains a directed cycle of length at most $\lceil n / d\rceil$. The following important case of the conjecture is still open: Each n-vertex digraph with minimum outdegree at least $n / 3$ contains a directed triangle. Caccetta and Häggkvist [2] proved the following weakening of the conjecture.

Theorem 1. [2] If $\alpha \geq(3-\sqrt{5}) / 2 \sim 0.38196 \ldots$, then each n-vertex digraph D with minimum outdegree at least α n has a directed 3-cycle.

[^0]Then Bondy [1] relaxed the restriction on α in Theorem 1 to $\alpha \geq(2 \sqrt{6}-3) / 5 \sim 0.37979$ and Shen [5] relaxed it to $\alpha \geq 3-\sqrt{7} \sim 0.354248$.

De Graaf, Schrijver, and Seymour [4] considered the corresponding problem for digraphs in which both the outdegrees and indegrees are bounded from below. They proved that every n-vertex digraph in which the outdegree and the indegree of each vertex is at least $0.34878 n$ has a directed 3 -cycle. Shen's bound [5] on α implies an improvement of the de Graaf-Schrijver-Seymour bound to $0.347785 n$. Here we use a recent result of Chudnovsky, Seymour, and Sullivan [3] to somewhat improve these results as follows.

Theorem 2. If $\alpha \geq 0.35312$, then each n-vertex digraph D with minimum outdegree at least α n has a directed 3-cycle.

Theorem 3. If $\beta \geq 0.34564$, then each n-vertex digraph D in which both minimum outdegree and minimum indegree is at least β n has a directed 3 -cycle.

In the next section, we cite the Chudnovsky-Seymour-Sullivan result and a conjecture of theirs, and derive a useful consequence. In Section 3, we outline Shen's proof of his bound on α in [5]. In Sections 4 and 5 we prove Theorem 2. In Section 6 we outline a part of the proof in [4] and prove Theorem 3.

2 A result on dense digraphs

Chudnovsky, Seymour, and Sullivan [3] proved the following fact.
Lemma 4. If a digraph D is obtained from a tournament by deleting k edges and has no directed triangles, then one can delete from D an additional k edges so that the resulting digraph D^{\prime} is acyclic.

We use this fact for the following lemma.
Lemma 5. If a digraph D is obtained from a tournament by deleting k edges and has no directed triangles, then it has a vertex with outdegree less than $\sqrt{2 k}$ (and a vertex with indegree less than $\sqrt{2 k}$).

Proof. Let $m=\lceil\sqrt{2 k}\rceil$. By Lemma $4, D$ contains an acyclic digraph D^{\prime} with at least $|E(D)|-k$ edges. Arrange the vertices of D^{\prime} in an order $u_{1}, u_{2}, \ldots, u_{q}$ so that there are no backward edges. If D has no vertices with outdegree less than m, then for each $i=0,1, \ldots, m$, the set $E(D)-E\left(D^{\prime}\right)$ contains at least $m-i$ edges starting at vertex u_{q-i}. Hence

$$
k \geq 1+2+\ldots+m=\binom{m+1}{2}>\frac{m^{2}}{2} \geq k
$$

a contradiction.
In fact, Chudnovsky, Seymour, and Sullivan [6, Conjecture 6.27] conjectured the following improvement of Lemma 4.

Conjecture 6. If a digraph D is obtained from a tournament by deleting k edges and has no directed triangles, then one can delete from D at most $k / 2$ additional edges so that the resulting digraph D^{\prime} is acyclic.

If true, this conjecture would imply the following strengthening of Lemma 5: Each digraph D obtained from a tournament by deleting k edges, that has no directed triangles, has a vertex with outdegree less than \sqrt{k}. This in turn would imply some improvements in the bounds of Theorems 2 and 3.

3 A sketch of Shen's proof

In this section, we outline the proof in [5]. Assume that there exists an n-vertex digraph $D=(V, E)$ without directed triangles with $\operatorname{deg}^{+}(u)=r=\lceil n \alpha\rceil$ for all $u \in V(D)$. We may assume that D has the fewest vertices among digraphs with this property.

For each $\operatorname{arc}(u, v) \in E$, set
$P(u, v):=N^{+}(v) \backslash N^{+}(u)$,
$p(u, v):=|P(u, v)|$, the number of induced directed 2-paths whose first edge is (u, v); $Q(u, v):=N^{-}(u) \backslash N^{-}(v)$,
$q(u, v):=|Q(u, v)|$, the number of induced directed 2-paths whose last edge is (u, v);
$T(u, v):=N^{+}(u) \cap N^{+}(v)$,
$t(u, v):=|T(u, v)|$, the number of transitive triangles having edge (u, v) as "base."
Let t be the number of transitive triangles in D. Note that

$$
\begin{equation*}
t=\sum_{(u, v) \in E(D)} t(u, v) . \tag{1}
\end{equation*}
$$

It was proved in [5] that

$$
\begin{equation*}
n>2 r+\operatorname{deg}^{-}(v)+q(u, v)-\alpha t(u, v)-p(u, v) \tag{2}
\end{equation*}
$$

for every $(u, v) \in E(D)$. The idea is the following: the sets $N^{+}(v), N^{-}(v)$, and $Q(u, v)$ are disjoint. Moreover, every vertex in $T(u, v)$ cannot have outneighbors in $N^{-}(v) \cup Q(u, v)$. By the minimality of D, some vertex $w \in T(u, v)$ (if $T(u, v)$ is non-empty) has fewer than $\alpha t(u, v)$ outneighbors in $T(u, v)$. Hence w has at least $r-p(u, v)-\alpha t(u, v)$ outneighbors outside of $N^{-}(v) \cup Q(u, v)$. This yields (2).

Summing inequalities (2) over all edges in D and observing that

$$
\begin{gather*}
\sum_{(u, v) \in E(D)}(2 r-n)=r n(2 r-n), \\
\sum_{(u, v) \in E(D)} \operatorname{deg}^{-}(v)=\sum_{v \in V(D)}\left(\operatorname{deg}^{-}(v)\right)^{2} \geq r^{2} n, \tag{3}\\
\sum_{(u, v) \in E(D)} q(u, v)=\sum_{(u, v) \in E(D)} p(u, v), \tag{4}
\end{gather*}
$$

by (1), Shen concludes that

$$
\begin{equation*}
\alpha t>r n(3 r-n) . \tag{5}
\end{equation*}
$$

Noting that $t \leq n\binom{r}{2}$, Shen derives the inequality $\alpha^{2}-6 \alpha+2>0$ and concludes that $\alpha<3-\sqrt{7}$.

4 Preliminaries

In this and the next sections, we will follow Shen's scheme and use Lemma 5 to prove Theorem 2.

So, let $\alpha \geq 0.35312$ and let D be the smallest counterexample to Theorem 2. Below we use notation from the previous section.
Lemma 7. If $|V(D)|=n$, then $t>0.476 r^{2} n$.
Proof. If $t \leq 0.476 r^{2} n$, then by (5)

$$
0.476 r^{2} n \alpha>r n(3 r-n)
$$

Dividing by $r^{2} n$ and rearranging we get

$$
0.476 \alpha+\frac{n}{r}>3
$$

Since $\frac{n}{r} \leq \frac{1}{\alpha}$ and $\alpha>0$ we have

$$
0.476 \alpha^{2}-3 \alpha+1>0
$$

This means that $\alpha<0.35312$, a contradiction.
Lemma 8. For every $v \in V(D),\left|N^{-}(v)\right|<1.186 r$.
Proof. Suppose that $\left|N^{-}(v)\right| \geq 1.186 r$. By the minimality of D, some vertex $w \in N^{+}(v)$ has fewer than αr outneighbors in $N^{+}(v)$. Since $N^{+}(w)$ and $N^{-}(v)$ are disjoint,

$$
n>\left|N^{-}(v)\right|+2 r-\alpha r \geq r(3.186-\alpha)
$$

Hence $\alpha^{2}-3.186 \alpha+1>0$ and therefore, $\alpha<1.593-\sqrt{1.593^{2}-1}<0.353$, a contradiction.
For each $(u, v) \in E(D)$, let $f(u, v)$ be the number of missing edges in $N^{+}(u) \cap N^{+}(v)$. Similarly, for each $u \in V(D)$, let

$$
f(u)=\binom{r}{2}-\left|E\left(D\left(N^{+}(u)\right)\right)\right| \quad \text { and } \quad t(u)=\left|E\left(D\left(N^{+}(u)\right)\right)\right| .
$$

Clearly, $f(u)$ is the number of missing edges in $N^{+}(u)$ and $t(u)$ is the number of transitive triangles in D with source vertex u. By definition, $t(u)+f(u)=\binom{r}{2}$ for each $u \in V(D)$, and $t=\sum_{u \in V(D)} t(u)$. Let $f=\sum_{u \in V(D)} f(u)$ and $\gamma=\frac{f}{r^{2} n}$. Then

$$
t=\binom{r}{2} n-f=\binom{r}{2} n-\gamma r^{2} n \leq(0.5-\gamma) r^{2} n
$$

and by Lemma 7,

$$
\begin{equation*}
\gamma \leq 0.5-\frac{t}{r^{2} n}<0.5-0.476=0.024 \tag{6}
\end{equation*}
$$

Lemma 9.

$$
\sum_{(u, v) \in E(D)} f(u, v)<\frac{1.172}{2} r f=0.586 r \sum_{u \in V(D)} f(u)
$$

Proof. Let $\bar{E}(D)$ denote the set of non-edges of D, that is, the pairs $x y \in\binom{V(D)}{2}$ such that neither (x, y) nor (y, x) is an edge in D. Note that $\sum_{u \in V(D)} f(u)=\sum_{x y \in \bar{E}(D)} \mid N^{-}(x) \cap$ $N^{-}(y) \mid$ and that $\sum_{(u, v) \in E(D)} f(u, v)=\sum_{x y \in \bar{E}(D)} \mid E\left(D\left(N^{-}(x) \cap N^{-}(y)\right) \mid\right.$. Therefore, the statement of the lemma holds if for every $x y \in \bar{E}(D)$,

$$
\begin{equation*}
\left|E\left(D\left(N^{-}(x) \cap N^{-}(y)\right)\right)\right|<0.586 r\left|N^{-}(x) \cap N^{-}(y)\right| . \tag{7}
\end{equation*}
$$

Let $\left|N^{-}(x) \cap N^{-}(y)\right|=q$. Since $\left|E\left(D\left(N^{-}(x) \cap N^{-}(y)\right)\right)\right| \leq\binom{ q}{2}=\frac{q-1}{2} q$, we see that (7) is clearly true when $q<r$. Therefore we assume that $q \geq r$. Let k denote the number of edges missing from $D\left(N^{-}(x) \cap N^{-}(y)\right)$. Note that any acyclic digraph on q vertices, with maximum outdegree at most r, has at most $\binom{r}{2}+r(q-r)=\binom{q}{2}-\binom{q-r}{2}$ edges. Since $D\left(N^{-}(x) \cap N^{-}(y)\right)$ itself contains no directed triangle and has maximum outdegree at most r, by Lemma 4 it contains an acyclic subgraph with at least $\binom{q}{2}-2 k$ edges. Therefore

$$
\binom{q}{2}-2 k \leq\binom{ q}{2}-\binom{q-r}{2}
$$

implying that $k \geq \frac{1}{2}\binom{q-r}{2}$. Therefore we find $\left|E\left(D\left(N^{-}(x) \cap N^{-}(y)\right)\right)\right| \leq\binom{ q}{2}-\frac{1}{2}\binom{q-r}{2}$. To verify (7) then, we simply need to check that for $q \geq r$ we have

$$
\binom{q}{2}-\frac{1}{2}\binom{q-r}{2}<0.586 r q .
$$

Suppose the contrary. Then

$$
\begin{aligned}
\binom{q}{2}-\frac{1}{2}\binom{q-r}{2} & \geq 0.586 r q \\
2 q(q-1)-(q-r)(q-r-1) & \geq 2.344 r q \\
q^{2}+(2 r-1-2.344 r) q-r(r+1) & \geq 0 \\
q^{2}-0.344 r q-r^{2} & >0
\end{aligned}
$$

But this implies $q>(0.344 r+r \sqrt{4.118336}) / 2>1.1866 r$, contradicting Lemma 8.

5 Proof of Theorem 2

Let $(u, v) \in E(D)$. By Lemma 5, some vertex $w \in N^{+}(u) \cap N^{+}(v)$ has at most $\sqrt{2 f(u, v)}$ outneighbors in $N^{+}(u) \cap N^{+}(v)$. Other outneighbors of w are in $V(D) \backslash(T(u, v) \cup Q(u, v) \cup$ $\left.N^{-}(v) \cup\{u\}\right)$. Thus, we have

$$
\begin{equation*}
n>2 r+\operatorname{deg}^{-}(v)+q(u, v)-p(u, v)-\sqrt{2 f(u, v)} \tag{8}
\end{equation*}
$$

Summing over all $(u, v) \in E(D)$, we get

$$
r \cdot n^{2}>2 r^{2} n+\sum_{(u, v) \in E(D)} \operatorname{deg}^{-}(v)+\sum_{(u, v) \in E(D)}(q(u, v)-p(u, v))-\sum_{(u, v) \in E(D)} \sqrt{2 f(u, v)}
$$

Applying (3) and (4), we get

$$
\begin{equation*}
r \cdot n^{2}>3 r^{2} n-\sum_{(u, v) \in E(D)} \sqrt{2 f(u, v)} \geq 3 r^{2} n-r n \sqrt{\frac{2 \sum_{(u, v) \in E(D)} f(u, v)}{r n}} \tag{9}
\end{equation*}
$$

By Lemma 9,

$$
r n \sqrt{\frac{2 \sum_{(u, v) \in E(D)} f(u, v)}{r n}} \leq r n \sqrt{\frac{1.172 r \cdot f}{r n}}=r n \sqrt{\frac{1.172 \gamma r^{2} n}{n}}=r^{2} n \sqrt{1.172 \gamma}
$$

Plugging this in (9) and dividing both sides by $r^{2} n$, we get

$$
\begin{equation*}
\frac{n}{r}>3-\sqrt{1.172 \gamma} \tag{10}
\end{equation*}
$$

From this and (6), we have

$$
\frac{r}{n}<\frac{1}{3-\sqrt{1.172 \cdot 0.024}} \leq 0.35307
$$

a contradiction.

6 Digraphs with bounded indegrees and outdegrees

Let $k=\lceil n \beta\rceil$ and assume that there exists an n-vertex digraph $D=(V, E)$ without directed triangles with $\operatorname{deg}^{+}(u) \geq k$ and $\operatorname{deg}^{-}(u) \geq k$ for all $u \in V(D)$. We may assume that after deleting any edge, some vertex will have either indegree or outdegree less than k.

For each edge $(u, v) \in E$, set $T^{+}(u, v):=N^{+}(u) \cap N^{+}(v), T^{-}(u, v):=N^{-}(u) \cap N^{-}(v)$, $t^{+}(u, v):=\left|T^{+}(u, v)\right|, t^{-}(u, v):=\left|T^{-}(u, v)\right|$.

Let $s=1 / \alpha$, where α is the smallest positive real such that for each n every n-vertex digraph with minimum outdegree greater than αn has a directed triangle. By Theorem 2, $\alpha \leq 0.35312$.

The following properties of D are proved in [4].
(i) There exists a vertex v^{\prime} with both indegree and outdegree equal to k (see Equation (4) on p. 280).
(ii) For all $u, v, w \in V$, if $(u, v),(v, w),(u, w) \in E(D)$, then

$$
\begin{equation*}
t^{-}(u, v)+t^{+}(v, w) \geq 4 k-n \quad \text { (see Equation (5) on p. 281). } \tag{11}
\end{equation*}
$$

(iii) For each edge $(u, v) \in E$,
$t^{-}(u, v) \geq(3 k-n) s=\frac{3 k-n}{\alpha}$ and $t^{+}(u, v) \geq(3 k-n) s=\frac{3 k-n}{\alpha}$ (see (6) on p. 281).
(iv) $k^{2}>2(3 k-n)(5 k-n-2(3 k-n) s) s$ (see the equation between (14) and (16) on p. 282).

In fact, the k^{2} on the left-hand side of the last inequality is simply the upper bound for the total number of edges, $\left|E\left(D\left(N^{-}\left(v^{\prime}\right)\right)\right)\right|+\left|E\left(D\left(N^{+}\left(v^{\prime}\right)\right)\right)\right|$, in the in-neighborhood and the out-neighborhood of v^{\prime}. Thus, if the total number of edges in the in-neighborhood and the out-neighborhood of v^{\prime} is $(1-\gamma) k^{2}$, then instead of (iv) we can write

$$
\begin{equation*}
(1-\gamma) k^{2}>2(3 k-n)(5 k-n-2(3 k-n) s) s \tag{13}
\end{equation*}
$$

Dividing both sides of (13) by k^{2} and rearranging, we get the following slight variation of Inequality (16) in [4]:

$$
\left(4 s^{2}-2 s\right)(n / k)^{2}-\left(24 s^{2}-16 s\right)(n / k)+\left(36 s^{2}-30 s+1-\gamma\right)>0
$$

Note that there is a misprint in [4]: the last summand in (16) is $\left(36 s^{2}-20 s+1\right)$ instead of $\left(36 s^{2}-30 s+1\right)$. Letting $x=n / k$ and $\lambda=2 s=2 / \alpha$, we have

$$
\begin{equation*}
\left(\lambda^{2}-\lambda\right) x^{2}-2\left(3 \lambda^{2}-4 \lambda\right) x+\left(9 \lambda^{2}-15 \lambda+1-\gamma\right)>0 \tag{14}
\end{equation*}
$$

The roots of (14) are

$$
\begin{gathered}
x_{1,2}=\frac{3 \lambda^{2}-4 \lambda \pm \sqrt{\left(3 \lambda^{2}-4 \lambda\right)^{2}-\left(\lambda^{2}-\lambda\right)\left(9 \lambda^{2}-15 \lambda+1-\gamma\right)}}{\lambda^{2}-\lambda} \\
\quad=\frac{3 \lambda^{2}-4 \lambda \pm \sqrt{\gamma \lambda^{2}+(1-\gamma) \lambda}}{\lambda^{2}-\lambda}=3-\frac{1 \pm \sqrt{\gamma+(1-\gamma) / \lambda}}{\lambda-1} .
\end{gathered}
$$

Since $x=n / k$ and we know from [4] that $n / k>2.85$, we conclude that

$$
\begin{equation*}
x>3-\frac{1-\sqrt{\gamma+(1-\gamma) / \lambda}}{\lambda-1} \tag{15}
\end{equation*}
$$

Let f_{1} be the number of non-edges in $N^{+}\left(v^{\prime}\right)$ and f_{2} be the number of non-edges in $N^{-}\left(v^{\prime}\right)$. Then, by the definition of $\gamma, f_{1}+f_{2}+(1-\gamma) k^{2}=k^{2}-k$, and hence

$$
\gamma k^{2}>f_{1}+f_{2}
$$

Comparing Lemma 5 with (iii), we have

$$
\sqrt{2 f_{1}} \geq(3 k-n) s \quad \text { and } \quad \sqrt{2 f_{2}} \geq(3 k-n) s
$$

Hence

$$
\begin{equation*}
\gamma k^{2}>f_{1}+f_{2} \geq(3 k-n)^{2} s^{2}=k^{2}\left((3-x)^{2} s^{2}\right) \tag{16}
\end{equation*}
$$

Assume now that $\beta \geq 0.34564$. Then $x=n /\lceil\beta n\rceil \leq 1 / \beta \leq 2.893184$. By Theorem 2 , $s \geq 1 / 0.35312$. Then by (16),

$$
\gamma>\left(\frac{3-2.893184}{0.35312}\right)^{2} \geq 0.302492^{2}>0.0915
$$

Since the right-hand side of (15) grows with γ, plugging $\gamma=0.0915$ and $\lambda=2 s=$ $2 / 0.35312$ into (15) gives a lower bound on x, namely

$$
\begin{aligned}
x>3- & \frac{1-\sqrt{0.0915+(1-0.0915) 0.35312 / 2}}{(2 / 0.35312)-1}=3-\frac{1-\sqrt{0.0915+0.9085 \cdot 0.17656}}{(2-0.35312) / 0.35312} \\
& =3-0.35312 \frac{1-\sqrt{0.25190476}}{1.64688} \geq 3-0.35312 \frac{1-0.5019}{1.64688}>2.89319
\end{aligned}
$$

a contradiction to our assumption. This proves Theorem 3.
We conclude with a remark on the explicit relation between α and β that we use here. Combining (16) with (14) and simplifying, we obtain

$$
(3-2 \alpha) x^{2}-(18-16 \alpha) x+27-30 \alpha+\alpha^{2}>0
$$

This implies

$$
x>\frac{9-8 \alpha+\alpha \sqrt{1+2 \alpha}}{3-2 \alpha}
$$

so since $\beta \leq 1 / x$ we find

$$
\begin{equation*}
\beta<\frac{3-2 \alpha}{9-8 \alpha+\alpha \sqrt{1+2 \alpha}} . \tag{17}
\end{equation*}
$$

Observe that even if we knew the best possible value $\alpha=1 / 3$ for α, the bound on β given by this formula is only . 34498 .

Acknowledgment The authors thank an anonymous referee for the helpful suggestion of stating (17) explicitly.

References

[1] J. A. Bondy, Counting subgraphs: A new approach to the Caccetta-Häggkvist conjecture, Discrete Math., 165 (1997), 71-80.
[2] L. Caccetta and R. Häggkvist, On minimal digraphs with given girth, Congressus Numerantium, XXI (1978), 181-187.
[3] M. Chudnovsky, P. Seymour, and B. Sullivan, Cycles in dense digraphs, to appear
[4] M. de Graff, A. Schrijver, and P. Seymour, Directed triangles in directed graphs, Discrete Math., 110 (1992), 279-282.
[5] J. Shen, Directed triangles in digraphs, J. Combin. Theory (B), 74 (1998), 405407.
[6] B. Sullivan, A summary of results and problems related to the CaccettaHäggkvist conjecture, manuscript, 2006.

[^0]: *This research was begun at the American Institute of Mathematics Workshop on the CaccettaHäggkvist Conjecture. The research was made possible through a grant from the Indiana UniversityPurdue University Fort Wayne Office of Research and External Support Researcher in Residence program.
 ${ }^{\dagger}$ Department of Mathematical Sciences, Indiana University - Purdue University Fort Wayne, Fort Wayne, IN 46805 and Department of Mathematics, Western Kentucky University, Bowling Green, KY 42101-1078. E-mail addresses: hamburge@ipfw.edu and Peter.Hamburger@wku.edu
 ${ }^{\ddagger}$ Department of Combinatorics and Optimization, Faculty of Mathematics, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada. E-mail address: pehaxell@math.uwaterloo.ca. This author's research was partially supported by NSERC.
 ${ }^{\S}$ Department of Mathematics, University of Illinois, Urbana, IL 61801 and Institute of Mathematics, Novosibirsk 630090, Russia. E-mail address: kostochk@math.uiuc.edu. This material is based upon work supported by the NSF Grants DMS-0400498 and DMS-0650784.

