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Abstract

We prove that if G is a graph containing a doubly-critical edge and satisfying
X > A > 6, then G contains a Ka.

1 Introduction

Way back in 1977, Borodin and Kostochka made the following conjecture (see [1]).
Conjecture. Fvery graph satisfying x > A > 9 contains a Ka.

Examples exist showing that the A > 9 condition is necessary (e.g. for the A = 8 case,

take a 5-cycle and expand each vertex to a triangle). In 1999, Reed proved the conjecture
for A > 10" (see [3]).

Definition 1. Let G be a graph. An edge ab € G is doubly critical just in case x(G ~\
{a,b}) = X(G) - 2.

We prove the following.

Theorem A. Let G be a graph containing a doubly critical edge. If G satisfies x > A > 6,
then G contains a Kx.

To see that this result is tight, consider the following graph. Put A = {1,2}, B = {3,4,5}
and C' = {6,7,8,9}. Let G be the graph having V' (G) = AUBUC with A and C' complete,
B empty, and the additional edges 13,14, 15,23, 24,25,64,65,73,75,83,84,93,94. It is
easily checked that G satisfies y = A =5 and w = 4. Also, G contains a doubly critical
edge since removing both vertices 8 and 9 leaves a 3-chromatic graph. A counterexample
with x = A = 4 can be made by removing vertices 1 and 9 from G. The theorem holds

trivially for A < 3 since the only triangle-free graph containing a doubly critical edge is
K.
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We briefly mention a related conjecture of Lovasz. He conjectures that the stronger
condition that every edge of a connected graph G is doubly critical implies that G is
complete (see [1]). Stiebitz has shown that this conjecture holds for graphs with chromatic
number at most 5 (see [4]).

2 The Lonely Path Lemma

We reproduce the relevant definitions and lemmas from [2].

Definition 2. Let C' = {[,...,[,,} be a coloring of a graph G. If there exists j # k
such that v € I;, w € I and N(v) NI, = {w}, then the (directed) edge (v,w) is called
C-lonely. If the coloring is clear from context we drop the C' and just call the edge plain
lonely.

The following lemma is clear from the definition of C'-lonely.

Lemma 2.1. Let C be a coloring of a graph G. If both (v,w) and (w,v) are C-lonely,
then swapping v and w yields a new coloring C" with |C| = |C'].

Definition 3. Let C be a coloring of a graph G. The C-lonely graph of G (denoted Lo (G))
is the directed graph with vertex set V(G) and edge set {(v,w) | (v, w) is C-lonely in G}.

Definition 4. Let C be a coloring of a graph G. For any vertex v € G, set
Lo(v) ={w e G| (v,w) is C-lonely}.
The following is the main lemma from [2]. We reproduce the proof here for completeness.

Lonely Path Lemma. Let G be a graph. If C is an optimal coloring of G, {a},{b} € C
are distinct singleton color classes and p,, py are vertex disjoint (directed) paths in Lo(G)
(starting at a, b respectively) both having at most one vertez in any given color class, then
the vertices of p, are completely joined to the vertices of py in G.

Proof. Assume (to reach a contradiction) that the lemma is false. Of all counterexamples,
pick an optimal coloring C' of G, {a},{b} € C distinct singleton color classes and p,, py
vertex disjoint (directed) paths in Lo (G) (starting at a, b respectively) both having at
most one vertex in any given color class where the sum of the lengths of p, and p; is
minimized. Then, by the minimality condition, all but the ends of p, and p, must be
joined in G. If p, contains more than one vertex (say p, = a,as,as, ..., a,), then (a,as)
is lonely since p, is a path in Lo (G). But {a} is a singleton color class, so (as,a) is also
lonely. Hence, by Lemma 2.1, swapping a and as yields another optimal coloring C” of G.

To apply the minimality condition, we need to show that p/, = as,as,...,a, and p, are
paths in Ler(G). Let I;, 1 % be the color classes containing a; in C, C” respectively. As-
sume that p,, & Lo(G). Then we have 2 < k < n—1 such that |N(ax) NI}, | # 1. Hence
Ii.11 # Ip41. Since swapping a and as only changes {a} and I, we must have I, = {a}
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or Ij.1 = I5. In the latter case, axy1 = ay since p, has at most one vertex in each color
class. Thus axy1 = a or apy1 = ag. If apyy = ag, then I | = {ap41} contradicting the
fact that |N(ay) N1}, | # 1. Whence ax, = a. Since p, is a path, it has no repeated
internal vertices; hence, k + 1 = n. This is a contradiction since a,, is not joined to the
end of p, but a is. Whence p/, € Le/ (G).

Now assume that p, € Lo (G) (say pp = b, by, . .., b)) Let Q;, Q) be the color classes con-
taining b; in C, C' respectively. Then we have 2 < e < m—1such that [N (b.)NQ., | # 1.
Hence Qe +1 7# Qe41. Since swapping a and ay only changes {a} and I, we must have
Qer1 = {a} or Qeyq1 = I5. The former is impossible since p, and p, are disjoint. Hence
Qer1 = Io. Since e < m, b, is adjacent to ay. Since |N(b.) N Iz = |[N(be) N Qer1]| = 1, we
must have b.y; = as contradicting the disjointness of p, and p,. Whence p, € Lo/ (G).

Hence p!, and py, are vertex disjoint paths in Lo/ (G) with the end of p!, not joined to the
end of p, and p/, shorter than p,, contradicting the minimality condition. Hence p, is
the single vertex {a}. Similarly, p, is the single vertex {b}. Since p, is not joined to p,
the color classes {a} and {b} can be merged, contradicting the fact that C' is an optimal
coloring. O

Lemma 2.2. Let G be a graph and C = {I4,...,1,} an optimal coloring of G. Then,
for each 1 < j < 'm, there exists v; € I; such that N(v;) NI, # 0 for each k # j.

Proof. Otherwise C' would not be optimal. O

3 Proof of The Main Result

Lemma 3.1. Let G be a graph and C = {{a},{b},Is,..., I} be an optimal coloring of
G. Then N(a) "N N(b) N I; # 0 for3 <j <m.

Proof. Let 3 < j < m. By Lemma 2.2, we have v; € I; such that a,b € N(v;). O]
The following is a simple application of the Lonely Path Lemma to paths of length one.

Lemma 3.2. Let G be a graph and C = {{a},{b},Is,..., L} be an optimal coloring of
G. Then for any X C Le(a) N Lo(b) and Y C Lo(b) N Lo(a) with | X| <1 and |Y| <1,
X UY ULg(a)N Le(b) induces a clique in G.

Lemma 3.3. Let X be a set and d > 3. Ile,.. NdCXwith\N\—2f0ralllgi§d,

N; N N; %(Z)foralll<z<j<dandm]\f—@ then UN =3.

=1 =1

Proof. Assume (to reach a contradiction) that this is not the case and let Ny, ..., Ny be

a counterexample with d minimal. Plainly, d > 4. By the minimality of d, the N; are
d d

distinct. If {z1,y1} = Ny € UNZ" then, without loss of generality, z, & UNZ" Hence

=2 1=2
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x1 € N; for 2 < i < d. But N; has non-trivial intersection with each of Ns, ..., Ny, so
d

we must have 9 € N; for 2 < i < d. Thus z, € ﬂ N;, giving a contradiction. Whence
i=1

d d

N; C UNi‘ By the minimality of d, the lemma holds for Ny, ..., Ny If ﬂN,- = (),
i=2 i=2
d d d

then UNi = 3. But Ny C UN,- giving UN,- = 3, a contradiction. Hence we
=2 i=2 i=1

d d d
have z; € ﬂNi. Similarly, we have z5 € Ny N ﬂNi and z3 € Ny N Ny N ﬂN,-. Since
i=2 i=3 i=4
{21, 29, 23} € Ny and | Ny4| = 2, two of the z’s coincide. Without loss of generality assume

d

z1 = z9. Then z; € m N; giving a final contradiction. OJ

=1

Proof of Theorem A. Assume (to reach a contradiction) that G satisfies y > A > 6
and does not contain a K. Without loss of generality, we may assume that G is con-
nected. By Brooks’ theorem we must have x(G) = A(G). Set m = x(G) and let
C = {{a},{b},I5,..., 1} be an optimal coloring of G. By Lemma 2.2, a is adjacent
to at least one vertex in each element of C' \ {a}. Hence m —1 < d(a) < A(G) = m
and thus m — 2 < |Lg(a)l < m — 1. Similarly, m — 2 < |Le(b)] < m — 1. If
|Lco(a) U Lo (b)| = m, then a straightforward application of Lemma 3.2 produces a K, in
G. Thus we have |Lg(a)U Le(b)| < m—1. Since b € Le(a) and a € Lo(b), we must have
|Lo(a) U Le (b)) = m — 1. Let K be the unique color class that La(a) U Leo(b) does not
hit. Then |N(a) N K| =2 and |[N(b)N K| = 2.

Given = € Lg(a) U Lo(b) N {a, b}, both (a,x) and (z,a) are C-lonely. Hence, by Lemma
2.1, we may swap x and a to yield a new optimal coloring C’. By an argument similar to
above we conclude that |Ler(x) U Ler(b)| = m — 1. Since K is still a color class in C” and
b hits two elements of K, we conclude that |N(z) N K| = 2.

Let S = Lo(a)U Lo (b). By Lemma 3.2, S induces a clique of order m — 1. For y € S, put
P, = N(y) N K. From the above we know that for each y € S we have |P,| = 2. If there

exists z € ﬂ P,, then S U {z} induces a K,,, giving a contradiction. Hence ﬂ P, =10.

yes yes
Given distinct yq1, yo € S, we may swap y; with a and y, with b and apply Lemma 3.1, to

conclude that P, NP, = N(y1) N N(y2) N K # (). Now applying Lemma 3.3 with X = K

and {Ny,...,Ng} ={P, | y € S} gives UPy = 3.

yeS

Put T = U P,. Let A= G~ K~ S. Since S induces a clique of order m —1 and |P,| = 2

yes
for all y € S, there are m edges from each y € S to S U K and hence there are no edges
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between A and S. Plainly, A is m — 3 colorable. Put H = G[V (A) U K]. We show that H
has an m — 1 coloring in which each element of T" receives a different color. There are at
most 3A(G) edges from T to G\ K and exactly 2|S| = 2(A(G) — 1) edges from T to S.
Hence there are at most A(G) + 2 edges from T to H. Let {ci,...,cn_3} be a coloring
of A. If each element of T" hit all the ¢;, then the number of edges from 7" to S would be
at least 3(m — 3) = 3(A(G) — 3). Hence we would have 3(A(G) — 3) < A(G) + 2 and
thus A(G) < % Whence, since A(G) > 6, we have z € T"and 1 < i < m — 3 such that z
misses color ¢;. Let ¢,,_2 and ¢,,_1 be two new colors. Coloring z with ¢;, the other two
elements of T with ¢,,_» and ¢,,_; and the rest of K with ¢,,_5 gives an m — 1 coloring D
of H in which each element of T receives a different color.

We now extend D to S using Hall’s theorem. Note from above that |S| = m — 1. For
each y € S, let [, be the elements of {ci,...,¢,—1} not appearing on an element of P,.
Then for y € S we have |l,| = m — 3 since |P,| = 2. Hence all we need to check is that
the union of any m — 2 of lists has at least m — 2 elements and that the union of all of
the lists has m — 1 elements. If the former were false, then since T receives three distinct
colors under D, we would have yy,...,yn2 € S with P, = P forall 1 <i<j <m—2.
But the remaining element of S must be adjacent to at least one of the elements of P,
giving a K, in G. If the union of all the lists had fewer than m — 1 elements then we
would have P, = P, for all w,y € S giving a K,, once again. Hence Hall’s theorem gives
distinct ¢, € [, for y € S. Since there are no edges between A and S, coloring y with ¢,

extends D to an m — 1 coloring of (G. This final contradiction completes the proof.
]
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