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Abstract

We prove that if G is a graph containing a doubly-critical edge and satisfying
χ ≥ ∆ ≥ 6, then G contains a K∆.

1 Introduction

Way back in 1977, Borodin and Kostochka made the following conjecture (see [1]).

Conjecture. Every graph satisfying χ ≥ ∆ ≥ 9 contains a K∆.

Examples exist showing that the ∆ ≥ 9 condition is necessary (e.g. for the ∆ = 8 case,
take a 5-cycle and expand each vertex to a triangle). In 1999, Reed proved the conjecture
for ∆ ≥ 1014 (see [3]).

Definition 1. Let G be a graph. An edge ab ∈ G is doubly critical just in case χ(G r

{a, b}) = χ(G) − 2.

We prove the following.

Theorem A. Let G be a graph containing a doubly critical edge. If G satisfies χ ≥ ∆ ≥ 6,
then G contains a K∆.

To see that this result is tight, consider the following graph. Put A = {1, 2}, B = {3, 4, 5}
and C = {6, 7, 8, 9}. Let G be the graph having V (G) = A∪B∪C with A and C complete,
B empty, and the additional edges 13, 14, 15, 23, 24, 25, 64, 65, 73, 75, 83, 84, 93, 94. It is
easily checked that G satisfies χ = ∆ = 5 and ω = 4. Also, G contains a doubly critical
edge since removing both vertices 8 and 9 leaves a 3-chromatic graph. A counterexample
with χ = ∆ = 4 can be made by removing vertices 1 and 9 from G. The theorem holds
trivially for ∆ ≤ 3 since the only triangle-free graph containing a doubly critical edge is
K2.
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We briefly mention a related conjecture of Lovàsz. He conjectures that the stronger
condition that every edge of a connected graph G is doubly critical implies that G is
complete (see [1]). Stiebitz has shown that this conjecture holds for graphs with chromatic
number at most 5 (see [4]).

2 The Lonely Path Lemma

We reproduce the relevant definitions and lemmas from [2].

Definition 2. Let C = {I1, . . . , Im} be a coloring of a graph G. If there exists j 6= k

such that v ∈ Ij, w ∈ Ik and N(v) ∩ Ik = {w}, then the (directed) edge (v, w) is called
C-lonely. If the coloring is clear from context we drop the C and just call the edge plain
lonely.

The following lemma is clear from the definition of C-lonely.

Lemma 2.1. Let C be a coloring of a graph G. If both (v, w) and (w, v) are C-lonely,
then swapping v and w yields a new coloring C ′ with |C| = |C ′|.

Definition 3. Let C be a coloring of a graph G. The C-lonely graph of G (denoted LC(G))
is the directed graph with vertex set V (G) and edge set {(v, w) | (v, w) is C-lonely in G}.

Definition 4. Let C be a coloring of a graph G. For any vertex v ∈ G, set

LC(v) = {w ∈ G | (v, w) is C-lonely}.

The following is the main lemma from [2]. We reproduce the proof here for completeness.

Lonely Path Lemma. Let G be a graph. If C is an optimal coloring of G, {a}, {b} ∈ C

are distinct singleton color classes and pa, pb are vertex disjoint (directed) paths in LC(G)
(starting at a, b respectively) both having at most one vertex in any given color class, then
the vertices of pa are completely joined to the vertices of pb in G.

Proof. Assume (to reach a contradiction) that the lemma is false. Of all counterexamples,
pick an optimal coloring C of G, {a}, {b} ∈ C distinct singleton color classes and pa, pb

vertex disjoint (directed) paths in LC(G) (starting at a, b respectively) both having at
most one vertex in any given color class where the sum of the lengths of pa and pb is
minimized. Then, by the minimality condition, all but the ends of pa and pb must be
joined in G. If pa contains more than one vertex (say pa = a, a2, a3, . . . , an), then (a, a2)
is lonely since pa is a path in LC(G). But {a} is a singleton color class, so (a2, a) is also
lonely. Hence, by Lemma 2.1, swapping a and a2 yields another optimal coloring C ′ of G.

To apply the minimality condition, we need to show that p′

a = a2, a3, . . . , an and pb are
paths in LC′(G). Let Ij, I ′

j be the color classes containing aj in C, C ′ respectively. As-
sume that p′a 6∈ LC′(G). Then we have 2 ≤ k ≤ n− 1 such that |N(ak)∩ I ′

k+1| 6= 1. Hence
I ′

k+1 6= Ik+1. Since swapping a and a2 only changes {a} and I2, we must have Ik+1 = {a}
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or Ik+1 = I2. In the latter case, ak+1 = a2 since pa has at most one vertex in each color
class. Thus ak+1 = a or ak+1 = a2. If ak+1 = a2, then I ′

k+1 = {ak+1} contradicting the
fact that |N(ak) ∩ I ′

k+1| 6= 1. Whence ak+1 = a. Since pa is a path, it has no repeated
internal vertices; hence, k + 1 = n. This is a contradiction since an is not joined to the
end of pb but a is. Whence p′a ∈ LC′(G).

Now assume that pb 6∈ LC′(G) (say pb = b, b2, . . . , bm). Let Qj, Q′

j be the color classes con-
taining bj in C, C ′ respectively. Then we have 2 ≤ e ≤ m−1 such that |N(be)∩Q′

e+1| 6= 1.
Hence Q′

e+1 6= Qe+1. Since swapping a and a2 only changes {a} and I2, we must have
Qe+1 = {a} or Qe+1 = I2. The former is impossible since pa and pb are disjoint. Hence
Qe+1 = I2. Since e < m, be is adjacent to a2. Since |N(be) ∩ I2| = |N(be) ∩ Qe+1| = 1, we
must have be+1 = a2 contradicting the disjointness of pa and pb. Whence pb ∈ LC′(G).

Hence p′a and pb are vertex disjoint paths in LC′(G) with the end of p′a not joined to the
end of pb and p′a shorter than pa, contradicting the minimality condition. Hence pa is
the single vertex {a}. Similarly, pb is the single vertex {b}. Since pa is not joined to pb,
the color classes {a} and {b} can be merged, contradicting the fact that C is an optimal
coloring.

Lemma 2.2. Let G be a graph and C = {I1, . . . , Im} an optimal coloring of G. Then,
for each 1 ≤ j ≤ m, there exists vj ∈ Ij such that N(vj) ∩ Ik 6= ∅ for each k 6= j.

Proof. Otherwise C would not be optimal.

3 Proof of The Main Result

Lemma 3.1. Let G be a graph and C = {{a}, {b}, I3, . . . , Im} be an optimal coloring of
G. Then N(a) ∩ N(b) ∩ Ij 6= ∅ for 3 ≤ j ≤ m.

Proof. Let 3 ≤ j ≤ m. By Lemma 2.2, we have vj ∈ Ij such that a, b ∈ N(vj).

The following is a simple application of the Lonely Path Lemma to paths of length one.

Lemma 3.2. Let G be a graph and C = {{a}, {b}, I3, . . . , Im} be an optimal coloring of
G. Then for any X ⊆ LC(a) r LC(b) and Y ⊆ LC(b) r LC(a) with |X| ≤ 1 and |Y | ≤ 1,
X ∪ Y ∪ LC(a) ∩ LC(b) induces a clique in G.

Lemma 3.3. Let X be a set and d ≥ 3. If N1, . . . , Nd ⊆ X with |Ni| = 2 for all 1 ≤ i ≤ d,

Ni ∩ Nj 6= ∅ for all 1 ≤ i ≤ j ≤ d and

d
⋂

i=1

Ni = ∅, then

∣

∣

∣

∣

∣

d
⋃

i=1

Ni

∣

∣

∣

∣

∣

= 3.

Proof. Assume (to reach a contradiction) that this is not the case and let N1, . . . , Nd be
a counterexample with d minimal. Plainly, d ≥ 4. By the minimality of d, the Ni are

distinct. If {x1, y1} = N1 6⊆
d

⋃

i=2

Ni, then, without loss of generality, x1 6∈
d

⋃

i=2

Ni. Hence
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x1 6∈ Ni for 2 ≤ i ≤ d. But N1 has non-trivial intersection with each of N2, . . . , Nd, so

we must have x2 ∈ Ni for 2 ≤ i ≤ d. Thus x2 ∈
d

⋂

i=1

Ni, giving a contradiction. Whence

N1 ⊆
d

⋃

i=2

Ni. By the minimality of d, the lemma holds for N2, . . . , , Nd. If
d

⋂

i=2

Ni = ∅,

then

∣

∣

∣

∣

∣

d
⋃

i=2

Ni

∣

∣

∣

∣

∣

= 3. But N1 ⊆
d

⋃

i=2

Ni giving

∣

∣

∣

∣

∣

d
⋃

i=1

Ni

∣

∣

∣

∣

∣

= 3, a contradiction. Hence we

have z1 ∈
d

⋂

i=2

Ni. Similarly, we have z2 ∈ N1 ∩
d

⋂

i=3

Ni and z3 ∈ N1 ∩ N2 ∩
d

⋂

i=4

Ni. Since

{z1, z2, z3} ⊆ N4 and |N4| = 2, two of the z’s coincide. Without loss of generality assume

z1 = z2. Then z1 ∈
d

⋂

i=1

Ni giving a final contradiction.

Proof of Theorem A. Assume (to reach a contradiction) that G satisfies χ ≥ ∆ ≥ 6
and does not contain a K∆. Without loss of generality, we may assume that G is con-
nected. By Brooks’ theorem we must have χ(G) = ∆(G). Set m = χ(G) and let
C = {{a}, {b}, I3, . . . , Im} be an optimal coloring of G. By Lemma 2.2, a is adjacent
to at least one vertex in each element of C r {a}. Hence m − 1 ≤ d(a) ≤ ∆(G) = m

and thus m − 2 ≤ |LC(a)| ≤ m − 1. Similarly, m − 2 ≤ |LC(b)| ≤ m − 1. If
|LC(a)∪ LC(b)| = m, then a straightforward application of Lemma 3.2 produces a Km in
G. Thus we have |LC(a)∪LC(b)| ≤ m− 1. Since b ∈ LC(a) and a ∈ LC(b), we must have
|LC(a) ∪ LC(b)| = m − 1. Let K be the unique color class that LC(a) ∪ LC(b) does not
hit. Then |N(a) ∩ K| = 2 and |N(b) ∩ K| = 2.

Given x ∈ LC(a) ∪ LC(b) r {a, b}, both (a, x) and (x, a) are C-lonely. Hence, by Lemma
2.1, we may swap x and a to yield a new optimal coloring C ′. By an argument similar to
above we conclude that |LC′(x)∪LC′(b)| = m− 1. Since K is still a color class in C ′ and
b hits two elements of K, we conclude that |N(x) ∩ K| = 2.

Let S = LC(a)∪LC(b). By Lemma 3.2, S induces a clique of order m− 1. For y ∈ S, put
Py = N(y) ∩ K. From the above we know that for each y ∈ S we have |Py| = 2. If there

exists z ∈
⋂

y∈S

Py, then S ∪ {z} induces a Km, giving a contradiction. Hence
⋂

y∈S

Py = ∅.

Given distinct y1, y2 ∈ S, we may swap y1 with a and y2 with b and apply Lemma 3.1, to
conclude that Py1

∩Py2
= N(y1)∩N(y2)∩K 6= ∅. Now applying Lemma 3.3 with X = K

and {N1, . . . , Nd} = {Py | y ∈ S} gives

∣

∣

∣

∣

∣

⋃

y∈S

Py

∣

∣

∣

∣

∣

= 3.

Put T =
⋃

y∈S

Py. Let A = GrK rS. Since S induces a clique of order m−1 and |Py| = 2

for all y ∈ S, there are m edges from each y ∈ S to S ∪ K and hence there are no edges
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between A and S. Plainly, A is m− 3 colorable. Put H = G[V (A)∪K]. We show that H

has an m − 1 coloring in which each element of T receives a different color. There are at
most 3∆(G) edges from T to G r K and exactly 2|S| = 2(∆(G) − 1) edges from T to S.
Hence there are at most ∆(G) + 2 edges from T to H. Let {c1, . . . , cm−3} be a coloring
of A. If each element of T hit all the ci, then the number of edges from T to S would be
at least 3(m − 3) = 3(∆(G) − 3). Hence we would have 3(∆(G) − 3) ≤ ∆(G) + 2 and
thus ∆(G) ≤ 11

2
. Whence, since ∆(G) ≥ 6, we have z ∈ T and 1 ≤ i ≤ m− 3 such that z

misses color ci. Let cm−2 and cm−1 be two new colors. Coloring z with ci, the other two
elements of T with cm−2 and cm−1 and the rest of K with cm−2 gives an m− 1 coloring D

of H in which each element of T receives a different color.

We now extend D to S using Hall’s theorem. Note from above that |S| = m − 1. For
each y ∈ S, let ly be the elements of {c1, . . . , cm−1} not appearing on an element of Py.
Then for y ∈ S we have |ly| = m − 3 since |Py| = 2. Hence all we need to check is that
the union of any m − 2 of lists has at least m − 2 elements and that the union of all of
the lists has m− 1 elements. If the former were false, then since T receives three distinct
colors under D, we would have y1, . . . , ym−2 ∈ S with Pyi

= Pyj
for all 1 ≤ i < j ≤ m− 2.

But the remaining element of S must be adjacent to at least one of the elements of Py1

giving a Km in G. If the union of all the lists had fewer than m − 1 elements then we
would have Pw = Py for all w, y ∈ S giving a Km once again. Hence Hall’s theorem gives
distinct cy ∈ ly for y ∈ S. Since there are no edges between A and S, coloring y with cy

extends D to an m − 1 coloring of G. This final contradiction completes the proof.
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