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Abstract

For a prime p and a vector @ = (aq,...,q;) € Z’; let f(a,p) be the largest
n such that in each set A C Z, of n elements one can find  which has a unique
representation in the form = = aja; + -+ + agag, a; € A. Hilliker and Straus [2]
bounded f (&, p) from below by an expression which contained the Li-norm of &
and asked if there exists a positive constant ¢ (k) so that f(a,p) > c(k)logp. In
this note we answer their question in the affirmative and show that, for large k, one
can take c(k) = O(1/klog(2k)). We also give a lower bound for the size of a set
A C Zj, such that every element of A+ A has at least K representations in the form
a+ad,aad €A

1 Introduction

Let f(p) denote the largest number n such that in any set A = {as,...,a,} contained in
Z, = Z]pZ at least one difference a; — a; is incongruent to all other differences. Straus [4]
estimated f(p) up to a constant factor, showing that

1
2

(2+0(1))

] —N+1<
ogy(p—1)+1< flp) < og, 3

log, p

for all primes p. Hilliker and Straus [2] studied the following natural generalization of
the problem. For a given vector & = (aq,...,ax) € Z'If consider the set of all linear
combinations S = S(&, A) = a1 A+ A+ - + o A. Let f(a,p) be the largest n such
that for any set A C Z,, |A| = n, one can find at least one element which has the unique
representation in S. They proved that

o log(p—1)
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THE ELECTRONIC JOURNAL OF COMBINATORICS 14 (2007), #N23 1



where ||all; = Zle |a;|. They ask if the Li-norm of a vector & can be replaced by
a function which depends only on k, i.e., if f(a@,p) > c(k)logp?

In the note we settle the above problem in the affirmative (Theorem 1 Corollary 1
below). We also show that our lower bound for f(a,p) given in Theorem 1 cannot be
much improved (Theorem 2). In section 3 we find a lower bound on |A + A| for special
sets A such that every element x € A+ A has at least two different representations a +a’,
a,a’ € A. Finally, we give a lower bound for the size of a set A C Z, such that every
element t € A + A has at least K > 2 representations of the form t = a + d’, a,d’ € A.

Throughout the note @ = (o, s,...,q;) denotes a vector with nonzero integral
components, and [ denote the number of different components of a. By logx we always
mean log, , p is a prime, and A is a set of residues modulo p. We set r-T = {rt: t € T}
but sometimes we shall omit the dot writing for instance a; A instead «;-A. By S = S(a, A)

we mean the set
S = S(@,A) :OélA+OégA+“‘+OékA,

and for a natural k£ we put
EA=A+A+---+A.
*

For x € Z, let vz(x) = va a(x) be the number of representation of z in Z, in the form
r = a; + -+ agag, where ay,...,ap € A. For t € R let ||| denotes the distance from
t to the nearest integer.

Finally, let us mention a simple but important observation that for every x, d, ds € Z,,

dl 7é 07
k
V&,A(x) = Va,d1A+dz(d193 + dy Z ;). (1)

i=1

2 A lower bound for f(a,p)

First we present a simple argument which shows that in the inequality
fla,p) > % + 1, proved by Hilliker and Straus [2], one can replace the factor
(log(||a||1))~! by a constant depending only on k.

Theorem 1. For every & = (aq, ag, ..., ax) we have

_ log p
> .
fla.p) = Iog 2k

Proof. Let A ={ay,...,a,} be aset such that for every element x € S we have vz(z) > 2
and |[A| = f(a,p)+ 1. Let T = 0yAU---UayA C Z,. Because of (1) we can and shall
assume that a; = 0.

Dirichlet approximation theorem implies that there exists r, 0 < r < p, such that for
every x € T' we have

rT _ 1
H_H Sp ‘T‘il.
p
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Hence, for all ayaq + -+ - 4+ agap € S we have

r(arar + - - + ogay) < roga; - rogay <k ——
p p p
We shall show that )
1
. )
p = (2)

Indeed, suppose that the above inequality does not hold and p_m%l < ﬁ, so that
7T C(—g5,95) Let o € ayr-A (i = 1,..., k). Observe, that for every x4 -+ € -9

we have 1
o1+ g < [l + -+ [l < 5.

2
Hence, if m; (i = 1,...,k) is the largest element in «a;r - A considered as a subset of
(=35> 3), then, clearly, m; +mg + - - - 4+ my, has exactly one representation in S, because

the effect modulo is not possible. Therefore

e s L
p =2k
Hence 1
ogp
T| > 1
Tl = log 2k +h

and, since the cardinality of 7" is at most [(|A] — 1) + 1,

B log p
1=1A| > 1

completing the proof of Theorem 1. O
Since [ < k as an immediate consequence of Theorem 1 we get the following result.

Corollary 1. For any &

B log p
> .
fla.p) = k log 2k

From Theorem 1 it follows that, in particular, for a® = (1,1,...,1) we have

_ log p
(k) >

Our next result shows that in general this bound cannot be much improved.
Theorem 2. For every e >0, k > 2 and every prime p > p. we have

2+ 3¢

GENC=

)logp—i-?).
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Proof. Our construction of a set A is a straightforward generalization of the one presented
in [2]. Put
R=1{0,+1,42, ... %z},

where
E(2k—1)" —1
2. =
g k—1
and % <m < logy,_; (% logas_1 p) . Thus, the set (k—1)R consists of all residues modulo
k(2k — 1)™. We recursively define a descending sequence ay, as, . .., q; setting

ap=(p—r)/k,p=r mod k(2k—-1)",r € (k—1)R,

w a;/(2k—1) ifa; =0 mod (2k — 1)
T Vi —r)/k ifa;£0 mod (2k — 1),

where r; = a; mod k(2k — 1)™. The last element a; of this sequence satisfies
a; Z 2 + 1, aj+1 € R. (4)
Define
A=RU{xay,...,ta}.

We need to show that every element x € S has at least two different representations. It
is clear that if z =ay+---+a; +---+a; +---+a; with a; # a;, then z =ay +---+a; +
---+a; + --- 4 a; is another representation of z. It remains to show that each element
ka, where a € A, has at least two representations in S. If @ = 0 then it is indeed the case,
since

ka=04+---+0=1+(-1)+0+---4+0.

For 0 < a < z, we have
ka=(a—1)+(a+1)+a+---+a.
k—2
Finally, if a = 2, then by (3) and (4)
Hence
(k—1Dzx—1>ka—a > —(k—1)z.

Observe that ka — a; € (k — 1)R. So, there exist by,...,by_1 € R such that
l{:a:al+bl+~-+bk_1.

Now we show that every element ka; has at least two representations in S. If 7 > 2, then
by construction of the sequence we have either a; = a;_1/(2k—1), or a; = (a;_1—1;-1)/k.
If aj =a;_1/(2k — 1), then (2k — 1)a; = a;_1 and

ka;j =a;j—1 — (k—1)a; = aj_1 + (k — 1)(—a;).
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If aj = (aj—1 — rj_1)/k, then

ka; = aj_1 + (—rj_1) .
———r
c(k-1)R

If 5 =1 then ka; has the following two representations in S
a; = (p—r)/k, where r =p (mod k(2k — 1)), and r € (k — 1)R,

ka; =p—r=—r (mod p).

It means that

kal =a;+---+a; =0+ (—7“) .

N——— N~
k e(k—1)R
Finally, we estimate the cardinality of A. Note that
k(2k—1)™ —1
k—1

k(2k — 1)™

3,
-1

|A|:2z+2zk+1:21+2[ W+1<21+2

Observe that a; 11 < a; for all i and a;11 = a;/(2k—1) for all except at most one out of every
m+1 consecutive terms a;, @41, . . ., Gj+m. We have also a;j 11 < a;/kif aj41 = (a;—1;)/k,
where r; = a; (mod k(2k —1)™),r; € (k —1)R. Thus

Ajpm+1 < k_laj(Qk — 1)—m

and

k(2k - D™ <aq < pkﬁ@k — 1)1_77%1.
k-1
Hence
[ < 1 1—m2+(m+1)10i < (1+1/m)10i
m log(2k — 1) log(2k — 1)
Consequently,
logp k(2k —1)™
Al<2(1+1 2
Al <2(1+ /m)log(2k5—1) L T
log p log p
2(1 2k))————— + 2¢/(k — 1) ———F———
< 2l+e/ ))log(Qk - 1) +2¢/( )log(2k - 1) 3
3k —1 log p
= (2 3
( R = 1)5> log(2k —1) ©
log p
< (2 —_
< ( %_36)log(2k-— 1)%—3
for 28 < m < logy,_; (£1ogy,_y p) and k > 2. O

Next result shows that for each a the order of magnitude of f(@,p) is at most log? p.
This improves the upper bound for f(a,p) in [2].
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Theorem 3. For every a = (ay,...,ax) we have

f(@,p) < 4log?p.

Proof. Observe that if @ = (1,a2) and & = (1, an, ag, ..., ax), then f(a,p) > f(&,p).
Let S be a set such that for every element x € S+ S we have vy 1) > 2 and [S| < 2logp.
Let ay,ay € A =S + a3S. Then

ay + oas = (81 + ese) + as(s3 + ansy)
= 51+ a5y + 83) + a3sy
= 51 + qa(sh + s4) + a3sy
= (851 + qa8h) + (s + aosy)

/ /
= a7 + 20y
for some aq, as,a), a, € A and sy, 9, S3, 54, 55, 5= € S. Thus
) ) W1y Y2 ) ) ) ) 92793

fl@,p) <|Al <|S|* < 4log?p.

3 The cardinality of sumsets

In this section we estimate the cardinality of A — B, where A is such that every element
of A+ A has at least two representations, and B is an arbitrary subset of Z,. The main
result of this section can be stated as follows.

Theorem 4. If A C Z, and for any element x € A+ A we have vy 1y(x) > 2, then for

any B C Z,
log p
A—B|> |B|( —|B\).

log 12

Proof. Our argument is based on the following result of Ruzsa [3].

Lemma 1. Let A, B C G be finite sets and G be an abelian group. Then there exists

a set X C G such that BC X +A— A and | X| < ‘B‘;IAL

Let X be a set whose existence is guaranteed by Lemma 1, i.e.,

A - B
| B

| X| < and ACX+B—-B. (5)

By Dirichlet’s theorem applied to the set X U B there is an integer 0 < r < p such that

for any element z € X U B
rZz .
H—H < p IXTHIBI,
p
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For every a € A there exist by,by € B and x € X such that a = x + b; — by. Hence

ra

p

rr

p

< 3p_\xl~1r|B\ .

rbl
p

+H@
p

Moreover, arguing as in the proof of Theorem 1 (cf. (2)), we get

3p_‘X\‘1HB| > 1
— 4
Thus .
ogp
log 12

and, from (5),

log p
|A— B| > |B||X| > |B| —|B| ).
log 12

Corollary 2. If A C Z, and for any element x € A+ A we have v 1y(x) > 2, then

1 2
A+ Al > |82
2log 12
Proof. Pick any set B C +£A with |B| = L;{(’é’izj and apply Theorem 4 for the sets A
and B. N

Let fx(p) be the largest n such that for any set A C Z, with at most fx(p) elements
there exists at least one element in A+ A with less then K representations. As a corollary
from Theorem 4 we obtain the following lower bound for fx(p).

Corollary 3. For every K > 2 we have

log p
felp) = VR | 2 | <1

Proof. Let us assume that A C Z,, for each element x € A+ A we have v(;1)(z) > K > 2,
and |A| = fx(p) + 1. By Corollary 2 we get

log p 2
A+ A
A+ 4> {210g12J (©)
Since
KIA+ Al < Y van(t) = AP,
teA+A
it follows that
AP S At (1)
2 .
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From (6) and (7), we get

log p
= > 4/
fxp)+1=]A] 2 VK {2log 12J ’

and so

log p
fi(p) 2 VE {210g12J -1
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