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Abstract

In this paper, we give a simple method for computing the stabilizer subgroup of
D(f) = {a € Fy | there is a 3 € F¥ such that 8" = f(a)} in PSLa(FF,), where ¢ is
a large odd prime power, n is a positive integer dividing ¢ — 1 greater than 1, and
f(z) € Fylz]. As an application, we construct new infinite families of 3-designs.

1 Introduction

At — (v,k,\) design is a pair (X,B) where X is a v-element set of points and B is a
collection of k-element subsets of X called blocks, such that every t-element subset of X
is contained in precisely A blocks. For general facts and recent results on ¢-designs, see [1].
There are several ways to construct family of 3-designs, one of them is to use codewords
of some particular codes over Z,. For example, see [5], [6], [10] and [11]. For the list of
known families of 3-designs, see [8].

Let F, be a finite field with odd characteristic and = F,U{oo}, where oo is a symbol.
Let G = PGLy(F,) be a group of linear fractional transformations. Then, it is well known
that the action PG Ly(F,) x 2 — Q is triply transitive. Therefore, for any subset X C €,
we have a 3 — <q+1, | X, |)3(|
in G (see [1, Proposition 4.6 in p.175]). In general, it is very difficult to calculate the order
of the stabilizer Gx. Recently, Cameron, Omidi and Tayfeh-Rezaie computed all possible

x6/|G X\) design, where G x is the setwise stabilizer of X
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A such that there exists a 3 — (¢ + 1, k, A) design admitting PG Lo (F,) or PSLy(F,) as an
automorphism group, for given k satisfying £ # 0,1 (mod p) (see [2] and [3]).

Letting X be Dy = {a € F, | f(a) € (Fy)*} for f € F,[z], one can derive the order
of Dj from the number of solutions of y*> = f(z). In particular, when y* = f(z) is
in a certain class of elliptic curves, there is an explicit formula for the order of D;[. In
[9], we chose a subset D;[ for a certain polynomial f and explicitly computed |G D}‘v SO

that we obtained new families of 3-designs. Our method was motivated by a recent work
of Iwasaki [7]. Iwasaki computed the orders of V and Gy, where V is in our notation
D; =Q— (Dj U D)) with f(r) = z(z — 1)(z + 1).

In this paper, we generalize our method. Instead of using elliptic curves defined over
a finite field IF, with ¢ = p" elements for some odd prime p, we use more general algebraic
curves such as y" = f(z) for some positive integer n. As a consequence, we obtain new
infinite families of 3-designs. In particular, we get infinite family of 3-designs whose block
size is congruent to 1 modulo p.

2 Zero sets of algebraic curves

Let p be an odd prime number. For a prime power ¢ = p” for some positive integer r, let
F, be a finite field with ¢ elements and Fy be its algebraic closure. For f (T1,...,7p) €

F,[z1,...,2,], fis called absolutely irreducible if f is irreducible over F [z, ..., z,]. We
define

Z(f) ={(ar,...,an) € Fy [ flar,... an) = 0}.
We denote by d(f) the degree of f(x1,...,2,) € Fylay,...,x,].

Lemma 2.1. Let f(z,y) € Fy[x,y] be a nonconstant absolutely irreducible polynomial of
degree d. Then

¢+1-(d=-1)d-2)yg—d<[Z(f(z,9)] < g+ 1+ (d-1){d-2)Vq
Proof. See Theorem 5.4.1 in [4]. O

Lemma 2.2. Let n be a positive integer dividing q — 1 greater than 1. A polynomial
y" — f(x) € Fylz,y] is not absolutely irreducible if and only if there is a polynomial
h(x) € F,[z] such that f(x) = h(z)® with a positive divisor e of n greater than 1.

Proof. Here we only prove that if y* — f(x) € F [z, y| is not absolutely irreducible then
there is h(z) € F,[z] such that f(z) = h(z) with a positive divisor e of n greater than 1.
The converse is obvious.

Assume that y" — f(x) € F,[z,y] is not absolutely irreducible. Since the integer n
divides g — 1, there is a primitive n-th root of unity in Fy. Let F be a quotient field of

F,[x]. Let § be a root of g(y) in the algebraic closure of F, where g(y) is an irreducible
factor of y™ — f(z) over Fly|. Thus ¢ is also a root of y™ — f(x) and it is clear that F(6)/F

is a cyclic extension of degree d, where d = [F(0) : F]. This is easily seen by observing
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that any element of the Galois group acts as o(0) = d(, for some n-th root (, of unity. In
fact, one can easily check that the map o — (, is a group homomorphism and is in fact,
injective.

If o € Gal(F(0)/F) is a generator of the Galois group, then

o(6%) = o (6)? = §9¢¢ = 57

so that 0¢ € F. Let 8¢ = h(z). Since d|n and d < n, raising both sides to the power n/d,
we get 6" = h(x)™?. But since ¢ is a root of y™ — f(x), we have 6" = f(z), and that
completes the proof. O

Let n be any positive integer dividing ¢ — 1 greater than 1. We fix a generator w of
FxX. Note that (w") = (F;)". Let f(x) be a polynomial in Fy[z]. For any integer k, we
define

D(f)y={z€F,| wkf(x) e (F7)"}
In particular, we define D(f) = D(f)o. Note that D(f); = D(f); if and only if i = j
(mod n). Furthermore

Fy=Z(f)U (G2 D(Hx)
Z(f)yND(f);i =0, and D(f); N D(f); =0 for i # j (mod n).
Theorem 2.3. Let n be a positive integer dividing q— 1 greater than 1. For f(z), g(z) €
F,[z], we assume that D(f) = D(g) and y™ — f(x) € F,[z,y] is absolutely irreducible.
Then there is a constant T = 7(f,g,n) satisfying the following property: If ¢ > 7, then
there are an integer k (1 < k <n—1) and h(z) € F,[x] such that f(x)*g(zx) = h(z)¢ with
a positive divisor e of n greater than 1.

Proof. By Lemma 2.2, it suffices to show that there is an integer & such that y"— f(z)*g(x)
is not absolutely irreducible.

Suppose that y" — f(z)'g(z) is absolutely irreducible for any integer i = 1,2,...,n—1.
In general, for any f,g € F,[z], writing f'g(z) = f(z)'g(z),

(1) D(f'g) = (D(f) N D(g)) U (U}={D(f); N D(g)-i5) -

Since D(f) = D(g), the first term D(f) N D(g) simply becomes D(f). Because for any
h(x) € Fy[z]

Z(y" — h(@)) = {(a,b) € Fg|b#0, V" = h(a)} U Z(h) x {0},

we get
1Z(y" = hx))| = [D(h)[n+[Z(h)].

Especially, when h(z) = w’ f(x), from Lemma 2.1 we have

(2) ID(f)iln+1Z(HI=12(" = f(@))| = q+1—(d=1)(d—2)y/q—d
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where d = max(d(f),n), the degree of y" — w’ f(x). When h(z) = fkg(x) = f(z)*g(x),
Lemma 2.1 implies that

3 ID(Fln+1Z(ff o)l = 12" = fr(@))] < q+ 1+ (di — 1)(dx — 2)V/7,
where dj, = max(kd(f) + d(g),n), the degree of y™ — f(z)*g(x).

Note that
Ut (UIZiD(f); N D(g)—ij) = Uizt (D(f); N (Ui D(g)-i5))
2 Ugimy=1 (D(f); N (U D(g9)—45))
= (Uun D(f);) N (U= D(g):)
= (Ugm=1D(f);) N (Fy = (Z(g9) U D(g)))-

Because D(f) = D(g) and D(f) N (Un=1D(f);) = 0, from the above computation we
get

Ui (Ui D(f);n D(g)—i') - (U(jn ~1D(f) ') (Fq - (Z(9) U D(1)))
Thus there is an integer & (1 < k <n—1) such that

(Z [D(f);l = 14( )I)

(4) \U'Z{D(f); N D(g)-

Hence from the equations (1), (2) and (4)

ID(fE )l = ID(f)] + |Uj={ D(£); N D(g)-1s]

() > |D(f |+—<Z [D(f);l = 12( )I)

(4,n)
1 1
> (14 200 L 1= W= D=2 - d - 120D - 2 1200)]
where ¢ is the Euler-phi function.

Therefore by combining equations (3) and (5), we obtain the following inequality

¢n) q—Ai1v/qg— Ay <0,

n—1

where A, = Ai(f, g,n) = (1+¢ )(d 1)(d—2)+(dy—1)(dj,—2) and Ay = As(f, g, 1) =

(1 + ¢(" ) (d+1Z(f)] = 1)+ 251Z(g)|+1—1Z(fg)|. Since A;(f,g,n)’s are independent
of ¢, thls inequality is 1mpos31ble for sufficiently large q. O

Remark 2.4. One may easily show that the constant 7 in Theorem 2.3 can be given by

2(n—1)\? . A
(1+ 2020 (0= natn) + o)
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3 New infinite families of 3-designs

From now on, we assume that —1 ¢ (F))? and ¢ # 3. Note that ¢ = 3 (mod 4). Let X
be a subset of 2 = F, U {oo} and G = PSLy(F,) be the projective special linear group
over F,. Denote by Gx the setwise stabilizer of X in G. Define B = {p(X) | p € G}.
Then, it is well known that (Q,9B) is a 3 — (q—l— 1,]1X], (|)3(|) X 3/|GX|) design (see,
for example, Chapter 3 of [1]). Therefore if we could compute the order of the stabilizer
Gx, then we obtain a 3-design. Denote by ﬁq [z] the set of all nonconstant polynomials in
F,[z] that have no multiple roots in F,.

Let n be a positive integer dividing ¢ — 1 greater than 1. Throughout this section we
always assume that f(z) € F,[z] and (d(f),n) = 1. For some specific polynomials f, we
compute | X| and Gx for X = D(f).

Define
n=n| 2]

n

where [-] is the ceiling function. For each p € PSLs(F,), we always fix one matrix

(CCL b) € SLy(F,) such that p(z) = %2t By using this form, we define

d cr+d’

folw) = Flpla))ca + D).

For f(z) € ﬁq [z], we write f(x) = « Hfiﬁ) (z — o) with «, o; € F, for the factorization of

f(z) in F,[z]. Then for p(z) = Z;”IZ,

d(f)
(6) fo(z) = a(cx + d) V=4 H ((a —ac)z+b—a;d).

i=1
Note that (cx + d) Hfij? ((a — a;e)x 4+ b — oyd) € Fylz]. Thus if ¢ = 0, then d(f,) = d(f).
If a = a;c for some i, then d(f,) = €(f) — 1. In summary,

af) i p(oc) = o,
A =S elf) =1 it fp(o)) = 0
e(f) otherwise.

Lemma 3.1. Assume that p(x) = %Is € PSLy(F,) is a stabilizer of D(f), that is,

p(D(f)) = D(f). Then D(f) = D(f,).

Proof. Assume that o € D(f), i.e., f(a) € (FX)". Since p(a) € D(f), ca +d # 0. From
this and €(f) =0 (mod n),

fola) = f(p(a)(ca+d)V) e (Fy)".

This implies that o € D(f,). The proof of the converse is similar to this. O
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Corollary 3.2. Assume that p(z) = Zfig € PSLy(F,) is a stabilizer of D(f), where

flz) € Fyz] with d(f) > 2. Suppose that (d(f) +1,n) = 1. If ¢ > 7(f, f,n), then
p(00) = 0o and

fol@) =~ f (),
for some v € (F;)".

Proof. Note that D(f) = D(f,) by Lemma 3.1. Hence, by Theorem 2.3, there is an
integer k£ (1 <k <n—1) and an integer e dividing n greater than 1 such that

f(@)* fo(w) = h(z)",

for some h(z) € F,[z]. Since d(f) > 2, it is obvious from the comment right after the

equation (6) that f,(x) has at least one root with multiplicity 1 in F,. Hence we have
= —1 (mod e). Therefore —d(f) +d(f,) =0 (mod e).

From the assumption of this section (d(f),n) = 1, we get p(oco) = oo or f(p(c0)) = 0.

In the latter case, d(f,) = e(f) —1 = —1 (mod n). Hence d(f)+ 1 =0 (mod e), which

contradicts the assumption. Thus p(co) = co and d(f) = d(f,). Because f(z)**!f,(z) =

h(x)¢ f(z) and because k+1 is divisible by e, f(x) divides f,(z). The corollary follows. [

Example 3.3. Let n be an odd integer dividing ¢ — 1 greater than 1 and f(z) = z. Then
D(f) = (Fx)™ and hence |D(f)| = 1 By Theorem 2.3 and Lemma 3.1, one can easily
show that

Gpig) = {p € PSLo(F,) | p(a) = az or pl(a) = &, a,~b € (F)},

2
for g > (1 + 225"(;)1)) (2n — 1)*. Hence we have 3 — (¢ + 1, %, W) designs.

Note that for any odd integer n, there are infinitely many prime powers ¢ satisfying

3
q> (1 + 25;%”) (2n —1)* and ¢ = 3 (mod 4).

Remark 3.4. In the above, for example, assume that n = 43 and ¢ = 11™ for any odd

integer ¢ greagellft tflan 1. In this case, we obtain 3 — (117 + 1, 11:;3_1, (11”_4;%&1”_87))

5~ = 1 (mod 11), this design is not considered in [3].

design. Since

Example 3.5. Let m and n be odd integers which satisfying that n | m | ¢ — 1 and

2
q> (1 + 2;"(;)1 )> (mn + 2n — 1)*. We consider the following algebraic curve

y" = flx) = x(a™ - s)

for s € F*. Recall that w is a generator of F. Define a map 7;; : D(f); — D(f); by
7;(@) = wJa. One may easily show that this map is bijective for any i,j such that
1 <i4,j <n. Hence |D(f)| = w. Furthermore, by Corollary 3.2, the stabilizer p of

D(f) is of the form p(x) = a®z + ab for some a € F and b € Fy, and there is a v € (F;)"
such that

(7) ya(a™ = s) = 1f(@) = fo(z) = (a’x + ab)((a’x + ab)™ — s)a™ "
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Since f(0) = 0, we have b = 0 or (ab)™ = s. For the latter case, z + £ divides 2™ — s
and one may easily show that a*" = —1, which implies that 4 | ord,(a) | ¢ — 1. This
contradicts ¢ = 3 (mod 4), which is the assumption of this section. Therefore b = 0 and
the equation (7) becomes

(2™ — s) = f,(z) = a’x (:)sm - a%) :

Hence ¢ = 1 and a® = v € (F)". Thus o® € (F))@=D/m where [n, (¢ — 1)/m]
is the least common multiple of n and %. Now one can easily show that |Gpp| =
[n,(qq_;f)/m] = 2(n, (¢ — 1)/m), where (n, (¢ — 1)/m) is the greatest common divisor of n
and ©1. Consequently, (€2, D(f)) forms the following 3-design:

2n2m(n,(qg—1)/m)

— —1)(¢g—1—n)(g—1—2n : m
(q+1,%%, “ 2r)LngL(n,(q)—((1])/m) ) if s & (Fy)™

B {(q +1, fI—ln—m’ (q—l—m)(q—l—m—")(f]—l—m—2n)) ifse (F;)m,
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