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Abstract

Y

elements of the semicanonical

basis for the coefficient-free cluster algebra of affine type Agl). A closed formula for
the Laurent expansions of these elements was given by P.Caldero and the author.
As a by-product, there was given a combinatorial interpretation of the Laurent
polynomials in question, equivalent to the one obtained by G.Musiker and J.Propp.
The original argument by P.Caldero and the author used a geometric interpretation
of the Laurent polynomials due to P.Caldero and F.Chapoton. This note provides
a quick, self-contained and completely elementary alternative proof of the same
results.

We study the cluster variables and “imaginary’

1 Introduction

The (coefficient-free) cluster algebra A of type Agl) is a subring of the field Q(z1,x2)
generated by the elements z,, for m € Z satisfying the recurrence relations

T 1T = 22, +1 (M EZ) . (1)

This is the simplest cluster algebra of infinite type; it was studied in detail in [2, 6].
Besides the generators x,, (called cluster variables), A contains another important family
of elements sq, s1, ... defined recursively by

So = 1, S1 = oAz — T1T2, Sp = S1Sp—1 — Sp—2 (n Z 2) (2)
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As shown in [2, 6], the elements sy, So, ... together with the cluster monomials 22,x%

for all m € Z and p,q > 0, form a Z-basis of A referred to as the semicanonical basis.

As a special case of the Laurent phenomenon established in [3], A is contained in
the Laurent polynomial ring Z[mfl, :L’Qil] In particular, all x,, and s, can be expressed
as integer Laurent polynomials in x; and x5. These Laurent polynomials were explicitly
computed in [2] using their geometric interpretation due to P. Caldero and F. Chapoton
[1]. As a by-product, there was given a combinatorial interpretation of these Laurent
polynomials, which can be easily seen to be equivalent to the one previously obtained by
G. Musiker and J. Propp [5].

The purpose of this note is to give short, self-contained and completely elementary
proofs of the combinatorial interpretation and closed formulas for the Laurent polynomial

expressions of the elements x,, and s,.

2 Results

We start by giving an explicit combinatorial expression for each x,, and s,, in particular
proving that they are Laurent polynomials in x; and x5 with positive integer coefficients.
By an obvious symmetry of relations (1), each element x,, is obtained from x3_,, by the
automorphism of the ambient field Q(x1, x2) interchanging x; and xs. Thus, we restrict
our attention to the elements x, 3 for n > 0.

Following [2, Remark 5.7] and [4, Example 2.15], we introduce a family of Fibonacci
polynomials F(wy,...,wy) given by

F(wl,...,wN):ZHwk, (3)

where D runs over all totally disconnected subsets of {1,..., N}, i.e., those containing no
two consecutive integers. In particular, we have

F(®):17 F(wl):wl‘l'la F(wl,w2)=w1+w2—|—1.

We also set
N+1

_ L LT

(4)

where (k) stands for the element of {1,2} congruent to £ modulo 2. In view of (3), each
fn is a Laurent polynomial in x; and o with positive integer coefficients. In particular,
an easy check shows that

2
(k+1)’

241 22+ a2+1
f(]:l, f1: 2 = I3, f2:¥:51. (5)
X1 T1Z2
Theorem 2.1 [2, Formula (5.16)] For every n > 0, we have
Sn = f2n> Tp+3 = f2n+1- (6)

In particular, all x,, and s, are Laurent polynomials in x1 and xo with positive integer
coefficients.
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Using the proof of Theorem 2.1, we derive the explicit formulas for the elements x,,
and s,.

Theorem 2.2 [2, Theorems 4.1, 5.2] For every n > 0, we have

el —ns 2n n—r\(n+1-—gq ,
twa =ar a0 (O (T et @

q+r<n q

o n—r\{n-—q .
s, =uxy"1; Z ( . )( . )x%qxg. (8)

q+r<n

3 Proof of Theorem 2.1
In view of (3), the Fibonacci polynomials satisfy the recursion
F(wy,...,wy) = F(wy,...,wy_1) + wyF(wy,...,wy_2) (N >2). (9)
Substituting this into (4) and clearing the denominators, we obtain
vy fn = vt Fav-n fv—2 (N > 2). (10)

Thus, to prove (6) by induction on n, it suffices to prove the following identities for all
n > 0 (with the convention s_; = 0):

T1Tp+3 = Sp + T2Tny2; (11)

9S8, = Tpao + T1Sp-1- (12)
We deduce (11) and (12) from (2) and its analogue established in [6, formula (5.13)]:
Tma1 = S1Tm — Tme1 (M € 7). (13)
(For the convenience of the reader, here is the proof of (13). By (1), we have

2 2
Tm—2 + T o L1 + T +1 o Tm—1 T Tm41

Tm—1 TmTm—1 Tm

SO (Tm—1 + Tma1)/Tm is a constant independent of m; setting m = 2 and using (2), we
see that this constant is s;.)

We prove (11) and (12) by induction on n. Since both equalities hold for n = 0 and
n = 1, we can assume that they hold for all n < p for some p > 2, and it suffices to prove
them for n = p. Combining the inductive assumption with (2) and (13), we obtain

L1Tp+3 = l’l(Slllpr,-z - fp-i—l)
$1(8p—1 + TaTpi1) — (Sp-2 + T21)p)
(818p-1 = Sp-2) + Ta(s1Tpy1 — Tp)

= $Sp + ToTp+2,
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and

TaS, = Xo(S1Sp—1 — Sp—2)
= 51(Tpp1 + T18p-2) — (Tp + T15,3)
= (812Zp41 — Tp) + 21(818p—2 — S5p-3)

= Tpi2 + T18p-1,

finishing the proof of Theorem 2.1.

4 Proof of Theorem 2.2

Formulas (7) and (8) follow from (11) and (12) by induction on n. Indeed, assuming that,
for some n > 1, formulas (7) and (8) hold for all the terms on the right hand side of (11)
and (12), we obtain

Tnys = o7 (S0 + TaTnis)
—_ n_
_ xl—n—lx2—n(z (n T)( Q)x%qxgr
q T
q+r<n
2(n+1 n—1-—r N =g\ 2¢ 2(r+1
ELCEERS ( )( ) )xlq -+
q+r<n—1 q
(n n—r n— n — ,
q T r—1
q+r<n
75 (n n—r\({n+1-— -
= ! +1)—|— Z < )( q):quxg ),
q r
q+r<n
and
S, = x_1($n+2+xlsn_1)
= n—1=r\(n—q\ 2 o
= "4
> (7, ()
g+r<n—1
n—1—-r\/n—-1-—
p> ( )" ety
g+r<n—1
e Z( n—1—r n n—1—r ) n—=q\ 2 o
= x;'x zi'x
1 L2 q g—1 , 1 L2
q+r<n
o o—n n—r\[(n—q\ 2 o
= Ty Ty Z( )(r )5’31%37
q+r<n q
as desired.
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