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Abstract

We study the structure of a minimum dominating set of Cn
2n+1, the Cartesian

product of n copies of the cycle of size 2n + 1, where 2n + 1 is a prime.

Keywords: Perfect Lee codes; dominating sets; defining sets.

1 Introduction

Let G and H be two graphs. The Cartesian product of G and H is a graph with vertices
{(x, y) : x ∈ G, y ∈ H} where (x, y) ∼ (x′, y′) if and only if x = x′ and y ∼ y′, or x ∼ x′

and y = y′. Let Gn denote the Cartesian product of n copies of G. This article deals with
Cn

2n+1 where C2n+1 is the cycle of size p := 2n + 1 and p is a prime.
For our purpose, it is more convenient to view the vertices of Cn

2n+1 as the elements
of the group G := Zn

2n+1. Then x ∼ y if and only if x − y = ±ei for some i ∈ [n], where
ei = (0, . . . , 1, . . . , 0) is the unit vector with 1 at the ith coordinate. In other words,
Cn

2n+1 is the Cayley graph Γ(Zn
2n+1,U) over the group Z

n
2n+1 with the set of generators

U = {±e1, . . . ,±en}. From this point on, to emphasis the group structure of the graph we
will use the Cayley graph notation Γ(Zn

2n+1,U) instead of the Cartesian product notation
of Cn

2n+1.
Let u and v be two vertices of a graph G. We say that u dominates v if u = v or

u ∼ v. A subset S of the vertices of G is called a dominating set, if every vertex of G
is dominated by at least one vertex of S. A dominating set is perfect, if no vertex is
dominated by more than one vertex.
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Remark 1 Let G be a graph with m vertices. Every function f : V (G) → C can

be viewed as a vector ~f ∈ Cm. Let A denote the adjacency matrix of G. Note that
f : V (G) → {0, 1} is the characteristic function of a perfect dominating set if and only if

(A + I)~f = ~1.

We are interested in perfect dominating sets of Γ(Zn
2n+1,U). Note that for an r-regular

graph G = (V, E) a dominating set is perfect if and only if it is of size |V |/(r + 1). Since
Γ(Zn

2n+1,U) is 2n-regular and has (2n + 1)n vertices, a dominating set is perfect if and
only if it is of size (2n + 1)n−1.

Fix an arbitrary (ε1, . . . , εn−1) ∈ {−1, 1}n−1, and a k ∈ {0, . . . , 2n}. The set

{(x1, . . . , xn−1, k +

n−1∑

i=1

εi(i + 1)xi) : xi ∈ Z2n+1 ∀i ∈ [n − 1]} (1)

forms a perfect dominating set in Γ(Zn
2n+1,U), where the additions are in Z2n+1. To see

this, consider y = (y1, . . . , yn) ∈ Zn
2n+1. Let t = k +

∑n−1
i=1 εi(i + 1)yi, and ∆ = (t − yn)

mod 2n + 1 so that |∆| ≤ n. If ∆ ∈ {−1, 0, 1} then y is dominated by (y1, . . . , yn−1, t).
If ∆ 6∈ {−1, 0, 1}, then with the notation j := |∆| − 1, y is adjacent to (y1, . . . , yj−1, yj −
εj × sgn(∆), yj+1, . . . , yn) which can be easily seen that it is in the considered set.

There are many results in the direction of constructing perfect dominating sets in the
Cartesian product of cycles (see [5] and its references). However the authors are unaware
of any result in the direction of characterizing the structure of perfect dominating sets.
We consider the simplest case Γ(Zn

2n+1,U) where 2n + 1 is a prime. Even in this simple
case we are unable to characterize all the perfect dominating sets. However we prove the
following theorem in this direction.

Theorem 1 Let 2n + 1 be a prime and S ⊆ Γ(Zn
2n+1,U) be a perfect dominating set.

Then for every (x1, . . . , xn) ∈ Zn
2n+1 and every i ∈ [n],

|S ∩ {(y1, . . . , yn) : yj = xj ∀j 6= i}| = 1.

Theorem 1 says that when 2n+1 is a prime, every parallel-axis line contains exactly one
point from every perfect dominating set of Γ(Zn

2n+1,U). It is easy to construct examples
to show that the condition of 2n + 1 being a prime is necessary [4].

Let F be a family of sets. For S ∈ F , a set D ⊆ S is called a defining set for (S,F)
(or for S when there is no ambiguity), if and only if S is the only superset of D in F . The
size of the minimum defining set for (S,F) is called its defining number. Defining sets are
studied for various families of F (See [3] for a survey on the topic). Let F be the family of
all minimum dominating sets of Γ(Zn

2n+1,U). Note that since Γ(Zn
2n+1,U) is regular and

contains at least one perfect dominating set, a set S ⊆ V (G) is a minimum dominating
set if and only if it is a perfect dominating set. In [2] Chartrand et al. studied the size
of defining sets of F for n = 2. Based on this case they conjectured that the smallest
defining set over all minimum dominating sets of Γ(Zn

2n+1,U) is of size exactly n. As it
is noticed by Richard Bean [private communication], the conjecture fails for n = 3, as in
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this case there are perfect dominating sets with defining number 2 (See Remark 3). So
far there is no nontrivial bound known for the defining numbers of minimum dominating
sets of Γ(Zn

2n+1,U). We prove the following theorem.

Theorem 2 Let 2n + 1 be a prime and F be the family of all minimum dominating sets
of Γ(Zn

2n+1,U). Every S ∈ F has a defining set of size at most n!2n.

The proof of Theorem 1 uses Fourier analysis on finite Abelian groups. In Section 2
we review Fourier analysis on Zn

p . Section 3 is devoted to the proof of Theorem 2. Sec-
tion 4 contains further discussions about the defining sets of minimum dominating sets of
Γ(Zn

2n+1,U).

2 Background

In this section we introduce some notations and review Fourier analysis on G = Zn
p . For

a nice and more detailed, but yet brief introduction we refer the reader to [1]. See also [6]
for a more comprehensive reference.

Aside from its group structure we will also think of G as a measure space with the
uniform (product) measure, which we denote by µ. For any function f : G → C, let

∫

G

f(x)dx =
1

|G|

∑

x∈G

f(x).

The inner product between two functions f and g is 〈f, g〉 =
∫

G
f(x)g(x)dx. Let

ω = e2πi/p,

where i is the imaginary number. For any x ∈ G, let χx : G → C be defined as

χx(y) = ω
P

n

i=1
xiyi .

It is easy to see that these functions form an orthonormal basis. So every function
f : G → C has a unique expansion of the form f =

∑
f̂(x)χx, where f̂(x) = 〈f, χx〉 is a

complex number.

3 Proof of Theorem 1

Let ~0 = (0, . . . , 0), ~1 = (1, . . . , 1), and ei = (0, . . . , 1, . . . , 0), the unit vector with 1 at the
i-th coordinate. Let p = 2n + 1 be a prime and S be a perfect dominating set in G, and
let f be the characteristic function of S, i.e. f(x) = 1 if x ∈ S and f(x) = 0 otherwise.
Let

D = {±e1,±e2, . . . ,±en},
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be the set of unit vectors and their negations. For every τ ∈ D define fτ (x) = f(x + τ).
Note that

f̂τ (y) =

∫
f(x + τ)χy(x)dx =

∫
f(x)χy(x − τ)dx =

∫
f(x)χy(x)χy(τ)dx = f̂(y)χy(τ).

Let
g = f +

∑

τ∈D

fτ .

We have

g =

(
∑

y∈G

f̂(y)χy

)
+
∑

τ∈D

∑

y∈G

f̂τ (y)χy =
∑

y∈G

f̂(y)

(
∑

τ∈D∪{~0}

χy(τ)

)
χy. (2)

Since f is the characteristic function of a perfect dominating set, we have g(x) = 1, for
every x ∈ G. So g = χ~0. By uniqueness of Fourier expansion, for every y 6= ~0,

0 = ĝ(y) = f̂(y)
∑

τ∈D∪{~0}

χy(τ) = f̂(y)

(
1 +

n∑

i=1

ωyi +

n∑

i=1

ω−yi

)
. (3)

Now we turn to the key step of the proof. Since 2n + 1 is a prime, (3) implies that

whenever f̂(y) 6= 0, we have

{y1, . . . , yn} ∪ {−y1, . . . ,−yn} = {1, . . . , 2n}. (4)

Denote the set of all y satisfying (4) by Y. For 1 ≤ i ≤ n, let

Di = {kei : 0 ≤ k ≤ 2n}.

Define gi =
∑

τ∈Di
fτ . Similar to (2), we get

gi =
∑

f̂(y)

(
∑

τ∈Di

χy(τ)

)
χy.

When y ∈ Y, since yi 6= 0, we have

∑

τ∈Di

χy(τ) =

2n∑

k=0

ωkyi = 0.

When y 6∈Y and y 6= ~0, f̂(y) = 0. So

gi =

(
f̂(0)

∑

τ∈Di

χ~0(τ)

)
χ~0 = χ~0 = 1. (5)

Note that gi(x) counts the number of elements in S∩{(y1, . . . , yn) : yj = xj ∀j 6= i}. This
completes the proof.
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Remark 2 The above proof can be translated to the language of linear algebra (However
in the linear algebra language the key observation (4) becomes less obvious). Indeed, let
m = (2n+1)n denote the number of vertices. From Remark 1 we know that f : Zn

2n+1 → C

is the characteristic function of a perfect dominating set if and only if (A + I) ~f = ~1,
where A is the adjacency matrix of Γ(Zn

2n+1,U). The reader may notice that in the

proof of Theorem 1, ~g = (A + I) ~f , and thus (2) shows that ~χy is a family of orthonormal
eigenvectors of A+I. Moreover, among these eigenvectors, the ones that correspond to the
0 eigenvalue are exactly ~χy with y ∈ Y. Hence the rank of A+I is m−|Y| = (2n+1)n−n!2n.
We will use this fact in the proof of Theorem 2.

4 Proof of Theorem 2

As it is observed in Remark 1, every perfect dominating set of Γ(Zn
2n+1,U) corresponds

to a zero-one vector ~f ∈ Cm that satisfies (A + I) ~f = ~1. Let

V := span{~f : f ∈ F}.

Trivially
dim V ≤ 1 + (m − rank(A + I)) = 1 + n!2n.

Also for a subset D of vertices of Γ(Zn
2n+1,U), define

VD := span{~f : f ∈ F and ∀x ∈ D, f(x) = 1},

Note that V = V∅.
To prove Theorem 2 we start from D = ∅. At every step, if D does not extend

uniquely to S, then there exists a vertex v ∈ S such that dim VD∪{v} < dim VD; we add v
to D. Since dim V∅ ≤ 1 + n!2n, we can obtain a set D of size at most n!2n such that the
dimension of VD is at most 1. This completes the proof as there is at most one non-zero,
zero-one vector in a vector space of dimension 1.

5 Future directions

We ask the following question:

Question 1 For prime 2n+1, are there examples of perfect dominating sets in Γ(Zn
2n+1,U)

that are not of the form (1)?

If the answer to Question 1 turns out to be negative, then we can improve the bound
of Theorem 2:

Proposition 1 Let p = 2n+1 be a prime, and let T denote the set of perfect dominating
sets of the form (1). Every (S, T ) where S ∈ T has a defining set of size 1 + d n−1

blog
2

pc
e.
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Proof. Suppose that S ∈ T . Then S is of the form:

{(x1, . . . , xn−1, k +
n−1∑

i=1

εi(i + 1)xi) : xi ∈ Zp ∀i ∈ [n − 1]}.

Let m = blog2 pc. We will use the easy fact that for any c ∈ Zp, the equation
∑m−1

i=0 εi2
i =p

c has at most one solution (ε0, ε1, ..., εm−1) ∈ {−1, +1}m. For i, j ≥ 0, define αi,j ∈ Zp to
be the solution to (i + j + 1)αi,j =p 2j.

Let u = (0, 0, ..., 0, b) be the unique vertex in S with the first n − 1 coordinates equal
to 0, and for every 1 ≤ i ≤ n − 1 consider the unique vector

ui = (0, ..., 0, αi,0, αi,1, ..., αi,ki
, 0, ..., 0, bi) ∈ S,

where αi,0 is in the ith coordinate and ki = min(m − 1, n − i − 1). We claim that the set
D = {u, u0, um, ..., um(dn−1

m
e−1)} is a defining set for (S, T ). Since S is of form (1), clearly

k = b, and for every 0 ≤ i ≤ dn−1
m

e − 1, we have:

bmi − b =

kmi∑

j=0

εmi+j(mi + j + 1)αmi,j =

kmi∑

j=0

εmi+j2
j.

The above equation has only one solution (εmi, εmi+1, ..., εmi+kmi
) ∈ {−1, +1}kmi+1.

Considering this for all umi ∈ D determines (ε1, ε2, ..., εn−1). Thus the set D is a defining
set for (S, T ).

Remark 3 For n = 2, 3 the answer to Question 1 is negative. Thus when n = 3,
Proposition 1 implies that there is a defining set of size 2 for a perfect dominating set.
This disproves the conjecture of [2] which is already observed by Richard Bean [private
communication].
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