
Connectivity of the Lifts of a Greedoid

Steven J. Tedford
Department of Mathematics and Computer Science

Franklin and Marshall College
PO Box 3003, Lancaster, PA 17604-3003

steven.tedford@fandm.edu

Submitted: Jul 16, 2006; Accepted: Apr 30, 2007; Published: May 23, 2007

Mathematics Subject Classification: 05C99, 05B99

Abstract

Recently, attempts were made to generalize the undirected branching greedoid to
a greedoid whose feasible sets consist of sets of edges containing the root satisfying
additional size restrictions. Although this definition does not always result in a
greedoid, the lift of the undirected branching greedoid has the properties desired by
the authors.

The k-th lift of a greedoid has sets whose nullity is at most k in the original
greedoid. We prove that if the greedoid is n-connected, then its lift is also n-
connected. Additionally, for any cut-vertex v and cut-edge e of a graph Γ, let C(v)
be the component of Γ \ v containing the root and C(e) be the component of Γ \ e

containing the root. We prove that if the k-th lift of the undirected branching
greedoid is 2-connected, then

|E(C(v))| < |V (C(v))| + k − 1 and

|E(C(e))| > |E(Γ)| − k − 2.

We also give examples indicating that no sufficient conditions for the kth lift to be
2-connected exists similar to these necessary conditions.

1 Introduction and Definitions

The undirected branching greedoid of a rooted graph has, as its feasible sets, sets of edges
whose induced subgraphs are trees which contain the root. In [3], Li, Neumann-Lara, and
Rivera-Campo attempted to generalize this greedoid by defining the feasible sets of a new
greedoid to be sets of edges whose induced graphs are connected, contain the root, are
restricted in size, and whose maximal sets span the graph. Although their construction
does not always form a greedoid, the iterated lift of the undirected branching greedoid
has the properties that they were interested in. Since they only used the existence of a
greedoid with these properties, the existence of the iterated lift implies that the remaining
applicable results in [3] still hold.
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The lift of a greedoid has as its feasible sets, sets whose nullity in the original greedoid
is at most one. We show that if the original greedoid is n-connected then the lift is also
n-connected.

In addition to using this result to show that iterated lift of the undirected branching
greedoid possesses the properties desired by Li, et. al., we determine necessary conditions
for graphs to have a 2-connected kth lift. Finally, we give examples which show that
conditions similar to the necessary conditions can not be sufficient conditions. We begin
by introducing the necessary definitions, all of which can be found in [2, Chapters 4 and 5].

A greedoid G consists of a ground set E = E(G) and a nonempty collection of subsets
F(G), called the feasible sets of G, satisfying:

(G1) If F 6= ∅ ∈ F(G), then there exists e ∈ F such that F \ e ∈ F(G).

(G2) If F, F ′ ∈ F(G) with |F ′| > |F |, then there exists e ∈ F ′\F such that F ∪e ∈ F(G).

The rank of X ⊆ E is defined to be rG(X) = max{|F | : F ∈ F(G), F ⊆ X}. A
maximal feasible set F is called a basis of G. For any X ⊆ E, a basis of X is a maximal
feasible set contained in X. The nullity of X in G, nulG(X), is defined by

nulG(X) = |X| − rG(X).

Given a greedoid G, the lift of G, denoted L(G) = (E(G),F(L(G))), has feasible sets
defined by

F(L(G)) = {F ⊆ E : nulG(F ) ≤ 1}.

It is easy to show that this defines a greedoid. In addition, we define the k-th iterated lift

of a greedoid recursively. Specifically, define

Lk(G) =

{

G if k = 0
L(Lk−1(G)) if k > 0.

This is equivalent to defining

F(Lk(G)) = {F ⊆ E : nulG(F ) ≤ k}.

Finally, a greedoid is 2-connected if, for any feasible set F , there exists a set A with
|A| = min{2, rG(E) − rG(F )} such that for all subsets A′ ⊆ A, F ∪ A′ ∈ F(G). In
general, a greedoid is n-connected if, for all feasible subsets F , there exists a set A with
|A| = min{n, r − |F |} such that for all subsets A′ ⊆ A, F ∪ A′ ∈ F(G).

2 Connectivity of Lifts of Greedoids

First we show that connectivity is preserved when passing from a greedoid to its lift.

Theorem 2.1. If k ≥ 0, n ≥ 2, and Lk(G) is n-connected, then Li(G) is n-connected for

all i ≥ k.
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Proof. By the definition of Lk(G), it is enough to show that if G is n-connected, then L(G)
is n-connected. For L(G) to be n-connected, it must be true that for all F ∈ F(L(G)),
there exists a set S ⊆ E \ F such that |S| = min{n, rL(E) − |F |} and for any S ′ ⊆ S,
F ∪ S ′ ∈ F(L(G)).

Suppose F ∈ F(L(G)). There are two cases to consider.

1. Suppose nulG(F ) = 0. This implies that F ∈ F(G) and since G is n-connected,
there exists a set A ⊆ E \F such that |A| = min{n, rG(E)−|F |} and F ∪A′ ∈ F(G)
for all A′ ⊆ A. If |A| = n or rG(E) = rL(E), then let S = A. Otherwise, there
exists an element x ∈ E \ (F ∪ A) such that nulG(F ∪ x) = 1. Let S = A ∪ x.

2. Suppose nulG(F ) = 1 and B is a basis of F in G. Since G is n-connected, there
exists A ⊆ E \F such that |A| = min{n, rG(E)− |B|} and for all A′ ⊆ A, B ∪A′ ∈
F(G). If rL(E) = rG(E) + 1, then |A| = min{n, rL(E) − |F |} and let S = A.
Otherwise, |A| = min{n, rL(E) − |F | + 1}. Let S be any subset of A such that
|S| = min{n, rL(E) − |F |}.

In either case, there exists a set S such that |S| = min{n, rL(E) − |F |} and F ∪ S ′ ∈
F(L(G)) for all S ′ ⊆ S. Therefore Li(G) is n-connected for all i > k.

3 Lifts of Undirected Branching Greedoids

In [3], Li, et. al. attempted to generalize the undirected branching greedoid of a rooted
graph. Suppose that Γ is a graph with ρ ∈ V (Γ). The undirected branching greedoid of Γ
rooted at ρ has E(Γ) as its ground set and feasible sets F consisting of trees containing ρ.
This greedoid is denoted Gρ = (E(Γ),F(Γρ)). If Γ is connected, then r(Gρ) = |V (Γ)|− 1.

For any |V (Γ)| − 1 ≤ k ≤ |E(Γ)| Li, et. al. defined a set F ⊆ E to be feasible in
Gk(Γρ) as follows:

1. |F | ≤ k and F forms a connected set containing ρ.

2. If |F | = k then F spans Γ.

Unfortunately, this collection of subsets does not form the feasible sets of a greedoid in
general. In particular, if Γ is the following graph with root ρ,
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the set of edges marked by the double lines forms a feasible set in G6(Γρ). However, since
this set is not a basis and cannot be augmented to a cardinality 6 spanning set, G6(Γρ)
is not a greedoid.

The purpose of Li et. al. in introducing these Gk’s was to show that a greedoid exists
that has, for a 2-connected graph Γ, the following properties:
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L1 The greedoid is 2-connected.

L2 The bases of the greedoid consist of the spanning sets of edges consisting of exactly
k elements.

In [1] it was shown that for any ρ ∈ V (Γ), Γ is 2-connected if and only if Gρ is 2-connected.
This, with Theorem 2.1 implies the following:

Corollary 3.1. If Γ is 2-connected, then Lk(Gρ) is 2-connected for all ρ ∈ V (Γ) and all

k ≥ 0.

This corollary, with the fact that the bases of Lk(Gρ) are exactly the sets of k edges
which span the graph, implies that Lk(Gρ) is a greedoid which satisfies both L1 and L2
above.

4 Necessary Conditions for 2-connectivity of Lk(Gρ).

In this section, we show that graphs whose kth greedoid lift is 2-connected satisfy inequal-
ities involving cut vertices and edges. For this purpose, if v ∈ V (Γ) is a cut-vertex and
e ∈ E(Γ) is a cut-edge, define Cρ(v) to be the component of Γ \ v which contains the root
ρ and Cρ(e) to be the component of Γ \ e which contains the root ρ. For any F ⊆ E(Γ),
let ΓF be the subgraph of Γ induced by the vertices of the graph induced by F . With
this definition, we obtain the following necessary conditions for graphs whose kth lift is
2-connected.

Theorem 4.1. Given a rooted graph Γρ, if Lk(Gρ) is two connected then for every cut-

vertex v and every cut-edge e,

|E(Cρ(v))| < |V (Cρ(v))| + k − 1 and (1)

|E(Cρ(e))| > |E| − k − 2. (2)

Proof. First assume there exists a cut-vertex v such that (1) does not hold. We can
assume that there exist two edges e1 and e2 from Cρ(v) to v. Otherwise, there exists
one cut-edge from v to Cρ(v), and we can use the other vertex incident to the cut-edge.
Let B ⊆ E(Cρ(v)) with |B| = |V (Cρ(v))| + k − 1 which spans Cρ(v). This implies
that nulG(B) = k, which implies B, B ∪ e1, B ∪ e2 ∈ F(Lk(Gρ)). However B ∪ {e1, e2} /∈
F(Lk(Gρ)). Any other edge would also increase the nullity of B. This implies that Lk(Gρ)
is not 2-connected.

Next assume that there exists a cut-edge e such that (2) does not hold. Suppose
there exists a B ⊆ E(Cρ(e)) which spans Cρ(e) and has |B| = |V (Cρ(e))| − 1. Since
|E|−|(E(Cρ(e)) ∪ e)| ≥ k+1, there exists a subset X ⊆ E \E(Cρ(e)) which is connected,
contains an edge adjacent to e and has |X| = k − 1. If F = B ∪ X, nulGρ

(F ) = k; thus
F ∈ F(Lk(Gρ)). Furthermore there exists an edge f ∈ E \ (E(Cρ(e)) ∪ (X ∪ e)). Since
nulG(F ∪{e, f}) ≤ nulG(F ), F ∪{e, f} ∈ F(Lk(Gρ)). By construction, for any A ⊆ E \F
with |A| = 2, there exists an A′ ⊆ A such that F ∪ A′ /∈ F(Lk(Gρ)). Therefore Lk(Gρ) is
not 2-connected.
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From Theorem 4.1, we immediately obtain the following for graphs without cut-edges:

1. If L(Gρ) is 2-connected then Cρ(v) is a tree for every cut-vertex v 6= ρ

2. If L2(Gρ) is 2-connected then Cρ(v) contains at most one cycle for every cut-vertex
v 6= ρ.

Once necessary conditions have been found, the next natural question is whether they
are also sufficient. Unfortunately, these conditions are not sufficient. In fact, conditions
similar to these are not sufficient, as shown by the following example.

Example 4.2. We consider a class of rooted graphs Γm,n where m, n ∈ N, m ≥ 1, n ≥ 4.
Define V (Γm,n) = {ρ, v1, v2, v3} and E(Γm,n) = {a1, . . . , am+1}∪{e}∪{b1, . . . , bn−2}. Each
ai is incident to vertices ρ and v1, e is incident to vertices v1 and v2, and each bj is incident
to vertices v2 and v3.

Both v1 and v2 are cut-vertices. Now |E(Cρ(v1))| = 0 < |V (Cρ(v1))| + m. Also,
|E(Cρ(v2))| = m + 1 < |V (Cρ(v2))|+ m. Furthermore, e is a cut-edge. Also |E(Cρ(e))| =
m + 1 > m + n − n = |E| − n. Thus Γm,n satisfies the inequalities

|E(Cρ(v))| < |V (Cρ(v))| + m and

|E(Cρ(e))| > |E| − n

for any cut-vertex v and any cut-edge e.
However, for any k < m + n − 2, Lk(Gρ) is not 2-connected. Since k < m + n − 2,

there exists a set F ⊆ E which satisfies: |F | = k + 1, e /∈ F , |F ∩ {a1, . . . , am+1}| ≥ 1,
and |F ∩ {b1, . . . , bn−2}| > 1.

Since rGρ
(F ) = 1, and |F | = k + 1, nulGρ

(F ) = k. Thus F ∈ F(Lk(Gρ)). Suppose
A = {f1, f2} ⊆ E \ F . If e ∈ A, then F ∪ e ∈ F(Lk(Gρ)). However, for any other edge f ,
nulGρ

(F ∪ f) = k + 1, therefore F ∪ f /∈ F(Lk(Gρ)). Thus Lk(Gρ) is not 2-connected.
Thus there is a whole class of graphs which show that conditions similar to the neces-

sary condition are not sufficient.

This discussion leaves open the question regarding higher connectivity in the lifts
of undirected branching greedoids. Since the necessary conditions for 2-connectivity of
the lifts of the greedoids relates to connectivity of the graph, it is reasonable that such
conditions also exist for higher connectivity of both the greedoids and the graphs.
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