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Abstract

In this paper, we prove that in a multigraph whose density Γ exceeds the max-
imum vertex degree ∆, the collection of minimal clusters (maximally dense sets of
vertices) is cycle-free. We also prove that for multigraphs with Γ > ∆+1, the size of
any cluster is bounded from the above by (Γ−3)/(Γ−∆−1). Finally, we show that
two well-known lower bounds for the chromatic index of a multigraph are equal.

1 Introduction

The chromatic index χ′(G) of a multigraph G(V, E) is the minimal number of colors
needed to color all edges of G so that no two edges incident to the same vertex have the
same color. A trivial lower bound for χ′(G) is

∆(G) ≤ χ′(G),

where ∆(G) is the maximal vertex degree in G. A remarkable result discovered by Vizing
(see [16]) gives the upper bound χ′ = χ′(G) ≤ ∆(G) + p(G), where p(G) is the maximal
number of parallel edges in G. Thus, for multigraphs without parallel edges (graphs),
there are just two possible values for χ′: either ∆, or ∆ + 1.

For general multigraphs, p(G) ≥ 1, Shannon proved in [14] that χ′(G) ≤ b(3∆)/2c,
which, taking Vizing’s bound into account, is strengthened to χ′ ≤ ∆ + min{p, b∆/2c}.
The basic question in multigraph edge-coloring is: “what properties of a multigraph cause

its chromatic index χ′ to exceed ∆?” Although to decide if χ′(G) = ∆(G) is NP-complete,
as proved by Hoyler ([8]), it is suspected that for multigraphs with χ′(G) > ∆(G) + 1,
χ′(G) can be completely characterized in terms of their density Γ(G), defined by

Γ(G) = max
H⊆G

d
e(H)

bv(H)/2c
e,
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where H is a sub-multigraph of G of order at least two and v(H) (resp. e(H)) denotes
the number of vertices (resp. edges) in H. It is easy to see that, for every multigraph G,

Γ(G) ≤ χ′(G). (1)

Currently, no multigraph is known with χ′(G) > max(∆ + 1, Γ). Conjectures connecting
the chromatic index, maximal degree, and the density of a multigraph were independently
proposed by Goldberg ([6]) and Seymour ([13]) more than 25 years ago (see also [9]).

Conjecture 1 (Goldberg ([6]) For every multigraph G, if χ′(G) > ∆ + 1, then χ′(G) =
Γ(G).

Conjecture 2 (Seymour [13]) For every multigraph G, χ(G) ≤ max{∆(G), Γ(G)} + 1.

An extension of the conjectures above was proposed by Goldberg in [7]:

Conjecture 3 If ∆ 6= Γ, then χ′ = max{∆, Γ}, else χ′ ≤ ∆ + 1.

Since all three conjectures are closely related to each other, we globally refer to them
as the GS-conjecture. See [2, 7, 10, 11, 15, 5] for some results towards the conjecture;
in particular, Nishizeki and Kashiwagi ([11]) proved χ′ = Γ for multigraphs with χ′ >
(11∆+8)/10, and Favrholdt, Steibitz, and Toft, ([5]) proved χ′ = Γ for multigraphs with
χ′ > (13∆ + 10)/12; the latter is based on the Tashkinov’s result from [15].

The GS-conjecture motivates the study of the multigraphs with Γ > ∆; we call them
multigraphs with elevated density. The properties of the multigraphs with elevated density
presented here are formulated in terms of two new notions: set-cycles and multigraph
clusters.

Definition 1 A sequence S = {Si}
k
i=1 of sets is called a set-cycle if

∀i ∈ [1, k], Si ∩ Si+1 6= ∅ & Si ∩ Si+1 ∩ Si+2 = ∅.

Here Sk+1 = S1 and Sk+2 = S2.

A collection T = {Tj}
m
j=1 is called a set-forest, if no sequence of sets from T is a

set-cycle.

Definition 2 Given a multigraph G(V, E), a set S ⊆ V is called maximally dense, or a

cluster, if e(S) > (Γ− 1)b|S|/2c. A cluster S is called minimal if no proper subset of S is

a cluster.

Thus, the clusters are subgraphs for which the lower bound for χ′(G) is achieved. Note
that the notion of a cluster is close to that of an overfull graph introduced by A.J.W.
Hilton. A simple graph is called overfull, if |E(G)| > ∆(H)b|V (H)|/2c. Clearly, if G
contains an overfull subgraph H with ∆(G) = ∆(H), then χ′(G) = ∆(G) + 1. A.J.W.
Hilton asked if the reversed is true for graphs with ∆(G) > |V (G)|/3 (see [3, 4] and [9]
for the history of the question).
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Our main result (Section 2) establishes that the collection of minimal clusters in a
multigraph with Γ > ∆ has a simple structure: it is a set-forest. We also prove that in
a multigraph with Γ > ∆ + 1, the size of any cluster is bounded by a function which
depends on Γ and ∆ only (not on the number of the vertices of the multigraph). This
bound matches the upper bound of the size of a critical multigraph which was proved in
[6] under the assumption of the GS-conjecture.

A lower bound for χ′(G), which is sometimes stronger than Γ(G), can be formulated
in terms of maximum matchings of subgraphs of G.

Definition 3 Let F ⊆ E and let m(F ) denote the maximal size of a matching comprised

of edges in F . Then,

Ω(G) = max
F⊆E(G)

d
|F |

m(F )
e.

It is easy to see that

Γ(G) ≤ Ω(G) ≤ χ′(G). (2)

A star is an example of a multigraph with Γ(G) < Ω(G). If there were multigraphs with
∆ ≤ Γ < Ω, the GS-conjecture would be disproved. However, in Section 3, we use Tutte’s
matching theorem to prove that for every multigraph G,

Ω(G) = max{∆(G), Γ(G)}. (3)

The notion of Ω(G) is close to that of the fractional edge chromatic number χ′
f intro-

duced by Berge in [1] (see also Chapter 4 in [12]):

Definition 4 A fractional edge coloring of G is an assignment of a non-negative weight

wM to each matching M in G so that for every edge e ∈ E(G),
∑

M :e∈M wM ≥ 1. The

fractional edge chromatic number, χ′
f(G), is then defined by

χ′
f(G) = min

M

∑

M

wM ,

Using Edmond’s matching polytop theorem, Scheinerman and Ullman ([12]) derived

χ′
f(G) = max{∆(G), max

H⊆G,|V (H)|≥2

e(H)

bv(H)/2c
} (4)

Thus, χ′
f (G) ≤ Ω(G) ≤ χ′(G), and for multigraphs with χ′

f > ∆(G), Ω(F ) = dχ′
f (G)e.

Note that our proof of (3) is significantly simpler than that of (4).
The following notations are used in this paper. Given a set S ⊆ V (G), G[S] denotes

the subgraph induced by S. If F ⊆ E(G), then G[F ] denotes the subgraph of G induced
by F : the vertex set of G[F ] is the set of vertices incident to the edges in F , and the
set of edges of G[F ] is set F . Unless otherwise specified, deg(x) denotes the degree of a
vertex x in G; given S, T ⊆ V (G), deg(S, T ) denotes the number of edges xy such that
x ∈ S and y ∈ T ; degS(x) denotes the degree of x in the subgraph G[S] induced on S;
δS(x) = deg(x)−degG[S](x); δ(S) =

∑
x∈S δS(x) = deg(S, V (G)−S); ∇(x) = ∆−deg(x);

and ∇(S) =
∑

x∈S ∇(x). See [17] for undefined notations.
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2 Topology of minimal clusters.

The goal of this section is to establish several structural properties of the set of minimal
clusters in a multigraph G with Γ = Γ(G) > ∆(G) = ∆. We also give an upper bound
for the size of any cluster in a multigraph with Γ(G) > ∆ + 1; it turns out that for such
multigraphs, the cluster size is bounded from the above by a function depending on ∆ and
Γ only. Throughout this section, G is a multigraph with Γ(G) > ∆(G). If S ⊆ V (G), then
e(S) denotes e(G[S]). The first lemma is a simple extension of the standard inequality
2e(S) ≤ ∆|S|.

Lemma 1 For every subset S ⊆ V (G),

δ(S) + ∇(S) + 2e(S) = ∆|S|. (5)

Proof. The result follows from

2e(S) =
∑

x∈V (S)

degS(x) =
∑

x∈V (S)

(deg(x) − δS(x))

=
∑

x∈V (S)

(∆ −∇(x) − δS(x))

= |V (S)|∆ −∇(S) − δ(S).

Lemma 2 The cardinality of every cluster S in G is odd.

Proof. If |S| were even, then the defining inequality (Γ − 1)b|S|/2c < e(S) could be
rewritten as

(Γ − 1)|S| < 2e(S).

Since 2e(S) ≤ ∆|S|, it would imply

(Γ − 1)|S| < 2e(S) ≤ ∆|S|,

which contradicts our assumption ∆ < Γ.

Lemma 3 For every cluster S,

δ(S) + ∇(S) ≤ ∆ − 2 − (Γ − ∆ − 1)(|S| − 1). (6)

Proof. Since |S| is odd,

(Γ − 1)b
|S|

2
c = (Γ − 1)

|S| − 1

2
< e(S).

This implies (Γ − 1) |S|−1
2

+ 1 ≤ e(S), which, in turn, yields

(Γ − 1)(|S| − 1) + 2 ≤ 2e(S).

Combining the latter with ∆|S| − ∇(S) − δ(S) = 2e(S) (Lemma 1), we have

(Γ − 1)(|S| − 1) + 2 ≤ ∆|S| − ∇(S) − δ(S),

which is equivalent to (6).
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Lemma 4 For any two minimal clusters S1 and S2 of a multigraph G, if S1 ∩ S2 6= ∅,
then |S1 ∩ S2| is odd.

Proof. Let us assume that |S1 ∩ S2| = 2a, where a is a positive integer. Let A =
S1 ∩ S2; eo = e(G[A]); 2pi + 1 = |Si|; ei = e(G[Si − A]), and wi = deg(A, Si − A)
(i = 1, 2). By definition of a cluster, (Γ − 1)pi < ei + wi + e0 (i = 1, 2), implying

(Γ − 1)(p1 + p2) < e1 + e2 + w1 + w2 + 2e0. (7)

Since |Si−A| = 2pi−2a+1, by the minimality of cluster Si, ei ≤ (pi−a)(Γ−1) (i = 1, 2),
hence

e1 + e2 ≤ (p1 + p2 − 2a)(Γ − 1) = (p1 + p2)(Γ − 1) − 2a(Γ − 1). (8)

By Lemma 1, w1 + w2 + 2e0 ≤ 2a∆ ≤ 2a(Γ − 1). Plugging it into (8), we obtain

e1 + e2 + w1 + w2 + 2e0 ≤ (Γ − 1)(p1 + p2),

which contradicts inequality (7).
It is easy to construct examples of minimal clusters that intersect. The multigraph in
Figure 1 shows that the intersection of two minimal clusters can have more than one
vertex.

Figure 1: The intersection of two minimal clusters within dotted circles consists of three
vertices; for the multigraph, Γ = 9; and ∆ = 8.

Theorem 1 The set T = {Si}
m
i=1 of all minimal clusters in a multigraph G is a set-forest.

Proof. Suppose that, contrary to the statement, there is a set-cycle {Si}
k
i=1 all of whose

sets are minimal clusters in G. Let Ai = Si ∩ Si−1 and Bi = Si − Ai − Ai+1 (i ∈ [1, k]).
As before, we use indices “cyclically”: A1 = S1 ∩ Sk and Bk = Sk − Ak − A1.

Since |Si| and |Ai| are odd (Lemmas 2 and 4), and Ai ∩Ai+1 = ∅ (from the definition
of a set-cycle), it follows that |Bi| = |Si| − |Ai| − |Ai+1| is also odd (i ∈ [1, k]).

Let |Ai| = 2ai + 1, |Bi| = 2bi + 1, w+
i = deg(Ai, Si −Ai), and w−

i = deg(Ai, Si−1 −Ai)
(i ∈ [1, k]). Clearly,

e(Si) ≤ e(Ai) + e(Bi) + e(Ai+1) + w+
i + w−

i+1.
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2a + 1

∆ = 5a + 2

Γ = 5a + 3

a ≥ 6
2a + 1

2a + 1

2a + 1

2a + 1

2a + 1

2a + 1

2a + 1

2a + 1

5a − 4 5a − 45a − 4
2a + 1 2a + 1

2a + 1

2a + 1

2a + 1

2a + 1

Figure 2: This multigraph has a set-cycle composed of non-minimal clusters. The labels on

the edges indicate their multiplicities; the shaded 6-gons indicate clusters; the two right-most

vertices belong to two clusters.

Since Ai and Bi are proper subsets of minimal clusters.

e(Ai) ≤ (Γ − 1)ai and e(Bi) ≤ (Γ − 1)bi (i ∈ [1, k]).

Thus,

k∑

i=1

e(Si) ≤
k∑

i=1

((Γ − 1)ai + (Γ − 1)bi + (Γ − 1)ai+1) +
k∑

i=1

(w+
i + w−

i+1)

= (Γ − 1)
k∑

i=1

(2ai + bi) +
k∑

i=1

(w−
i + w+

i+1).

Since, w−
i + w+

i+1 ≤ δ(Si) and, by Lemma 6, δ(Si) ≤ ∆ − 2 ≤ Γ − 1, after some simplifi-
cations we have

k∑

i=1

e(Si) ≤ (Γ − 1)

k∑

i=1

(2ai + bi + 1). (9)

On the other hand, by the definition of clusters,

e(Si) > (Γ − 1)b
2ai + 1 + 2ai+1 + 1 + 2bi + 1

2
c = (Γ − 1)(ai + ai+1 + bi + 1),

which implies

(Γ − 1)

k∑

i=1

(2ai + bi + 1) <

k∑

i=1

e(Si). (10)

Inequality (10) contradicts inequality (9), proving the correctness of the theorem.
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Theorem 2 For every cluster S of a multigraph with Γ > ∆ + 1,

|S| ≤
Γ − 3

Γ − 1 − ∆
.

Proof. Express inequality (6) with respect to |S| and then use 0 ≤ δ(S) + ∇(S).

3 Lower bounds

Although, for some multigraphs, Ω is a stronger lower bound for χ′ than Γ, it turns out
that is it not stronger than ∆ and Γ combined.

Lemma 5 For any multigraph G,

max(Γ(G), ∆(G)) ≤ Ω(G) ≤ χ′(G). (11)

Proof. For any edge-coloring of G and any F ⊆ E(G), the number of edges colored the
same color does not exceed m(H) ≤ b|V (H)/2c, where H = G[F ]. Hence,

χ′(H) ≥ d
|F |

m(F )
e ≥ d

e(H)

b |V (H)
2

c
e.

To complete the proof, notice that if x is a vertex of the maximal degree in G and F is
the set of edges incident to x, then m(F ) = 1, implying that ∆(G) ≤ Ω(G).

Theorem 3 For every multigraph G, max(Γ(G), ∆(G)) = Ω(G).

Proof. By Lemma 5, we only need to prove that max(Γ(G), ∆(G)) ≥ Ω(G). Let F be a
set of edges for which

d
|F |

m(F )
e = Ω(G)

and let H = G[F ]. If m(F ) ≥ (|V (H)| − 1)/2, the result follows immediately. Thus, we
assume that

m(F ) <
|V (H)| − 1

2
and Ω > max(∆, Γ).

By Tutte’s theorem ([17]), there is a subset K ⊆ V (H) such that the number of odd
connected components of H −K is q = k + n− 2m(F ), where n = |V (H)| and k = |K|.

Let {Vi, Fi}
q+t
i=1 be the connected components of G − K, where the first q of them are

odd and the remaining t are even. Let |Vi| = 2ai + 1, for i ∈ [1, q] and |Vi| = 2ai, for
i ∈ [q + 1, q + t]. Let Ci be the set of edges of H with one endpoint in Vi and the other
in K (i ∈ [1, q + t]). Finally, let E(K) denote the set of edges in F with both end-points
in K.

Using the assumption Ω > max(∆, Γ), for every odd connected component,

∀i ∈ [1, q], |Fi| ≤ Γai ≤ (Ω − 1)ai. (12)
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Cq+1

K

(V1, F1) (V2, F2) (Vq, Fq)

(Vq+t, Fq+t)

(Vq+2, Fq+2)

(Vq+1, Fq+1)

C1 C2 Cq

Cq+t

Cq+2

Figure 3: The triangles (resp. squares) represent odd (resp. even) components.

Since the maximum vertex degree is ∆,

∀i ∈ [q + 1, q + t], |Fi| ≤ ∆ai (13)

|E(K)| +

q+t∑

i=1

|Ci| ≤ 2|E(K)| +

q+t∑

i=1

|Ci| ≤ ∆ k. (14)

Combining (12), (13), (14), and using Ω − 1 ≥ ∆ one more time, we get an upper bound
for |F |:

|F | ≤ |E(K)|+

q+t∑

i=1

(|Fi|+|Ci|) ≤ ∆k+(Ω−1)

q∑

i=1

ai+∆

q+t∑

i=q+1

ai ≤ (Ω−1)(k+

q+t∑

i=1

ai). (15)

Since

n =

q∑

i=1

(2ai + 1) +

q+t∑

i=q+1

(2ai) + k,

we have

m(F ) =

q+t∑

i=1

ai + k.

Using this expression for m(F ) and inequality (15),

Ω = d
|F |

m(F )
e ≤

(Ω − 1)(
∑q+t

i=1 ai + k)
∑q+t

i=1 ai + k
= Ω − 1.

The contradiction disproves the assumption and completes the proof.
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