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Abstract

We study the shape of the Young diagram λ associated via the Robinson–
Schensted–Knuth algorithm to a random permutation in Sn such that the length
of the longest decreasing subsequence is not bigger than a fixed number d; in other
words we study the restriction of the Plancherel measure to Young diagrams with at
most d rows. We prove that in the limit n → ∞ the rows of λ behave like the eigen-
values of a certain random matrix (namely the traceless Gaussian Unitary Ensemble
random matrix) with d rows and columns. In particular, the length of the longest
increasing subsequence of such a random permutation behaves asymptotically like
the largest eigenvalue of the corresponding random matrix.

1 Introduction

1.1 Formulation of the problem

Let an integer d ≥ 1 be fixed. For any integer n ≥ 1 we consider the set of the permutations
π ∈ Sn such that the length of the longest decreasing subsequence of π is not bigger than
d; in other words it is the set of the permutations avoiding the pattern (d+1, d, . . . , 3, 2, 1).
Let πn be a random element of this set (probabilities of all elements are equal). In this
article we are interested in the following problem:

Problem 1. Let πn ∈ Sn be a random permutation with the longest decreasing subsequence
of length at most d. What can we say about the asymptotic behavior of the length of the
longest increasing subsequence of πn in the limit n→ ∞?
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Let λn = (λn,1, . . . , λn,d) be the (random) Young diagram associated via the Robinson–
Schensted–Knuth algorithm to πn (notice that since the number of the rows of λn is equal
to the length of the longest decreasing subsequence of πn, λn has at most d rows). In
other words, λn is a random Young diagram with at most d rows, where the probability
of the Young diagram λ is proportional to (dim ρλ)

2, where dim ρλ denotes the dimension
of the corresponding irreducible representation of Sn; therefore, if we drop the restriction
on the number of the rows of the Young diagrams (which can be alternatively stated as
d ≥ n), then the distribution of λn is the celebrated Plancherel measure.

Since λn,1 is equal to the length of the longest increasing subsequence in πn, Problem
1 is a special case of the following more general one:

Problem 2. What can we say about the asymptotic behavior of the random variables
(λn,1, . . . , λn,d) in the limit n→ ∞?

1.2 Case d = 2

The first non-trivial case d = 2 was considered by Deutsch, Hildebrand and Wilf [DHW03].
In this case the random variables λn,1, λn,2 are subject to a constraint λn,1 + λn,2 = n

therefore it is enough to study the distribution of λn,1. Deutsch, Hildebrand and Wilf

proved that the distribution of
√

8
n

(λn,1 − n
2
) converges to the distribution of the length

of a random Gaussian vector in R
3; in other words 8

n

(

λn,1 − n
2

)2
converges to the χ2

3

distribution with 3 degrees of freedom (a careful reader may notice that the authors of
[DHW03] use a non-standard definition of the χ2 distributions and therefore they claim

that
√

8
n

(λn,1− n
2
) itself converges to χ2

3). Their proof was based on an explicit calculation

of the number of the permutations which correspond to a prescribed Young diagram with
at most two rows.

1.3 Case d = ∞
Another extreme of this problem is to consider d = ∞; in other words, not to impose any
restrictions on the random permutations πn. In this case the random Young diagram λn is
distributed according to the Plancherel measure. The authors of [BDJ99, Oko00, Joh01]
proved that the joint distribution of longest rows of λ (after appropriate rescaling) con-
verges to the same distribution (called Tracy–Widom distribution) as the joint distribution
of the biggest eigenvalues of a large random matrix from the Gaussian Unitary Ensemble.

1.4 The main result: intermediate values of d

We equip the vector space of d×d Hermitian matrices with a Gaussian probability measure
with a density

1

Zd

e−
1
2

TrH2
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with respect to the Lebesgue measure, where Zd is the normalizing constant. We say
that a random matrix (Aij)1≤i,j≤d distributed accordingly to this measure is a Gaussian
Unitary Ensemble (GUE) random matrix.

We call B = A − 1
d
TrA a traceless Gaussian Unitary Ensemble (GUE0) random

matrix ; it corresponds to the Gaussian probability measure on the set of d× d Hermitian
matrices with trace zero and the density

1

Z ′
d

e−
1
2

TrH2

with respect to the Lebesgue measure, where Z ′
d is the normalizing constant.

The joint distribution of eigenvalues for GUE is well-known [Meh91], which allows
us to find the corresponding distribution for GUE0; namely, if x1 ≥ · · · ≥ xd are the
eigenvalues of a GUE0 random matrix, then their joint distribution is supported on the
hyperplane x1 + · · · + xd = 0 with the density

1

Cd

e−
x2
1+···+x2

d
2

∏

i<j

(xi − xj)
2 (1)

with respect to the Lebesgue measure, where Cd is the normalization constant.

Theorem 3 (Main theorem). Let the integer d ≥ 1 be fixed; for each n ≥ 1 let
λn = (λn,1, . . . , λn,d) be, as in Section 1.1, a random Young diagram with n boxes and
with at most d rows.

Then the joint distribution of the random variables
(
√

2d
n

(λn,i − n
d
)
)

1≤i≤d
converges,

as n→ ∞, to the joint distribution of the eigenvalues of a GUE0 random matrix.

We postpone its proof to Section 2.

Corollary 4. Let d ≥ 1 be fixed, and for each n ≥ 1 let πn ∈ Sn be a random permutation
with the longest decreasing subsequence of length at most d. We denote by λn,1 the length

of its longest increasing subsequence. Then the distribution of
√

2d
n

(λn,1 − n
d
) converges

to the distribution of the largest eigenvalue of the GUE0 random matrix.

It should be pointed out that the distibution of eigenvalues of a GUE0 random matrix
appears also in a related asymptotic problem [Joh01] of the distribution of the rows of a
Young diagram associated (via RSK algorithm) to a random word consisting of n letters
in an alphabet of d symbols in the limit of n→ ∞.

1.5 Case d = 2 revisited

The set of 2 × 2 Hermitian matrices with trace zero can be viewed as a 3-dimensional
Euclidean space with a scalar product 〈A,B〉 = TrAB. A GUE0 random matrix can be
viewed under this correspondence as a Gaussian random vector in R

3 the coordinates of
which are independent with mean zero and variance 1. Each 2 × 2 Hermitian traceless
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matrix A has two eigenvalues x1 = λ, x2 = −λ, where λ = 1√
2
‖A‖ =

√

〈A,A〉
2

. Therefore,

for a GUE0 random matrix the corresponding random variable 2(x1)
2 is distributed like

the square of the length of a standard Gaussian random vector in R
3, which coincides

with the χ2
3 distribution; thus for d = 2 Corollary 4 allows us to recover the result of

Deutsch, Hildebrand and Wilf [DHW03].

1.6 Idea of the proof

In Section 2 we will prove Theorem 3, the main result of this article. Our proof will be
based on an explicit calculation of the number of standard Young tableaux with a pre-
scribed shape. The standard method to do this would be to use the hook-length formula,
which would be not convenient for our purposes. Instead, we will use the determinantal
formula of Frobenius and MacMahon. In order to make the connection to random matri-
ces more explicit we shall recall its proof due to Zeilberger [Zei83] which is based on the
observation that a Young tableaux with at most d rows can be viewed as a certain tra-
jectory of d non-colliding particles on a line. Thus we will find explicitly the asymptotic
joint distribution of the rows of a Young diagram; this distribution turns out to coincide
with the distribution (1) of the eigenvalues of a GUE0 random matrix.

The reader may wonder if the connection between Young diagrams and random ma-
trices given by Theorem 3 might be purely accidental. In the following paragraph we
will argue why it is not the case and how deep connections between Young diagrams and
random matrices may be seen in our proof of Theorem 3.

In the above discussion we treated the distribution (1) of the eigenvalues of a GUE0

random matrix as granted; now let us think for a moment about its derivation. GUE0 is
a Gaussian matrix; for this reason (up to a simple scaling factor) it can be viewed as a
value at some fixed time of a matrix-valued Brownian bridge. It is known [Dys62, Gra99]
that the eigenvalues of a matrix-valued Brownion motion behave like Brownian motions
conditioned not to collide. Since a matrix-valued Brownian bridge is a matrix-valued
Brownian motion conditioned to be zero at time 1, it follows that its eigenvalues form
Brownian motions conditioned not to collide and to be zero at time 1; in other words
these eigenvalues form Brownian bridges conditioned not to collide. In this way the
determinantal formula of Karlin and McGregor [KM59] can be applied. In the conditioning
procedure we assume that the original positions of d non-colliding particles are all different
and we consider the limit as these initial positions converge to zero; in this way their final
distribution is given by a continuous analogue of the formulas (10) and (8) which give the
square of the number of Young tableaux of a given shape, with the transition probabilities
replaced by the Gaussian kernels. One can easily check that such a derivation of the
distribution of eigenvalues of a GUE0 random matrix follows (8) very closely.

To summarize: our proof of the main result will be based on the observation that
both Young tableaux and the eigenvalues of matrix-valued Brownian motions can be
interpreted as non-colliding particles and applying the determinantal formula of Karlin
and McGregor [KM59].
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1.7 Final remarks

We can see that both the case when d is finite and the case considered in Section 1.3
corresponding to d = ∞ are asymptotically described by GUE random matrices. It
would be very interesting to find a direct link between these two cases.

2 Proof of the main result

For a function f : R → R we define its difference ∆nf : R → R by

∆nf(y) =
f
(

y +
√

d
n

)

− f(y)
√

d
n

.

By iterating we define ∆α
nf for any integer α ≥ 0. We also define its shift Snf : R → R

by

Snf(y) = f

(

y +

√

d

n

)

.

Notice that Sα
nf is well-defined for any integer α.

Lemma 5. For each n we define a function fn : R → R which is constant on each interval

of the form

[

k−n
d√
n
d

,
k+1−n

d√
n
d

)

for each integer k and such that

fn

(

k − n
d

√

n
d

)

=







√

n
d

(n
d )

k
e
−

n
d

k!
if k is a non-negative integer,

0 if k is a negative integer.
(2)

Then for each integer α ≥ 0 and y ∈ R

lim
n→∞

∆α
nfn(y) =

dα

dyα

1√
2π
e

−y2

2 . (3)

Furthermore, for each α ≥ 0 there exists a polynomial Pα such that

∣

∣∆α
nfn(y)

∣

∣ < Pα(y)e−|y| (4)

holds true for all n and y.

Proof. Before presenting the proof we notice that fn is a density of a probability measure
arising as follows: we normalize the Poisson distribution with the parameter ν = n

d
in

order to have mean 0 and variance 1 and we convolve it with a uniform distribution on

the interval
[

0,
√

d
n

]

; therefore (3) states for α = 0 that the suitably rescaled probabilities

of the Poisson distribution converge to the density of the normal distribution. The case
α ≥ 1 shows that this convergence holds true also for differences (respectively, derivatives).
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The proof of (3) in the case α = 0 is a straightforward application of the Stirling

approximation log z! =
(

z + 1
2

)

log z − z + log 2π

2
+ O(z−1), namely for y =

k−n
d√
n
d

such that

k is an integer we denote c = n
d
. Then

log fn(y) =

(

c+ y
√
c+

1

2

)

log c− c− log
(

c+ y
√
c
)

! =

−
(

c+ y
√
c+

1

2

)

log

(

1 +
y√
c

)

+ y
√
c− log 2π

2
+O

(

c−1
)

= −y
2

2
− log 2π

2
+O

(

c−
1
2

)

,

where the above equalities hold true asymptotically for y bounded and c→ ∞.
In order to treat the case α ≥ 1 we observe that the iterated derivative on the right-

hand side of (3) can be calculated by using the following three rules:

d

dy
e

−y2

2 = −ye−y2

2 ;
d

dy
y = 1;

d

dy
(φψ) =

(

d

dy
φ

)

ψ + φ
d

dy
ψ.

Similarly, the iterated difference on the left-hand side of (3) can be calculated using the
following three rules:

∆nfn = −gnSfn; ∆ngn = 1; ∆n(ab) = (∆na)b + (Sna)∆nb

where gn : R → R is a function which is constant on each interval of the form

[

k−n
d√
n
d

,
k+1−n

d√
n
d

)

for each integer k and such that

gn

(

k − n
d

√

n
d

)

=
k + 1 − n

d
√

n
d

.

For each integer β we have limn→∞(Sβ
nfn)(y) = 1√

2π
e−

y2

2 and limn→∞(Sβ
ngn)(y) = y

therefore each term contributing to the left-hand side of (3) converges to its counterpart
on the right-hand side of (3), which finishes the proof of (3).

We consider y =
k−n

d√
n
d

; then

log fn

(

k−n
d√
n
d

)

− log fn

(

k−1−n
d√

n
d

)

√

n
d

= − log

(

1 +
y
√

n
d

)

√

n

d
. (5)

There is a constant C1 < 0 with a property that if y < C1 then the right-hand side of

(5) is greater than 1 for any value of n. It follows that if yi =
ki−n

d√
n
d

for i ∈ {1, 2} and

y1 < y2 ≤ C1 then
fn(y1) ≤ fn(y2)e

y1−y2. (6)

Similarly we find a constant C2 > 0 with a property that if C2 ≤ y1 < y2 then

fn(y2) ≤ fn(y1)e
y1−y2. (7)
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For α = 0 inequality (4) holds true for y in a small neighborhood of the interval [C1, C2]
for Pα being a sufficiently big constant which follows from (3) and compactness argument.
Inequality (4) holds true outside of the interval [C1, C2] by inequalities (6) and (7).

The case α ≥ 1 can be proved in an analogous way to the above proof of (3): we show
that ∆α

nfn is a sum of the terms of the form (Sβ1
n gn) · · · (Sβl

n gn)(Sβ
nfn) and the absolute

value of each such a term can be easily bounded by P (y)e−|y|, where P is a suitably chosen
polynomial.

Proof of Theorem 3. The following discussion is based on the work of Zeilberger [Zei83].
Every Young tableau T with at most d rows and n boxes can be interpreted as a trajectory
of d non-colliding particles x1(t), . . . , xd(t) on the real line as follows. We set

xi(t) = d+ 1 − i + (number of boxes of T in row i which are not bigger than t).

In other words: the initial positions of the particles are given by
(

x1(0), . . . , xd(0)
)

=
(d, d− 1, . . . , 1). In each step one of the particles jumps to the right; the number of the
particle which jumps in step t is equal to the number of the row of the Young diagram T

which carries the box with a label t. The condition that T is a standard Young tableau
is equivalent to x1(t) > · · · > xd(t) for every value of 0 ≤ t ≤ n.

Thus the results of Karlin and McGregor [KM59] can be applied and the number of
standard Young tableaux of the shape λ1, . . . , λd, where |λ| = λ1 + · · ·+ λd = n, is equal
to the determinant

Nλ1,...,λn
= n!

∣

∣

∣

∣

∣

∣

∣

∣

∣

1
λ1!

1
(λ1+1)!

· · · 1
(λ1+d−1)!

1
(λ2−1)!

1
λ2!

· · · 1
(λ2+d−2)!

...
...

. . .
...

1
(λd−d+1)!

1
(λd−d+2)!

· · · 1
λd!

∣

∣

∣

∣

∣

∣

∣

∣

∣

=
n!en

(

n
d

)n+ d
2

∣

∣

∣

∣

∣

∣

∣

∣

∣

fn(y1) Snfn(y1) · · · Sd−1
n fn(y1)

S−1
n fn(y2) fn(y2) · · · Sd−2

n fn(y2)
...

...
. . .

...
S−d+1

n fn(yd) S−d+2
n fn(yd) · · · fn(yd)

∣

∣

∣

∣

∣

∣

∣

∣

∣

=
n!en

(

n
d

)n+
d(d+1)

4

∣

∣

∣

∣

∣

∣

∣

∣

∣

fn(y1) ∆nfn(y1) · · · ∆d−1
n fn(y1)

S−1
n fn(y2) ∆nS

−1
n fn(y2) · · · ∆d−1

n S−1
n fn(y2)

...
...

. . .
...

S−d+1
n fn(yd) ∆nS

−d+1
n fn(yd) · · · ∆d−1

n S−d+1
n fn(yd)

∣

∣

∣

∣

∣

∣

∣

∣

∣

, (8)

where

yi =
λi − n

d
√

n
d

. (9)

We are interested in a probability distribution on Young diagrams with n boxes with
the probability of (λ1, . . . , λd) equal to

1

Cn,d

(Nλ1,...,λd
)2, (10)
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where Cn,d is the suitably chosen normalizing constant. Clearly,

Cn,d

(

n
d

)2n+ d2+2d−1
2

(n!)2e2n
=

∑

λ1,...,λd−1

(
√

n

d

)d−1

∣

∣

∣

∣

∣

∣

∣

∣

∣

fn(y1) ∆nfn(y1) · · · ∆d−1
n fn(y1)

S−1
n fn(y2) ∆nS

−1
n fn(y2) · · · ∆d−1

n S−1
n fn(y2)

...
...

. . .
...

S−d+1
n fn(yd) ∆nS

−d+1
n fn(yd) · · · ∆d−1

n S−d+1
n fn(yd)

∣

∣

∣

∣

∣

∣

∣

∣

∣

2

,

where the sum runs over λ1, . . . , λd−1 such that for λd = n − (λ1 + · · · + λd−1) we have
that λ1, . . . , λd is a Young diagram with n boxes. The right-hand side can be viewed as a
Riemann sum; Lemma 5 shows that the dominated convergence theorem can be applied
(with the dominating function of the form P (y1, . . . , yd)e

−2(|y1|+···+|yd|), where P is some
polynomial) and

lim
n→∞

Cn,d

(

n
d

)2n+ d2+2d−1
2

(n!)2e2n
=

∫

y1,...,yd−1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

e−
y2
1
2

d
dy1
e−

y2
1
2 · · · dd−1

dyd−1
1

e−
y2
1
2

e−
y2
2
2

d
dy2
e−

y2
2
2 · · · dd−1

dyd−1
2

e−
y2
2
2

...
...

. . .
...

e−
y2
d
2

d
dyd
e−

y2
d
2 · · · dd−1

dyd−1
d

e−
y2
d
2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

2

dy1 · · ·dyd−1,

where the integral runs over (y1, . . . , yd−1) such that for yd = −(y1 + · · · + yd−1) we have
y1 ≥ · · · ≥ yd.

Since the limit density defines a probability measure, in the limit n→ ∞ the random
variables (y1, . . . , yd−1) (please notice that due to the constraint y1 + · · ·+yd = 0 the value
of yd is uniquely determined by y1, . . . , yd−1) converge in distribution to the probability
measure on the set y1 ≥ y2 ≥ · · · ≥ yd−1 ≥ −(y1 + · · ·+ yd−1) with a density

1

C ′
d

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

e−
y2
1
2

d
dy1
e−

y2
1
2 · · · dd−1

dyd−1
1

e−
y2
1
2

e−
y2
2
2

d
dy2
e−

y2
2
2 · · · dd−1

dyd−1
2

e−
y2
2
2

...
...

. . .
...

e−
y2
d
2

d
dyd
e−

y2
d
2 · · · dd−1

dyd−1
d

e−
y2
d
2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

2

=
1

C ′
d

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

p0(y1)e
− y2

1
2 p1(y1)e

− y2
1
2 · · · pd−1(y1)e

− y2
1
2

p0(y2)e
− y2

2
2 p1(y2)e

− y2
2
2 · · · pd−1(y2)e

− y2
2
2

...
...

. . .
...

p0(yd)e
− y2

d
2 p1(yd)e

− y2
d
2 · · · pd−1(yd)e

− y2
d
2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

2

for a suitably chosen normalizing constant C ′
d, where dk

dzk e
− z2

2 = pk(z)e
− z2

2 for some poly-
nomial pk (related to Hermite polynomials). Since pk(z) = (−z)k+ (summands of lower
degree) the above expression takes a simpler form:
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1

C ′
d

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

e−
y2
1
2 (−y1)e

− y2
1
2 · · · (−y1)

d−1e−
y2
1
2

e−
y2
2
2 (−y2)e

− y2
2
2 · · · (−y2)

d−1e−
y2
2
2

...
...

. . .
...

e−
y2
d
2 (−yd)e

− y2
d
2 · · · (−yd)

d−1e−
y2
d
2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

2

=
1

C ′
d

e−(y2
1+···+y2

d
)
∏

1≤i<j≤d

(yi − yj)
2.

When we set xi =
√

2yi =
√

2d
n

(λn,i − n
d
) it becomes clear that the limit distribution

of (x1, . . . , xd) coincides with the distribution (1) of the eigenvalues of a GUE0 random
matrix, which finishes the proof.
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