1

Our notation is standard (e.g., see [2], [3], and [5]). In particular, unless specified other-
wise, all graphs are defined on the vertex set [n] = {1,...,n} and p (G) and fimi, (G) stand
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Abstract

Let 1 (G) and pimin (G) be the largest and smallest eigenvalues of the adjacency
matrix of a graph G. Our main results are:
(i) If H is a proper subgraph of a connected graph G of order n and diameter

D, then
1

p(@*Pn

(i) If G is a connected nonbipartite graph of order n and diameter D, then

1(G) = (H) >

2

p(G) + fimin (G) > M

For large p and D these bounds are close to the best possible ones.

Keywords: smallest eigenvalue, largest eigenvalue, diameter, connected graph,
bipartite graph

Introduction

for the largest and smallest eigenvalues of the adjacency matrix of a graph G.

The aim of this note is to refine quantitatively two well-known results on graph spectra.
The first one, following from Frobenius’s theorem on nonnegative matrices, asserts that
if H is a proper subgraph of a connected graph G, then p (G) > p(H). The second one,
due to H. Sachs [7], asserts that if G is a connected nonbipartite graph, then u(G) >

— HMmin (G) .

Our main result is the following theorem.
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Theorem 1 If H is a proper subgraph of a connected graph G of order n and diameter

D, then
1

(G n
It can be shown that, for large u and D, the right-hand of (1) gives the correct order
of magnitude; examples can be constructed as in the proofs of Theorems 2 and 3.

p(G) = p(H) > (1)

Theorem 2 If G is a connected nonbipartite graph of order n and diameter D, then

2
G) + pmin (G) > ——+—. 2
G + b (€) > )
Moreover, for allk > 3, D > 4, and n = D + 2k — 1, there exists a connected nonbipartite
graph G of order n and diameter D with 1 (G) >k, and

4
G) + pomin (G) < ——+—.
1 (G) + pomin (G) (k_1)2D—4
Theorem 2 shows that p (G) + pimin (G) can be extremely small, although G is nonbi-
partite and connected. Here is another viewpoint to this fact.

Theorem 3 Let 0 < & < 1/16. For all sufficiently large n, there exists a connected
graph G of order n with  (G) + pimin (G) < n~" such that, to make G bipartite, at least
(1/16 — €) n* edges must be removed.

The picture is completely different for regular graphs. In [4] it is proved that if G is
a connected nonregular graph of order n, size m, diameter D, and maximum degree A,

then
nA — 2m

(D(nA —2m) + 1)
This result and Theorem 1 imply the following theorems; we omit their straightforward
proofs.

A—M(G)>n

Theorem 4 If H is a proper subgraph of a connected reqular graph G of order n and
diameter D, then

1
G)—p(H) > ——.
H(O) ~ n(H) > s
Theorem 5 If G is a connected reqular nonbipartite graph of order n and diameter D,
then 5
1(G) + pimin (G) > "2D 1)’

Theorem 6 If G is a connected, nonreqular, nonbipartite graph of order n, diameter D,
and maximum degree A, then

Lo, 1
(D+1)  uw(G)*n

Note that the last two theorems give some fine tuning of a result of Alon and Sudakov

[1].

A+ HMmin (G) >
n
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2 Proofs

Our proof of Theorem 1 stems from a result of Schneider [8] on eigenvectors of irreducible
nonnegative matrices; for graphs it reads as: if GG is a connected graph of order n and
Tmin, Tmax are minimal and maximal entries of an eigenvector to p (G), then

Lmin —n
Lumin =L@

xmax

We reprove this inequality in a more flexible form that sheds some extra light on the
original matrix result of Schneider as well. Hereafter we write dist (u,v) for the length of
a shortest path joining the vertices u and v.

Proposition 7 If G is a connected graph of order n and (x1,...,x,) is an eigenvector
to u(G), then
X —dist(i,j
=L > (u(G)) ) (3)
Lj

for every two vertices i,j € V (G).

Proof Clearly we can assume that ¢ # j. For convenience we also assume that ¢ = 1 and
the vertices (1,...,7) form a path joining 1 to j. Then, for all u =1,...,j — 1, we have

KTy = Z Ty > Lyu+1;
weE(G)

hence, (3) follows by multiplying all these inequalities. O

Proof of Theorem 1 Since p(H) < pu(H') whenever H C H', we may assume that H
is a maximal proper subgraph of G, that is to say, V (H) = V (G) and H differs from G in
a single edge uwv. Our proof is split into two cases: (a) H connected; (b) H disconnected.

Case (a): H is connected.
In this case we shall prove a stronger result than required, viz.

2
G) — > 4
p(G) — p(H) M (4)

Our first goal is to prove that, for every w € V (H),
disty (w,u) + disty (w,v) < 2D. (5)

Let w € V (H) and select in H shortest paths P (u,w) and P (v, w) joining u and v to
w. Let @ (u,z) and @ (v, z) be the longest subpaths of P (u,w) and P (v, w) having no
internal vertices in common. If s € @ (u,x) or s € Q (v, x), we obviously have

disty (w,s) = disty (w,x) + disty (s, ) . (6)
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The paths @ (u,z), @ (v,z) and the edge uv form a cycle in G; write k for its length.
Assume that dist (v, z) > dist (u, x) and select y € Q (v, z) with disty (x,y) = | k/2] . Let
R (w,y) be a shortest path in G joining w to y; clearly the length of R (w,y) is at most
D. If R (w,y) does not contain the edge uv, it is a path in H and, using (6), we find that

D > distg (w,y) = disty (w,y) = disty (w,x) + | k/2]
disty (x,u) + disty (x,v) + 1J

2
disty (v,u) + disty (v,v)  disty (w,u) + distg (w,v)
2 N 2 ’

= disty (w,z) + {

> disty (w,z) +

implying (5). Let now R (w,y) contain the edge uv. Assume first that v occurs before u
when traversing R (w,y) from w to y. Then

disty (w,u) + disty (w,v) < 2disty (w,x) + disty (v, u) + disty (z,v)
2

<
< 2(disty (w,x) + disty (x,v)) < distg (w,y) < 2D,

implying (5). Finally, if u occurs before v when traversing R (w,y) from w to y, then

D > distg (w,y) > disty (w,u) + 1+ disty (v,y)
= disty (w,x) + disty (x,u) + 1+ disty (v,y) = disty (v, x) + [k/2]
disty (v,u) + disty (v,v)  disty (w,u) + disty (w,v)
2 B 2 ’

> disty (w,x) +

implying (5). Thus, inequality (5) is proved in full.
Let now x = (x1, ..., x,) be a unit eigenvector to p (H) and let x,, be a maximal entry
of x. In view of (3) and (5), we have

TyLo 1 1
x%l) = Mdist(u,w)—i—dist(vyw) (H) - W (H)2D '

Hence, in view of 22 > 1/n, we see that

w(G) > 2 Z % = 2T, Ty + o (H) >
ijEE(Q)

completing the proof of (4) and thus of (1).

Case (b): H is disconnected.

Since G is connected, H is union of two connected graphs H; and H, such that v € Hy,
u € Hy. Assume p(H) = p(Hy), set |Hy| =k, p = u(Hy), and let x = (xy, ..., ) be
a unit eigenvector to . It is immediate to check that the desired inequality holds when
|Hy| = 2,3, so we shall assume that k& > 4. Since the path of order 4 has the smallest
maximal eigenvalue among all connected graphs of order at least 4, we may assume that
> (\/3+1)/2 and so p? > pu+ 1.
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Since dist (u,w) < diamG < D for every w € V (H;), we see that dist (v,w) < D —1
for every w € V (H;). On the other hand, each maximal entry of x is at least k~'/2;
hence, Proposition 7 implies that z, > u~P+'k~1/2. Setting

Ty
y = (y1>"'7ykayu) - Ila'-->$k>; 3

we see that ||ly||> = 1 + (x,/p)?; thus, letting B be the adjacency matrix of the graph
Hy + u, we have

(By,y) 1
1 (G) > p(Hy +u) > V7 2 T e | e 2 > vy
y v/ H ijeE(Hy)
G 2x3+ _ 2 N Ty N T}
v\ p M) T ey T e TR T

To complete the proof of the theorem, observe that

1 1
kopi2D > np2P”

2
x
> 2 =
= 2

p+1 7 p

Proof of Theorem 2 Let x = (z1,...,x,) be an eigenvector to i, (G) and let Vi =
{u:x, <0}. Let H be the maximal bipartite subgraph of G, containing all edges with
exactly one vertex in V7. It is not hard to see that H is connected proper subgraph of G,
V(H)=V(G), and pimin (H) < ptmin (G) . Finally, let H" be a maximal proper subgraph
of G containing H. We have

1(G) + piin (G) 2 1 (G) + pimin (H) = p(G) — p(H) = p(G) — p(H').

and (2) follows from case (a) of the proof of Theorem 1.

To construct the required example, set Gy = K3, G2 = K1, join G to Gy by a path
P of length n — 2k — 2, and write G for the resulting graph; obviously G is of order n and
diameter n—2k+1. Set u = p (G) and note that p (G) > k. Let V (G1) = {uy, us, v1} and
P = (vy,...,05_9k_1), where v, 9,1 € V (G2) . Let x be a unit eigenvector to p (G) and
assume that the entries xq, x9, x3, ..., T, _ors1 correspond to uy, ug, vy, . . ., Vy_ok_1. Clearly
x1 = xo, and so, from pxe = w9 + x3, we find that 7 = x5 = x3/ (u — 1) . Furthermore,

2:173

pry = 2x9 + 14 = 1+x4<x3+x4,

and by induction we obtain z; < (u — 1) z;4 for all 3 < i < n — 2k. Therefore,

—n+2k+1 —D+2

Ty =29 < (p—1) Tp_ok+1 < (k—1) ,
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and by Rayleigh’s principle we deduce that

4

% (G) + Mmin (G) S 41‘12['2 < m,

completing the proof. O

Proof of Theorem 3 Set r = [n/4] +1, s =[(1/2 —¢)n], select Gy = K., G2 = K,
join Gy to G2 by a path P of length n — 2r — s + 1 and write G for the resulting graph.
Note first that, to make G bipartite, we must remove at least

s s >52 s>(1/2—5)2n2 s (1 ) 2
P A0=7 2 4 2= \16 "

edges, for n large enough. Note also that

n—z[ﬂ . K%—e)ﬁ+1>n—g—<%—s>n—4:an—4.

so the length of P is greater than en — 4.

Let x be a unit eigenvector to u (G) . Clearly the entries of x corresponding to vertices
from V (G1) \V (P) have the same value a. Like in the proof of Theorem 2, we see that
a<(n/ 4)_€"+5. Hence, by Rayleigh’s principle, for n large enough, we deduce that

2
L (G) + Lomin (G) < 4052 <;) < (n/4)—25n+10 % < (n/4)—2an+12 < n—sn’

completing the proof. O
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