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Abstract

A graph is hypohamiltonian if it is not hamiltonian but every vertex-deleted
subgraph is. In this paper we study hypohamiltonian snarks — cubic hypohamilto-
nian graphs with chromatic index 4. We describe a method, based on superposition
of snarks, which produces new hypohamiltonian snarks from old ones. By choos-
ing suitable ingredients we can achieve that the resulting graphs are cyclically 5-
connected or 6-connected. Previously, only three sporadic hypohamiltonian snarks
with cyclic connectivity 5 had been found, while the flower snarks of Isaacs were the
only known family of cyclically 6-connected hypohamiltonian snarks. Our method
produces hypohamiltonian snarks with cyclic connectivity 5 and 6 for all but finitely
many even orders.

1 Introduction

Deciding whether a graph is hamiltonian, that is to say, whether it contains a cycle
through all the vertices, is a notoriously known difficult problem which remains NP-
complete problem even in the class of cubic graphs [6]. As with other hard problems in
mathematics, it is useful to focus on objects that are critical with respect to the property
that defies characterisation. Much attention has been therefore paid to non-hamiltonian
graphs which are in some sense close to being hamiltonian. A significant place among such
graphs is held by two families — graphs where any two non-adjacent vertices are connected
by a hamiltonian path (known as mazimally non-hamiltonian graphs) and those where the
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removal of every vertex results in a hamiltonian graph (called hypohamiltonian graphs).
The latter family is the main object this paper.

There exists a variety of known constructions which produce infinite families of hy-
pohamiltonian graphs. One particularly elegant is due Thomassen [15] which sometimes
produces graphs that are not only hypohamiltonian but also maximally non-hamiltonian.
That hypohamiltonian graphs constitute a relatively rich family was proved by Collier
and Schmeichel [3] who bounded the number of hypohamiltonian graphs of order n from
below by a certain exponential function.

Among hypohamiltonian graphs, cubic graphs have a special place, since they have the
smallest number of edges on a given number of vertices. Indeed, removing any vertex from
a hypohamiltonian graph leads to a graph with a hamiltonian cycle, and this graph must
be 2-connected. Therefore every hypohamiltonian graph is 3-connected; in particular, its
minimum vertex valency is at least 3.

Since hamiltonian cubic graphs are 3-edge-colourable, it is natural to search for hy-
pohamiltonian cubic graphs among cubic graphs with chromatic index 4. Non-trivial
examples of such graphs are commonly known as snarks. It has been generally accepted
that the term ‘non-trivial’ requires a snark to have girth at least 5 and to be cyclically
4-connected (see [5] for example). Recall that a cubic graph G is cyclically k-connected
if no set of fewer than k edges separates two cycles. The largest integer k£ for which G is
cyclically k-connected is the cyclic connectivity of G. (There are three exceptional graphs
in which no two cycles can be separated, namely K33, K4, and the graph consisting of
two vertices joined by three parallel edges. For these, the cyclic connectivity is defined to
be their cycle rank |E(G)| — |V(G)| + 1; see [11] for more information.)

The smallest hypohamiltonian snark is the Petersen graph. In 1983, Fiorini [4] proved
that the well known Isaacs flower snarks I of order 4k are hypohamiltonian for each odd
k > 5. In fact, as early as in 1977, a larger class of hypohamiltonian graphs was found
by Gutt [7], but only later it was noticed that it includes the Isaacs snarks. Fiorini [4]
also established a sufficient condition for a dot-product of two hypohamiltonian snarks
to be hypohamiltonian. By using this condition, Steffen [14] proved that there exist
hypohamiltonian snarks of each even order greater than 90.

Steffen[13] also proved that each hypohamiltonian cubic graph with chromatic index 4
is bicritical. This means that the graph itself is not 3-edge-colourable but the removal of
any two distinct vertices results in a 3-edge-colourable graph. Furthermore, Nedela and
Skoviera [12] showed that each bicritical cubic graph is cyclically 4-edge-connected and
has girth at least 5. Therefore each hypohamiltonian cubic graph with chromatic index
4 has girth at least 5 and cyclic connectivity at least 4, and thus is a snark in the usual
sense. Since the removal of a single vertex from a cubic graph with no 3-edge-colouring
cannot give rise to a 3-edge-colourable graph, hypohamiltonian snarks lie on the border
between cubic graphs which are 3-edge colourable and those which are not.

On the other hand, Jaeger and Swart [9] conjectured that each snark has cyclic connec-
tivity at most 6. If this conjecture is true, the cyclic connectivity of a hypohamiltonian
snark can take one of only three possible values — 4, 5, and 6. Thomassen went even
further to conjecture that there exists a constant k (possibly k& = 8) such that every
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cyclically k-connected cubic graph is hamiltonian. The value k = 8 is certainly best pos-
sible because the well known Coxeter graph of order 28 is hypohamiltonian and has cyclic
connectivity 7 [2].

The situation with known hypohamiltonian snarks regarding their cyclic connectivity
can be summarised as follows. The snarks constructed by Steffen in [14] have cyclic con-
nectivity 4. There are three sporadic hypohamiltonian snarks with cyclic connectivity 5
— the Petersen graph, the Isaacs flower snark I5 and the double-star snark (see [4]). The
flower snarks Iy, where k > 7 is odd, have cyclic connectivity 6 ([4]).

In the present paper we develop a method, based on superposition [10], which produces
hypohamiltonian snarks from smaller ones. By employing suitable ingredients we show
that for each sufficiently large even integer there exist hypohamiltonian snarks with cyclic
connectivity 5 and 6. A slight modification of the method can also provide snarks with
cyclic connectivity 4.

2 Preliminaries

It is often convenient to compose cubic graphs from smaller building blocks that con-
tain ‘dangling’ edges. Such structures are called multipoles. Formally, a multipole is a
pair M = (V(M), E(M)) of disjoint finite sets, the vertex-set V(M) and the edge-set
E(M). Every edge e € E(M) has two ends and every end of e can, but need not, be
incident with a vertex. An end of an edge that is not incident with a vertex is called
a semiedge. Semiedges are usually grouped into non-empty pairwise disjoint connectors.
Each connector is endowed with a linear order of its semiedges.

The reason for the existence of semiedges is that a pair of distinct semiedges = and
y can be identified to produce a new proper edge = * y. The ends of = * y are the other
end of the edge supporting x and the other end of the edge supporting y. This operation
is called junction. The junction of two connectors S; and Sy of size n identifies the i-th
semiedge of S; with the ¢-th semiedge of S5 for each 1 < ¢ < n, decreasing the total
number of semiedges by 2n.

A multipole whose semiedges are split into two connectors of equal size is called a
dipole. The connectors of a dipole are referred to as the input, In(M), and the output,
Out(M). The common size of the input and the output connector is the width of M. Let
M and N be dipoles with the same width n. The serial junction M o N of M and N is a
dipole which arises by the junction of Out(M) with In(N). The n-th power M™ of M is
the serial junction of n copies of M, that is M o M o---o M (n times). Another useful
operation is the closure M of a dipole M which arises from M by the junction of In(M)
with Out(M).

For illustration consider the dipole Y of width 3 with In(Y") = (ey, s, €3) and Out(Y) =
(f1, f2, f3) displayed in Fig. 1. The closure of the serial junction of an odd number of copies
of Y, that is Y* where k > 5 is odd, is in fact the Isaacs flower snark I, introduced in [8];
see Fig. 5 left.

As another example consider the flower snark I5 with its unique 5-cycle removed to
obtain a multipole M of order 15 having a single connector of size 5. Order the semiedges

THE ELECTRONIC JOURNAL OF COMBINATORICS 14 (2007), #R18 3



€1 fl
€2 f2

In(Y) Out(Y)

€3 I3

Figure 1: Dipole YV

consistently with a cyclic orientation of the removed cycle. Let M’ be a copy of M but with
semiedges reordered: the new ordering will be derived from the same cyclic orientation by
taking every second semiedge in the order. The cubic graph resulting from the junction
of M and M’ is the double-star snark constructed by Isaacs in [8], see Fig. 7 left.

A Tait colouring of a multipole is a proper 3-edge-colouring which uses non-zero el-
ements of the group Zy X Zs as colours. The fact that any two adjacent edges receive
distinct colours is easily seen to be equivalent to the condition that the colours meeting
at any vertex sum to zero in Zs X Zs. This in turn means that a Tait colouring is in fact
a nowhere-zero Zs X Zs-flow on the multipole.

We say that a dipole M is proper if for every Tait colouring of M the sum of colours
on the input semiedges is different from zero. A straightforward flow argument (or equiv-
alently, the well-known Parity Lemma [8]) implies that the same must be true for the
output semiedges.

Proper dipoles are a substantial ingredient of an important construction of snarks
called superposition [10]. Let G be a cubic graph. Let U, Us,...,U; be multipoles,
with three connectors each, called supervertices, and let X, X5 ..., X, be dipoles, called
superedges. Take a function f : V(G) U E(G) — {U,Us, ..., U, X1, Xo. .., Xi}, called
the substitution function, which associates with each vertex of G one of the multipoles
U; and with each edge of G one of the dipoles X; in such a way that the connectors
which correspond to an incidence between a vertex and an edge in G have the same size.
We make an additional agreement that if f(v) is not specified, then it is meant to be the
multipole consisting of a single vertex and three dangling edges having three connectors of
one semiedge each. Similarly, if f(e) is not specified, it is meant to be the dipole consisting
of a single isolated edge having one semiedge in each connector. We now construct a new
cubic graph G as follows. For each vertex v of G we take a copy ¥ of f(v) (isomorphic to
some U;), for each edge e we take a copy € of f(e) (isomorphic to some X), and perform
all junctions of pairs of connectors corresponding to the incidences in G. The resulting
graph G is called a superposition of G. In the rest of the paper, the symbols G, ¢ and ¢é will
refer to a superposition of GG, the supervertex substituting a vertex v and the superedge
substituting and edge e of GG, respectively.

If all superedges used in a superposition of a snark are proper dipoles, the resulting
graph is again a snark. This fact was proved by Kochol in [10, Theorem 4| and will be
used in our construction.
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3 Main result

Let G be a cubic graph and let C be a collection of disjoint cycles in G. A C-superposition
of G is a graph G created by a substitution function which sends each edge in C to a dipole
of width three and each vertex in C to a copy of the multipole V' with three connectors
(€4, em,ep), (z), and (f;, fim, fp) shown in Fig.2. (For easier reference, the subscripts of
semiedges refer to ‘top’, ‘middle’ and ‘bottom’.)

€ ————————— ft
{ Em fm }
$ ;

Figure 2: Multipole V'

The purpose of this section is to present a sufficient condition under which a C-super-
position G of a hypohamiltonian snark G is again a hypohamiltonian snark. Such a
condition must guarantee the existence of a hypohamiltonian cycle for each vertex of the
larger graph (that is, a cycle containing all but that one vertex). Therefore a number of
paths through superedges employed in the superposition has to be specified.

Let E be a dipole of width three and let In(E) = (e, e, €p) and Out(E) = (fy, fins fo)-
Let us enumerate the vertices of £ as 1,2,...,n in such a way that the vertex incident
with e,,, will have label 1, and the vertex incident with f,, will have label 2 (see Fig.3).
We introduce the following notation for paths through E corresponding to different ways
of traversal of E (see Fig.4):

y I
67” fm
€p f b

Figure 3: Dipole E

e Type O: One path through E, denoted by z(FE, O)y, covering all the vertices of F
and ending with dangling edges = and y, where x,y € {es, em, e, fi, fn, [o}-

e Type A: Two disjoint paths e, (E, A)tes and f,(E, A)?f5 through E which together
cover all the vertices of E, the former ending with e, and eg, the latter one ending
with f, and fs5, where «, 3,7, 0 € {t, m,b}.

e Type B: Two disjoint paths e, (E, B)! f5 and . (E, B)?s through F which together
cover all the vertices of E, the former ending with e, and fg, the latter ending with
K~ and kg, where «, 3,7,6 € {t,m,b} and x € {e, f}.
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e Type Z: Two disjoint paths e,(E —i,Z)' f3 and e, (E — i, Z)*fs through E covering
all the vertices of E except for the vertex labelled 7, the former ending with e, and
[, the latter ending with e, and f5, where a, 3,7,9 € {t,m, b}.

Type O . I
em(E7 O)fm
€m 5 fm
Type A \ ( ) 5
et(Ev A)lem and fm(Ev A)be
f’n
Type B ( ( )

b and ft E B) fm

€t

R )

Type Z ' \L‘/

el E —v,2) f,, and e(E — v, 7)%f,

fi
f m

ft(Ea O)fm

LT
. D

em(Ev A)leb and ft(EJ A)2f7n

=

,B)Lfy and e, (E, B)%e,

P fi

I G

€m

€y

em(E —v,2) f, and ey(E — v, Z)% f;

Figure 4: Paths through F

Transitions through supervertices are unambiguous, since each supervertex contains
only one vertex. Thus we can denote the path which enters a supervertex U with a
dangling edge = and leaves it with a dangling edge y simply by zUy.

A dipole E of width three will be called feasible if it has all the following paths and

pairs of paths:

(1) iL'(E, O)y for any (23, y) € {(em> fm)7 (6(), fm)7 (Gm, fb)a (eb> fb)7 (eta ft)7 (fm> fb)a (em> 6(,)};
(2) ealE,A)'es and f,(E,A)*fs for any (a, 3,7,9) € {(m,b,m,), (m,t,m,b)};

(3) ea(E,B)!f5 and k. (E, B)?ks for any («
m,b,e)};
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(4a) en(E —1,7) f5 and e, (E — 1,7Z)?f5 such that {3,0} = {b,m}, for suitable a and ~;
(4b) en(E —2,7) f5 and e,(E — 2,7Z)? f5 such that {3,d} = {t,b}, for suitable 3 and ¢;
and for every ¢ € V(FE) — {1, 2},

(4¢) eo(E —i,2)' f5 and e, (E — i,Z)*fs such that both {a,~} and {3,d} contain m, for
suitable a, (3, v, and 4.

Accordingly, a C-superposition will be called feasible if all the dipoles replacing the edges
of C are feasible.

Our main result is the following theorem.

Theorem 3.1 Let G be a hypohamiltonian snark and let G:’ be a feasible C-superposition
of G with respect to a set C of disjoint cycles in G. Then G is a hypohamiltonian snark.

We prove the theorem in the next section, but now we show that feasible dipoles indeed
exist. To see this, take the Isaacs snark I, k odd, remove two vertices u and v shown
in Fig.5 and group the semiedges formerly incident with « into the input connector and
those formerly incident with v into the output connector. Let .J, be the resulting dipole
with In(Jy) and Out(Jy) as indicated in Fig. 5. Fig. 6 displays the dipole J; together with
a numbering of its vertices.

Another feasible dipole can be created from the double-star snark by removing two
vertices v and v and grouping the resulting semiedges into connectors as shown in Fig. 7.
We denote it by D.

u

Ik Jk

Figure 5: Constructing Jj from I}

Proposition 3.2 The dipoles J7,4;, 1 > 0, and the dipole D are feasible.

Proof. Tables 1-8 show that the dipoles J; and D have all the required paths and
therefore are feasible. To prove that J;,4; is feasible for each ¢ > 0 we employ induction
on i. As the base step has already been done above, we proceed to the induction step.
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Figure 7: Constructing D from the double-star

Assume that J;,4; is feasible for some ¢ > 0. In order to show that J7i4¢41) has all the
required paths to be feasible we extend the paths guaranteed in J7,4; to paths in J7 411y

To construct paths or pairs of paths which cover all the vertices of Jri4i11) (Types
O, A, and B) we proceed as follows. Since the vertices u and v removed from I7,4; to
create Jry4; belong to two neighbouring copies of Y, the dipole J7,4; contains a dipole
isomorphic to Y ~2 which we denote by K74 (see Fig.5). It is easy to see that Y does
not contain a collection of paths covering all its vertices and at the same time containing
all the dangling edges. Therefore, in the dipole K7 4 C J7,4; there exists a copy Y’ of
Y whose output connector has at most two semiedges covered by the paths. Replace Y’
in Jrp4; with Y’ o Y* to obtain Jri4341). Now extend the paths through Y’ to paths
through Y’ o Y by using paths in Y* indicated in Fig.8 in such a way that the covered
semiedges in Out(Y”’) and in In(Y'?) match. It is easy to see that such an extension is
always possible.

To finish the proof we construct paths which leave an arbitrary single vertex v of
Jria(i+1) not covered, that is, eq(Jr1ai+1) — v, Z)" fz and e, (Jrragr1) — v, Z)? fs. If v is not
contained in K744z4+1), We can proceed as in the previous case. If v is in Kyiyiq1), we
observe that K74(;11) contains at least nine subsequent copies of Y. Therefore J74(i41)—v
contains a copy Y” of Y —v connected to a copy of Y in at least one of two possible ways,
either Y” oY% or Y2 o Y”. It is easy to see that Y — v, too, does not contain a collection
of paths covering all its vertices and at the same time containing all the dangling edges.
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T v

Figure 8: Paths in Y*

By replacing this copy of Y* with three parallel edges we obtain J7,4 — v which, by the
induction hypothesis, contains paths e, (J714; — v,Z) f5 and e, (Jr14; — v, Z)? f5 covering
all the vertices but v. Since the original Y4 in J744(i+1) 1s connected to Y —wv, at most two
of the three parallel edges are covered by these paths. Therefore it is possible to extend
these paths to the required paths in J7,4¢11) — v by using paths in Y shown in Fig.8. O

One can easily check that the smallest cyclically 5-connected snark and the smallest
cyclically 6-connected snark which can be composed from the dipoles described in Propo-
sition 3.2 are of order 140 and 166 respectively. With a little bit more care the following
result can be obtained.

Corollary 3.3

(a) There exists a hypohamiltonian snark with cyclic connectivity 5 and order n for each
even n > 140.

(b) There exists a hypohamiltonian snark with cyclic connectivity 6 and order n for each
even n > 166.

Proof. Let G be the Petersen graph and let C' be any 5-cycle in GG. Substitute the edges
of C by i copies of J7, (4 — 1) copies of D and one copy of Jry4j, 0 <4 <4, 5 > 0. These
graphs cover five of the eight even residue classes modulo 16. For the remaining three
even residue classes, let G = I5 and let C' be its unique 5-cycle. Replace ¢ edges of C' by
a copy of Jr, (4 — i) edges by a copy of D and the last edge by J714;, i = 2,3,4, j > 0.
Altogether this yields cyclically 5-connected hypohamiltonian snarks of any even order
greater than 138. This proves (a).

To construct snarks with cyclic connectivity 6, let us start again with G the Petersen
graph, but take C' to be a 6-cycle in GG. Substitute the edges of C' by i copies of J7, (5—1)
copies of D and one copy of J7i4, 0 < i <5, 5 > 0. The graphs now cover six of the
eight even residue classed modulo 16. For the remaining two even residue classes take
G =I5 and C a 6-cycle intersecting the unique 5-edge-cut in I5. Replace i edges of C' by
J7, (5 —1) edges by a copy of D and the last edge by J744j, ¢ = 3,4, j > 0. The resulting
graphs are cyclically 6-connected hypohamiltonian snarks of any even order greater than
164. This proves (b). O
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Call a snark irreducible if the removal of every edge-cut different from the three edges
incident with a vertex yields a 3-edge-colourable graph. It was shown in [12] that a snark
is irreducible if and only if it is bicritical, that is, if the removal of any two distinct vertices
produces a 3-edge-colourable graph. It is not difficult to see that every hypohamiltonian
snark is bicritical and hence irreducible (see [13]). Thus the following result is true.

Corollary 3.4

(a) There exists an irreducible snark of cyclic connectivity 5 and order n for each even
n > 140.

(b) There exists an irreducible snark of cyclic connectivity 6 and order n for each even
n > 166.

4 Proof

In this section we prove Theorem 3.1. Let G be a hypohamiltonian snark and let C be a
collection of disjoint cycles in G. We want to show that every feasible C-superposition G
of GG is a hypohamiltonian snark. Since any feasible dipole is proper, the result of Kochol
[10] implies that G is a snark, and hence a non-hamiltonian graph. It remains to prove
that every vertex-deleted subgraph of G is hamiltonian.

Without loss of generality we may assume that C consists of a single cycle C' =
(wo fow f1 - .. fr—1wg_1), for otherwise we can repeat the whole procedure with other cy-
cles of C. Recall that this superposition substitutes each vertex w; with a copy V; of the
multipole V' exhibited in Fig. 2, and each edge f; with a copy E; of a feasible dipole. In
order to show that for each vertex v of G the subgraph G — v contains a hamiltonian
cycle we proceed as follows. We find a suitable vertex v" in G, take a hamiltonian cy-
cle in G — v/, say, H = (voepvi€y . ..€,_10,_1), and expand it into a hamiltonian cycle
H = (PQoPiQy ... P 1Qp_1) of G — v by replacing each vertex v; in H with a path P,
intersecting the corresponding supervertex V;, and by replacing each edge e; in H with a
path (), intersecting the corresponding superedge E;. Each of the paths F; and ); will
be referred to as a vertez-section and an edge-section of H , respectively. Note, however,
that the required hypohamiltonian cycle H must traverse all the vertices of G but one,
including the vertices in superedges corresponding to edges outside H. Therefore certain
vertex-sections of H have to make ‘detours’ into such superedges.

Let S denote the subgraph of G corresponding to G — C. From the way how G
was constructed from G it is clear that the vertices and edges of H contained in G — C
can be substituted by their identical copies. Thus the corresponding vertex-sections and
edge-sections of H are either a single vertex or a single edge. In other words, we set
HNS=HnN(G-0).

We now describe the remaining vertex-sections and edge-sections of H. In fact, each
edge-section (; can easily be derived from the vertex-sections P; and P, (indices taken
modulo n): it is either a single edge or a path of Type O with a suitable initial and terminal
semiedge guaranteed by feasibility. Thus we only need to describe vertex-sections. Our
description will depend on the position of the vertex v avoided by H and will split in a
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number of cases and subcases according to the type of a multipole containing the vertex v.
It may happen, however, that a vertex-section displayed in a certain direction will actually
have to be traversed in the opposite direction. Throughout the rest of the proof, the copy
of a vertex u of in E; will be denoted by u;.

Figure 9: Case I: v € S

Case I: v € S. In this case, every superedge E; of G which substitutes an edge in C N H
will be traversed by a path of Type O. A superedge E; corresponding to an edge in C'— H
will be traversed by a path which ends in the neighbouring supervertex V., (indices taken
modulo k), its traversal through E; being also of Type O (see Fig. 9 and Scheme )

We now give an exact description of all vertex-sections P; of H. There will always be
two cases, each case can have two or more subcases, and so on. For the case analysis a
nested numeration will be employed. The cases on the same level will always be mutually
excluding.

To get the definition of P;, proceed as follows. Start on the topmost level. Then, on
the current level, choose either the branch with one of conditions following the if word or,
if there is no such condition, choose the else branch, and move to the next level. Once the
then word is reached, the definition of P; is completed; a boxed number after it denotes
the corresponding traversal scheme which is shown in the figure with the same number.

Vertex-sections P;.
1. if v; € S then P, = v,
2. if V; ¢ S('UZ = wj)
2.1if e, € H
2.1.1if v,y = wjyy or vy = wjiq then P, = aVjey, * fr,(E;—1,0) fy x &,V fi
21.2if v,y = wj—y or v;_1 = wj_; then P, = zVje,,
2.2 if ¢; ¢ H then P, = e,,V; [

Used path types: O.

THE ELECTRONIC JOURNAL OF COMBINATORICS 14 (2007), #R18 11



Case II: v = V;. We proceed similarly as in the previous case, but since the vertex in V;
is missing, the vertices of E;_; will be covered by a ‘detour’ ending in V;_; (cf. Scheme )

Vertex-sections P;.
1. if v; € S then P, = v;
2. if V; € S(UZ = U)j)
2.1if e;» eH
2.1.1if v, = wjyg or vy = wj4 then P, = aVje,, x f,(E;—1,0) fy x &,V fi
21.21if v = wjq or v = W
2.1.2.1 if wjy; = v then P, = 2V fo, % ep(Ej11, O)ey * f,Vifo

2.1.2.2 if w; 1 # v then P, = 2Vje,,
2.2if ¢} ¢ H then P, = e,V fn

Used path types: O.

Case III: v € E,. Since E, is feasible, there exists a pair of paths e, (E — v,Z)! f5 and
ey (E —v,Z)*f5. Let L ={a,~v} and R = {3,40}. Vertices in E, will be covered by paths
ea(E —v,Z) f5 and e, (E — v,Z)?fs. The remaining portions of H will be constructed in

dependence on L and R.

(a) v # 1, and v # 2,.
1. if v; € S then P, = v,
2. ifv; € S (we have v; = w,)
2.1.if ¢ € H
2.1.1if v = wjp1 Or Vim1 = Wi
2.1.1.11if V; = Wat1
2.1.1.1.1if L = {m, b} then P, = 2V, 1€y * fin(Ey — v, 2)'e, % f.V,e, * f.(E,—1,0) f %
xe, Valy * €y(Fa — 0,2)*fu * €wVaiifu,
where {y, z} = {m, b} and w € {t, b}
2.1.1.1.21if L = {¢,m} then P, = 2V, 1€ * fi(Ea — v, 2) e, % f.Voe, % fo(Eq1, A)? fyx
)€y Valy * €y(Ea — 0, 2)* fu * €4 Vas1 fu,
where {y, z} = {m,t} and w € {¢,b}
2.1.1.2 if v; = way3 and R = {t,m} then P, = 2V, 36, * fin(Earo, A)%fo x eVaisfo
2.1.1.3 else P, = xVje,, * fr(E;j—1,0) fy * e,V fo

2.1.2 if Vi41 = Wj—1 OF Vj—1 = Wj—1

2.1.2.1 if v; = wo_1 and L = {t,m} then P, = xV,_y fr, * em(Eq_1, A) ey * f,Va_1ey | viii
2.1.2.2 if v; = Wayo and R = {t,m} then P; = 2V, o fmn * em(Fasa, A)'ey * fiVaioe,

2.1.2.3 else P; = zVjen,
22ife; ¢ H
2.2.1if v; = waqo and €}, € H then P; = e,V o fy * ey (Eqyo, B)2ey * fnVaralm*

*.fm(Ea+1» B)Qfm * e Voyaft
222 else P, =e,V,fn

Used path types: O, A, B, Z.

12
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(b) v=1,
1. if v; € S then P, = v;
2. ifv; S (v; = wj)
21ife; e H
2.1.1if Vi41 = Wj41 O Vj—1 = Wj41
2.1.1.1if Vj = Wa41 then R = 117‘/,1+1fm
2.1.1.2 if v; # weyy then P, = aVjen, * fr(E;—1,0)fy * eV fi
21.2if vy =wj_g or vim = wj_;
2.1.2.1 if v; = wuyq then Py = 2V, ey * fn(Ea_o,B)2fy x ey(Ea_y — 1,2)* fy * eV, fo*
sey(Ea, O)em * fuValm * fn(Bact — 1,2) e, * fiVaore # fi( Bazz, O)em
2.1.2.2 else P, = zVje,,
2.2if ¢, ¢ H then P; = ¢,V fn

Used path types: O, B, Z.

(c)v=2,
1. if v; € S then P, = v,
2. ifv; &S (v; = wj)
2.1. if e; eH
2.1.1if Vi41 = Wj41 OT Vj—1 = Wj41
2.1.1.1if V; = Wa41 then R = x‘/zH—lfm * em(Ea+1, B)er * fbVaHeb*
Jo(Ey —2,7)2em * fVaem * f(Ea_1,0) fo x eyVafo x ey(Eq — 2, 7)1 fix
ke Vg1 fo x er(Eaya, B)lfm
2.1.1.2 else P, = 2Vjen * fin(Ej_1,0) fy x &V, fy
21.2if vy =wj_q or v;_1 = wj_; then P, = zVje,
2.2 if ¢, ¢ H then P; = ¢,V fn

Used path types: O, B, Z.

It is a routine matter to verify that the case analysis is complete, and that in each case
the required hypohamiltonian cycle has been constructed. The proof is finished. [
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(d) Scheme (e) Scheme

‘/;1—1

fm(Eaflx O)lfb

em(Ea -, Z)lfm
eb(Eu, -, Z)wa L

(f) Scheme

— T
E, Va E,
Va1 1ft — €t Vi1
fm ) M m €m w
m = == j’”
- b €p fb ! =
€p
‘\ e (E Ale (B — v, Z)2ifu; ,’
: meEa:? A§2fi em( By —v,2)" fin '

(g) Schemes and

THE ELECTRONIC JOURNAL OF COMBINATORICS 14 (2007), #R18




ix]

‘_ enL(Ea+l7A)1et .'
fn(Bas1, Ay

(h) Schemes and

et(EzH»l: B)lfb et(Ea+27 B)lfm
em(Ea+1, B)th em(E(H—Z: B)Zeb

s
\T/fb ij
em<Ea -, )lft 1
fm(Eaflv O)lfb eb(Ea — v, Z)sz I 675(Ell+17 B)Ime

(k) Scheme
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Tables

Superedge F = J;
Table 1: z(F,O)y

‘x ‘y ‘x(E,O)y ‘
m | fm 1423211513 7810635911 1214 18 16 17 19 20 22 26 24 25 2
ep fm 12622181410635987131211171615212019252423412
em | fo 1225191711981063542324262220211516181412137
ep fo 262218141063541225242321201917161513121198 7
ey fi 61087131214 18161521202226242341225191711953
fm | fo 214232120192524262218141213151617119536108 7
em | € 12251917161822202115137891112141063 54 23 24 26

Table 2: e,(E,A)'es and f,(E, A)*f;

‘a‘ﬁ ‘7‘5 ‘ea(E,A)leﬁ

[ /(B A)fs

1087

Table 3: e,(E,B)' f5 and £, (E, B)?ks

‘a‘ﬁ‘7‘5‘m‘ea(E,B)1fﬁ

‘ HPY(E,B>2I<L5

m|{b |m|t 145987131211 1716 1521|2251920221814106 3
23 24 26
mlt |m|b |142321151312119536 2252426222019 17 16 18 14

t b |m|t |r |61087 21423212019 25 24 26 22
181412131516 171195 3
m|t |m|b |r 145981063 2251920 212324262218 14
12111716 1513 7
t lm{m|b |l |6359111213781014 1822|1423 24 26
20211516 1719 25 2
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Table 4: e, (E —i,Z)" fg and e, (E —i,7Z)? fs

\ i

| ea(E—1,2)'f3

6V(E — 1, Z>2f5

1 635423211516 17192022 18 14|26 24 25 2
10891112137
2 145987 26222021232425191711121315
16 18 14 10 6 3
3 |12 610 14 18 16 15 13 12 11 17 19 25 24
262220212345987
4 112 26222021232425191711121315
1618141063598 7
5 [14232115161822201917 11982624252
7131214106 3
6 |1423211516171920221814108 |26 24252
7131211953
7T 1453 61089111716 1513 12 14 18 22 26
24 23 21 20 19 25 2
8 1142324252 262218161521201917119536
10141213 7
9 |12 61087131516 17 11 12 14 18 22 26
242519202123453
10 |12 635423212019 2524 26 22 18 14
12131516 171198 7
11 | 142324252 26221816 1719 20 21 1513 12 14 10
635987
12 |12 61014 1816 15 13 78 9 11 17 19 25
242622202123453
13 | 1423211516 1719 20 22 18 14 12 | 26 24 25 2
1195361087
14 | 142324252 26221816171920211513 12119
5361087
15 |12 635423212022 2624 2519 17 16
1814108911 12137
16 | 142321151312 11 1719 20 22 18 | 26 24 25 2
1410635987
17 |12 61014 121198 7 13 15 16 18 22 26
242519202123453
18 {1453 610141213789 1117 16 15 21 23
24 26 22 20 19 25 2
19 | 142324252 26222021151312111716 18 14 10
635987

THE ELECTRONIC JOURNAL OF COMBINATORICS 14 (2007), #R18

17



Table 4

i |e(E—4,2)'fs

6V(E — 1, Z>2f5

20 |12 635423211516 17 19 25 24 26 22
181410891112137

21 142324252 26222019171112131516 18 14 10
635987

22 1142321201917 1112131516 18 |26 24 25 2
1410635987
23 11453 61014 1213789111719 20 21 15
16 18 22 26 24 25 2

24 114232115131211171618 14106 | 26 22 20 19 25 2

35987
25 |12 61014 1213789111719 20 21 15
16 1822262423453
26 |12 635423242519 1716 15 21 20 22

1814108911 12137

Superedge F = D
Table 5: z(F,O)y

‘x ‘y ‘x(E,O)y ‘
m | fm [ 1871314121819172425233456212022109 1127262816 152
ep fm (2417137345621 1198112141516 28 1022 20 19 18 23 25 26 27 2
em | fo 11214137891127215166 2120221028 26252417191823345
e fo 241719181218 7131415227119102220216 1628262523345
e fi 4561628262524 17137323181920211127215141218910 22
fm | fo 22726281022201917242523181218911216161514137345
em | € 18911216543713141218232526272151628 1022201917 24

Table 6: e,(E,A)'es and f.(E,A)%fs

la | B 7|06 ]el(E,A)es | [L(E,A)? fs

m|b |m|t |187345621201917131412|2 1516282627 119 10 22
18 23 25 24
m|t |m|b |1871314 1218 19 1724 25 23| 2 151628 26 27 11 9 10 22 20 21
34 65
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Table 7: e, (E,B)'f5 and £, (E, B)?ks

(a6 ]y ][0 |r]calEB) s

| 5,(E,B)%ks

t

b |{mlt |r
1819202165

437811214 13 17 24 25 23

21516 28 26 27 11 9 10 22

t |lm|b |r
22

11214131724 2523 18 19 20

21516621 11272628 109 8
7345

4562120221028 16 15 2

1891127262523371314
1218 19 17 24

Table 8: ey (E —i,Z)" fg and e, (E —i,Z)? fs

\ i

‘ ea(E — i, Z)lfg

e”/(E — i>Z>2f5

1 4323181214 1516 28 10 22 20 19 | 24 25 26 27 2
1713789112165
2 | 1891127262810 22 242523181214 1516 6 21 20 19 17
137345
3 | 11214152 45616282627 11212019 18 23 25
24171378910 22
4 118910222021 112726281665 24252337131719181214 152
5 18910282627 11216 16152 43713141218 23 252417 19 20 22
6 | 11214151628 10222021 11987 |24 2526272
1317191823345
7 1189102816 15 2 2425262711216543231812 14
13 17 19 20 22
8 112141373456 2120 22 24 1719 18 23 25 26 27 11 9 10 28 16
152
9 187345 242523181214 13 1719 20 22 10 28
26 271121616 15 2
10 |189112165437 13171920 22 24 252318 12 14 15 16 28 26 27 2
11 | 11214151628 109 8 7 13 17 19 18 | 24 25 26 27 2
233456212022
12 |18910281665437 1314152 24 17 19 18 23 25 26 27 11 21 20 22
13 |187345621119102816 151412 | 241719 20 22
18 23 25 26 27 2
14 | 1121819171378 9112726 28 10 | 242523345
222021616152
15 | 112141378910 2220 21 11 27 2 432318191724252628166 5
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Table 8

16 |189102826271121654371317|242523181214152
19 20 22
17 | 112141378910 28 16 15 2 2425262711216543231819 20
22
18 |1121415166211198713171920 242523345
22 10 28 26 27 2
19 1873456212022 24 1713 14 12 18 23 25 26 27 11 9 10
28 16 15 2
20 |187131719181214 151628 26 27 | 242523345621 119 10 22
2
21 | 187131719 20 22 24252627119102816654 323 18
121415 2
22 118713171920216 16 15141218 |24 252628109 11 27 2
23345
23 118911272 24 2526 28 10 22 20 21 6 16 15 14 12
181917137345
24 1189112165 4371317192022 102816 15 14 12
18 23 25 26 27 2
25 11121413 78911272628102220 (2417191823345
21616 15 2
26 |187131719181214 151628109 |2425233456 212022
11 27 2
27 1871317192021 119 10 22 2425262816654323181214152
28 |1871317192022109 112161615 | 24 25 26 27 2

14121823345
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