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Abstract

For a permutation π = π1π2 · · · πn ∈ Sn and a positive integer i ≤ n, we can

view π1π2 · · · πi as an element of Si by order-preserving relabeling. The j-set of π is

the set of i’s such that π1π2 · · · πi is an involution in Si. We prove a characterization

theorem for j-sets, give a generating function for the number of different j-sets of

permutations in Sn. We also compute the numbers of permutations in Sn with a

given j-set and prove some properties of them.

1 Introduction

In order to count standard Young tableaux containing a given tableau, McKay, Morse
and Wilf [2] considered the number of involutions in Sn containing a given permutation
σ, and Jaggard [1] found a formula for the number, showing that the number depends
only on the ‘j-set’ of σ.

∗The first author was partially supported by KRF grant R05-2004-000-11511-0.

the electronic journal of combinatorics 14 (2007), #R2 1



Let Sn denote the set of all permutations of [n] = {1, 2, . . . , n}. A permutation π ∈ Sn

is called an involution, if π = π−1. Let w = w1w2 · · ·wj be a sequence of j distinct
integers. The pattern of w is the permutation σ = σ1σ2 · · ·σj ∈ Sj, satisfying σr < σs if
and only if wr < ws. For a permutation π = π1π2 · · ·πn ∈ Sn, the pattern of π1π2 · · ·πi is
called the initial i-pattern of π.

Definition 1.1. The j-set of a permutation π ∈ Sn with n ≥ 2, denoted by J(π), is the
set of all nonnegative integers i such that the initial i-pattern of π is an involution. For
convenience, we regard the initial 0-pattern as an involution.

Jaggard in [1, Proposition 3.4] uses j-sets to classify permutations according to subse-
quence containment by involutions. He gives data on j-sets and proves several properties,
proposing some questions regarding the j-sets. One of the questions is about the number
of different sets which can be j-sets of permutations in Sn. We answer the question with
a characterization theorem for j-sets and, moreover, find an explicit generating function
for the numbers.

Definition 1.2. For a permutation π ∈ Sn, let M(π) denote the permutation matrix
corresponding to π, that is, the (i, j)-entry of M(π) is 1 if π(i) = j; and 0, otherwise. For
subsets A, B of [n], let M(π; A, B) be the submatrix of M(π) with row set A and column
set B. For k ∈ [n], let Mrow(π; k) = M(π; [k], π([k])), where π(A) denotes {π(i) : i ∈ A}.
Similarly, Mcol(π; k) = M(π; π−1([k]), [k]). Finally, M(π; k) = M(π; [k] ∩ π−1([k]), [k] ∩
π([k])). The matrix M(π; k) is allowed to be the empty matrix, the matrix with no rows
and columns. For a technical reason we call the empty matrix symmetric.

According to the above definition, Mrow(π; k) is obtained from M(π) by removing the
last n − k rows and then deleting columns consisting of only zeroes. M(π; k) is obtained
from M(π) by cropping the first k rows and k columns, and then deleting zero rows and
columns. Note that for any permutation π ∈ Sn, M(π−1) = M(π)T , the transpose of
M(π), and Mrow(π; k) = Mcol(π

−1; k)T .

For example, if π = 541263 ∈ S6 then M(π) =

















0 0 0 0 1 0

0 0 0 1 0 0

1 0 0 0 0 0

0 1 0 0 0 0

0 0 0 0 0 1

0 0 1 0 0 0

















,

Mrow(π; 4) =









0 0 0 1

0 0 1 0

1 0 0 0

0 1 0 0









, Mcol(π; 4) =









0 0 0 1

1 0 0 0

0 1 0 0

0 0 1 0









, M(π; 4) =





0 0 1

1 0 0

0 1 0





and M(π; 2) is the empty matrix.
If σ is the initial k-pattern of π ∈ Sn, then M(σ) = Mrow(π; k). Since π ∈ Sn is an

involution if and only if M(π) is symmetric, we have k ∈ J(π) if and only if Mrow(π; k) is
symmetric.

Let π ∈ Sn be an involution, i.e. π = π−1. Then M(π) is symmetric and M(π; k)
is symmetric for all k = 1, 2, . . . , n. Since Mrow(π; k) = Mcol(π

−1; k)T = Mcol(π; k)T ,
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Mrow(π; k) is symmetric if and only if Mcol(π; k) is symmetric, equivalently Mrow(π; k) =
Mcol(π; k). In summary, we get the following proposition.

Proposition 1.3. For any involution π ∈ Sn, the following are equivalent.

1. k ∈ J(π).

2. Mrow(π; k) is symmetric.

3. Mcol(π; k) is symmetric.

4. Mrow(π; k) = Mcol(π; k).

The rest of the paper is organized as follows. We present in § 2 the main result
involving a criterion of j-sets, find a generating function of the number of j-sets in § 3,
consider the number of π ∈ Sn with J(π) = J , denoted by pn(J), in § 4. We also give a
recurrence relation for the numbers pn(J) and prove a divisibility property of them.

2 Criterion Theorem for j-sets

For n > 1 and π ∈ Sn, we always have {0, 1, 2} ⊂ J(π) ⊂ {0, 1, 2, . . . , n}. Let π be a
permutation and σ be the initial k-pattern of π. For integer i ≤ k, the initial i-pattern of π
is equal to the initial i-pattern of σ. Thus J(σ) = J(π)∩[k]. So J = {a1, a2, . . . , ak},where
a1 < a2 < · · · < ak, is a j-set if and only if {a1, a2, . . . , ai} is a j-set for all i ≤ k. To
classify all j-sets, it is sufficient to determine when J ∪ {n} is a j-set, for a j-set J and
an integer n greater than max(J). The lemma below shows that if J is a j-set then there
is an involution π ∈ Sm satisfying J(π) = J where m = max(J).

Lemma 2.1. Let J be a j-set with max(J) = m ≥ 2. Then for any integer n ≥ m, there

is a permutation π ∈ Sn with J(π) = J .

Proof. Since J is a j-set, there is a permutation σ ∈ Sl for some integer l ≥ m such that
J(σ) = J . For any n with m ≤ n ≤ l, the initial n-pattern of σ is a permutation in Sn

with j-set J . So it remains to show that for any n > l, there exists π ∈ Sn with J(π) = J .
This can be established by an inductive argument, if it can be shown just for n = l + 1.

There are l + 1 permutations τ1, τ2, . . . , τl+1 in Sl+1 with τi(l + 1) = i whose initial l-
patterns are σ. For each i the j-set of τi is either J or J∪{l+1}. In fact, J(τi) = J∪{l+1}
if and only if τi itself is an involution. If τi is an involution for i ≤ l, then τi(i) = l + 1,
which implies σ(i) = l, equivalently, i = σ−1(l). Since l ≥ 2, we can take π = τj with
j 6= i to force J(π) = J .

For convenience, we define Ik to be the permutation matrix of 1 2 · · ·k ∈ Sk and I ′
k

the permutation matrix of k (k − 1) · · ·1 ∈ Sk. Ik is the identity matrix and I ′
k = (aij)

with aij = 1, if i + j = k + 1; 0, otherwise.
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Lemma 2.2. Let M be an n × n permutation matrix of the form

M =

(

A
B

)

,

where A is an (n − k) × n matrix and B a k × n matrix. Let s be a positive integer and

N =





A 0
0 I ′

s

B 0



 .

If both M and N are symmetric, then M is of the form

M =

(

C 0
0 I ′

k

)

,

where C is an appropriate (n − k) × (n − k) symmetric matrix.

Proof. For 1 ≤ i ≤ k + s, let ei be the (n+ s+1− i, n− k + i)-entry of N . The positions
of ei’s are shown below in N and M , omitting all other entries.

N =









ek+s

p

p

p

e1









, M =









ek

p

p

p

e1









It is sufficient to show that ei = 1 for all i, 1 ≤ i ≤ k.
Since N is symmetric, ei = ek+s+1−i for 1 ≤ i ≤ k + s, and since M is also symmetric,

ei = ek+1−i for 1 ≤ i ≤ k. From the definition of N we can read ek+1 = · · · = ek+s = 1,
which imply e1 = · · · = es = 1. Now if ei = 1 and i + s ≤ k then ei+s = 1 because

ei+s = ek+s+1−(i+s) = ek+1−i = ei = 1.

Thus ei = 1 for all i ≤ k.

The above lemma is actually about two permutation matrices corresponding to in-
volutions. It can be phrased in terms of permutations, but matrix version is easier to
handle.

Corollary 2.3. Let π ∈ Sn and π(n) = n − k + 1. Assume n − 1, n ∈ J(π). Then

M(π) =

(

C 0
0 I ′

k

)

for some (n−k)× (n−k) symmetric matrix C. Moreover, n−k, n−k +1, . . . , n ∈ J(π).
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Proof. If k = 1, it is obvious. Assume k > 1. Since π(n − k + 1) = n,

M(π) =





A 0
0 1
B 0



 ,

where A and B are appropriate matrices of size (n − k) × (n − 1) and (k − 1) × (n − 1)
respectively. Since n ∈ J(π), M(π) is symmetric, and n − 1 ∈ J implies the matrix
(

A
B

)

= Mcol(π; n − 1) is symmetric. Now apply Lemma 2.2 to matrices

(

A
B

)

and

M(π) to complete the proof.

Let J be a j-set with max(J) = m. By Lemma 2.1, there is a permutation π ∈ Sm such
that J(π) = J . Since π = π1π2 · · ·πm is an involution, π′ = π1π2 · · ·πm(m + 1) ∈ Sm+1 is
also an involution. Thus J∪{m+1} is always a j-set. So we are interested in determining
when J ∪ {n} with n ≥ m + 2 is a j-set.

Theorem 2.4. Let J be a j-set with max(J) = m ≥ 2 and n ≥ m + 2. Then J ∪ {n} is

a j-set if and only if n − m ≥ m − max(J ∩ [m − 2]).

Proof. (=⇒) Take a permutation π ∈ Sn such that J(π) = J ∪{n}, the existence of which
is guaranteed by Lemma 2.1. Let σ ∈ Sm be the initial m-pattern of π. Then both π and
σ are involutions and J(σ) = J . We partition M(π) into four blocks as follows,

M(π) =

(

m n − m

m A B
n − m BT C

)

,

where A is of size m × m, B is of size m × (n − m) and C is of size (n − m) × (n − m).
The sizes of blocks are shown on the margins of the matrix.

Let s denote the number of 1’s in B. Then 0 ≤ s ≤ n − m.
We first show that m−s ∈ J . M(π; m), which is obtained from M(π), is also obtained

from A by deleting zero rows and columns, and M(σ) = Mrow(π; m) is the matrix obtained
from (A B) by deleting zero columns. So we have M(π; m) = Mcol(σ; m − s). This
implies that Mcol(σ; m−s) is symmetric, since M(π; m) is symmetric. By Proposition 1.3,
m − s ∈ J(σ) = J .

When s ≥ 2, we clearly have m − max(J ∩ [m − 2]) ≤ m − (m − s) = s ≤ n − m.
Suppose s = 0. Then 1 appears in neither B nor BT , so

M(π) =

(

A 0
0 C

)

.

Since A is symmetric, we have m+1 ∈ J(π), which implies J(π) 6= J ∪{n}, contradicting
the choice of π. Thus s can not be zero.

Now suppose s = 1, i.e. B has only one 1. Since m − s ∈ J(σ), we have m − 1, m ∈
J(σ). Let k be the positive integer satisfying σ(m) = m − k + 1. From Corollary 2.3, we
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have m− k, m− k + 1, . . . , m ∈ J . If k ≥ 2 then m− 2 ∈ J and m−max(J ∩ [m− 2]) =
2 ≤ n − m. If k = 1, then

M(σ) =

(

M(π; m) 0
0 1

)

.

If 1 is not in the first row of BT , then

Mrow(π; m + 1) =

(

M(π; m) 0
0 D

)

,

where D =

(

1 0
0 1

)

or

(

0 1
1 0

)

, both of which are symmetric. So we get m+1 ∈ J(π),

which contradicts the assumption J(π) = J ∪ {n}. If 1 is in the first row of BT , then
Mrow(π; m + 1) = M(π; m + 1) because there is no 1 in B except in the first column.
Thus Mrow(π; m + 1) is symmetric, and m + 1 ∈ J(π), which implies J(π) 6= J ∪ {n},
contradicting the choice of π.

(⇐=) We will show this by constructing π ∈ Sn satisfying the condition J(π) = J∪{n}.
Let σ ∈ Sm be an involution with J(σ) = J .
We may assume that for any e ≥ 2 and any (m − e) × (m − e) symmetric matrix Z,

M(σ) 6=

(

Z 0
0 I ′

e

)

. (1)

Suppose M(σ) =

(

Z 0
0 I ′

e

)

for some e ≥ 2 and an (m − e) × (m − e) symmetric

matrix Z. Then m − e, m − e + 1, . . . , m ∈ J(σ). Define σ′ ∈ Sm by the relation

M(σ′) =

(

Z 0
0 Ie

)

, which implies J(σ′) = J(σ). Since we can replace σ with σ′, if

necessary, we may assume (1).
Let k = n − m and r = m − max(J ∩ [m − 2]). If J = {0, 1, 2}, then m − r is zero

and the matrices below with m− r rows or columns are empty matrices. Partition M(σ)

into

(

A
B

)

, where A is an (m − r) × m matrix and B is an r × m matrix. Since σ is an

involution, M(σ) = (AT BT ). Let W be the set of indices of columns of A containing 1.
Then i ∈ W if and only if the i-th row of AT contains 1. Let A0 be the m × m matrix
whose W ×W submatrix is Mrow(σ; m−r) and whose entries outside the submatrix are 0.
Since Mrow(σ; m − r) is symmetric, so is A0.

Let π ∈ Sn be the involution whose corresponding matrix is

M(π) =





A0 0 BT

0 I ′
k−r 0

B 0 0



 . (2)

The matrix in (2) is a symmetric permutation matrix and Mrow(π; m) = M(σ).
We claim J(π) = J ∪ {n}.
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Since π is an involution and σ is the initial m-pattern of π, it is enough to show that
m + i /∈ J(π) for i = 1, . . . , k − 1. If m + i ∈ J(π) for some i = 1, . . . , k − r, then

Mcol(π; m + i) =





A 0
0 I ′

i

B 0





is symmetric. Thus, by Lemma 2.2,

M(σ) =

(

Mrow(σ; m − r) 0
0 I ′

r

)

,

which contradicts the assumption (1). Thus m + i /∈ J(π) for i = 1, . . . , k − r.
Suppose m + (k − r) + l ∈ J(π) for some l, 1 ≤ l < r.
Since Mcol(π; m + k − r + l) is symmetric, when we remove the last l columns and

rows from Mcol(π; m + k − r + l) and delete zero rows and columns, we get the following
symmetric matrix D.

D =





m − l k − r

m − r A′ 0
k − r 0 I ′

k−r

r − l C 0



,

where A′ and C are the (m − r) × (m − l) and (r − l) × (m − l) matrices respectively

satisfying Mrow(σ; m− l) =

(

A′

C

)

. Note that I ′
k−r survives in D since the 1’s in the last

l columns of Mcol(π; m + k − r + l) come from BT in M(π).
We consider two cases separately.

Case 1 : r − l > k − r
When we remove the last k−r columns and rows of the matrix D and delete zero rows

and columns, we get a symmetric matrix Mrow(σ; m− (l +k− r)). So m− (l +k− r) ∈ J .
Since r−l > k−r, i.e. r > l+k−r, we deduce max(J∩[m−2]) = m−r < m−(l+k−r) < m,
which implies l + k − r = 1. Because l ≥ 1 and k − r ≥ 0, we obtain l = 1 and k = r.
Thus M(π) in (2) reduces to

M(π) =

(

A0 BT

B 0

)

.

The supposition m+(k−r)+ l ∈ J(π) above and l+k−r = 1 imply m+1 ∈ J(π). Since

m, m + 1 ∈ J(π), by Corollary 2.3, Mcol(π; m + 1) =

(

X 0
0 I ′

s

)

for some s. Moreover,

we have s > r because in (2) the last r entries are 0 in the (m + 1)-th column of M(π)
and no row of B is deleted while obtaining Mcol(π; m + 1) from M(π). Thus M(σ) =

Mcol(π; m) =

(

X 0
0 I ′

s−1

)

with s − 1 ≥ r ≥ 2, which contradicts our assumption (1).
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Case 2 : r − l ≤ k − r
Let E be the submatrix of D with the last k−l rows and columns. Then E is symmetric

and E =

(

0 I ′
k−r

Y 0

)

for an appropriate matrix Y . Because k − r ≥ (k − l)/2 and E is

symmetric, E = I ′
k−l. Then we have

D =

(

Mrow(σ; m − r) 0
0 I ′

k−l

)

.

Thus

Mrow(σ; m − l) =

(

Mrow(σ; m − r) 0
0 I ′

r−l

)

,

which implies m − r, m − r + 1, . . . , m − l ∈ J . Since m − r = max(J ∩ [m − 2]) and
1 ≤ l < r, we conclude r = 2 and l = 1. Then n − 1 = m + k − r + l ∈ J(π).
Since n − 1, n ∈ J(π), by Corollary 2.3, for an appropriate matrix G and an integer t,

M(π) =

(

G 0
0 I ′

t

)

and comparing with (2), we get M(π) =

(

Mrow(σ; m − 2) 0
0 I ′

k+2

)

and M(σ) =

(

Mrow(σ; m − 2) 0
0 I ′

2

)

, contradicting the assumption (1).

Permutation version of the construction.

We can describe the above construction in terms of permutation itself without resorting
to its matrix representation. This description is simpler and allows us to grasp the idea
behind the construction but the matrix version has advantage in a rigorous proof.

Let J be the j-set in the above proof and σ, π denote the permutations there. Recall
max(J) = m, J(σ) = J . Let k = n−m and assume k ≥ r = m−max(J ∩ [m− 2]). Then
the permutation π = π1π2 · · ·πn ∈ Sn is defined by

πj =











τj, 1 ≤ j ≤ m,

m + n + 1 − r − j, m + 1 ≤ j ≤ n − r,

σj−n+m, n − r + 1 ≤ j ≤ n,

where τ = τ1τ2 · · · τm is the permutation of the set

[n] \ ({m + 1, m + 2, . . . , m + k − r} ∪ {σm−r+1, σm−r+2, . . . , σm}) ,

whose pattern is σ. That is,

π = π1π2 · · ·πmπm+1πm+2 · · ·πm+k−rπn−r+1 · · ·πn

= τ1τ2 · · · τm(m + k − r)(m + k − r − 1) · · · (m + 1)σm−r+1 · · ·σm.

Example 2.5. Let σ = 1 6 3 5 4 2. Then J(σ) = {0, 1, 2, 3, 6}. We will construct π ∈ S12

with J(π) = {0, 1, 2, 3, 6, 12}. In this case (r, k) = (3, 6). Since k ≥ r we can construct π.
The last 3 elements of π are the last 3 elements of σ, i.e. 5 4 2. The middle part of π is
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9 8 7. The first part of π is the permutation of {1, 3, 6, 10, 11, 12} whose pattern is σ, that
is, 1 12 6 11 10 3. Thus π = 1 12 6 11 10 3 9 8 7 5 4 2.

The corresponding M(σ) and M(π) in (2) are

M(σ) =

















1 0 0 0 0 0

0 0 0 0 0 1

0 0 1 0 0 0

0 0 0 0 1 0

0 0 0 1 0 0

0 1 0 0 0 0

















, M(π) =











































1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 1 0 0

0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0











































.

3 Generating Function of the number of j-sets

Let J be the set of all j-sets. Recall that each member of J contains {0, 1, 2}. Let Jn

be the set of j-sets of permutations in Sn for n ≥ 2. Recall that a set J is called a j-set
if there is a permutation π satisfying J(π) = J .

Define F (x, y, z) and G(u, z) as follows:

F (x, y, z) =
∑

n≥2

∑

J∈Jn

xnymax(J)z|J | =
∑

n,m,l≥2

f(n, m, l)xnymzl,

G(u, z) =
∑

J∈J

umax(J)z|J | =
∑

m,l≥2

g(m, l)umzl.

So f(n, m, l) is the number of J ∈ Jn with max(J) = m and |J | = l, and g(m, l) is the
number of J ∈ J with max(J) = m and |J | = l. Lemma 2.1 says that if J ∈ J then
J ∈ Jn for all n ≥ max(J). Thus Jn is the set of all j-sets whose maximal elements are
less than or equal to n, and consequently, f(n, m, l) = g(m, l) for n ≥ m. So we obtain

F (x, y, z) =
G(xy, z)

1 − x
.

Inductive definition of j-sets.

Theorem 2.4 and the comment preceding it give a criterion for j-sets, which can be used
to determine j-sets inductively as in the following corollary.

Corollary 3.1. Assume that {a1, . . . , ar−1} is a j-set and a1 < a2 < · · · < ar. Then

{a1, . . . , ar} is a j-set if and only if one of the following holds:

1. ar − ar−1 = 1
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2. ar−1 − ar−2 6= 1 and ar − ar−1 ≥ ar−1 − ar−2

3. ar−1 − ar−2 = 1 and ar − ar−1 ≥ ar−1 − ar−3

We illustrate how to use the above criterion.

Example 3.2. Let J = {0, 1, 2, 4, 6, 7, 9, 10}.

• {0, 1, 2, 4} is a j-set because 2 − 1 = 1 and 4 − 2 ≥ 2 − 0.

• {0, 1, 2, 4, 6} is a j-set because 6 − 4 ≥ 4 − 2.

• {0, 1, 2, 4, 6, 7} is a j-set because 7 − 6 = 1.

• {0, 1, 2, 4, 6, 7, 9} is not a j-set because 7 − 6 = 1 and 9 − 7 < 7 − 4.

Thus, J is not a j-set.

Overpartitions, j-sequences and an exact formula for F (x, y, z).

Instead of counting the j-sets directly, we will count j-sequences which are in one-to-
one correspondence with j-sets. A j-sequence is a sequence of overpartitions which are
introduced in [3]. We adopt their definition of overpartition.

Definition 3.3. An overpartition of n is a weakly increasing sequence of natural numbers
summing to n in which the first occurrence of a number may be overlined.

The original definition is weakly decreasing instead of weakly increasing.

Example 3.4. The sequence (2, 2, 3, 5̄, 5, 5, 7) is an overpartition of 29.

For a j-set J = {a1, a2, . . . , ak}, where a1 < a2 < · · · < ak, define the corresponding
j-sequence φ(J) as follows. First we define d(J) and D(J) by

d(J) =

{

ak − ak−2, if ak−1 = ak − 1 and ak−1 6= 0,

ak − ak−1, otherwise,

D(J) =

{

J \ {ak−1, ak}, if ak−1 = ak − 1 and ak−1 6= 0,

J \ {ak}, otherwise.
(3)

Starting with J0 = J , define Ji inductively by Ji = D(Ji−1) for i = 1, 2, . . . , s until
Js = {0}. Now define the j-sequence φ(J) of J as

φ(J) = (d(Js−1), d(Js−2), . . . , d(J0)).

The sequence φ(J) records how J grows from {0}, and we can easily recover J from φ(J).
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Example 3.5. Let J = {0, 1, 2, 4, 6, 7, 10}. Then

J0 = {0, 1, 2, 4, 6, 7, 10}, d(J0) = 3,
J1 = {0, 1, 2, 4, 6, 7}, d(J1) = 3̄,
J2 = {0, 1, 2, 4}, d(J2) = 2,
J3 = {0, 1, 2}, d(J3) = 2̄,
J4 = {0}.

Thus, φ(J) = (2̄, 2, 3̄, 3).

For a j-set J , it follows from the criterion of j-sets in Theorem 2.4 that φ(J) satisfies
the following conditions:

• The sum of integers in φ(J) is the maximum of J .

• φ(J) starts with (1, 2̄, . . .) or (2̄, . . .).

• φ(J) has a descent only before an occurrence of 2̄.

• Any occurrence of ī with i ≥ 3 is preceded by an integer less than i.

• |J \ {0}| = |φ(J)| + (the number of overlined parts in φ(J)).

By cutting φ(J) in front of each occurrence of 2̄, we can regard a j-sequence as a sequence
of overpartitions starting with 2̄, with possibly one exception: The first one can be the
overpartition consisting of a single 1.

We put a weight umzl on an overpartition π starting with 2̄, if it is a partition of m
and the number of parts plus the number of overlined parts in π is l. Note that overlined
parts are counted twice in l, reflecting the fact that an overlined part corresponds to a
pair of elements in a j-set as shown in (3). Let Q(u, z) be the generating function of such
overpartitions. Then

Q(u, z) =
u2z2

1 − u2z

∏

i≥3

1 + uiz2

1 − uiz
,

and G(u, z) can be expressed as

G(u, z) =
∑

J∈J

umax(J)z|J | = z(1 + uz)
Q(u, z)

1 − Q(u, z)
.

So F (x, y, z) has the following expression

F (x, y, z) =
z(1 + xyz)

1 − x
·

Q(xy, z)

1 − Q(xy, z)
.

When we substitute y = z = 1 we get the generating function of f(n), the number of
j-sets in Sn.

F (x, 1, 1) = x2 + 2x3 + 4x4 + 8x5 + 16x6 + 30x7 + 56x8 + 102x9

+186x10 + 336x11 + 606x12 + 1088x13 + 1954x14

+3502x15 + 6278x16 + 11246x17 + · · · .
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Maple experiments suggest that

lim
n→∞

f(n + 1)

f(n)
≈ 1.791178988 · · · .

4 The number of permutations with a given j-set

For a set J , define pn(J) to be the number of π ∈ Sn such that J(π) = J . For n =
2, 3, 4, 5, 6, the number pn(J) of permutations with a given j-set is shown in the following
table.

J S2 S3 S4 S5 S6

{0, 1, 2, 3} 4 8 36 204
{0, 1, 2} 2 2 6 26 146

{0, 1, 2, 3, 4} 8 24 136
{0, 1, 2, 3, 4, 5} 16 64
{0, 1, 2, 4} 2 8 46

{0, 1, 2, 3, 4, 5, 6} 32
{0, 1, 2, 5} 4 20
{0, 1, 2, 3, 5} 4 20
{0, 1, 2, 3, 6} 12
{0, 1, 2, 6} 10

{0, 1, 2, 3, 4, 6} 8
{0, 1, 2, 4, 5} 2 8
{0, 1, 2, 5, 6} 4
{0, 1, 2, 3, 5, 6} 4
{0, 1, 2, 4, 5, 6} 4
{0, 1, 2, 4, 6} 2

The number of permutations π ∈ Sn with J(π) = J .

Definition 4.1. Let n, k be positive integers with n ≥ k. Let π = π1π2 · · ·πn be a
permutation in Sn and σ = σ1σ2 · · ·σk a permutation in Sk. We say π contains σ as a
subsequence, if πi1 = σ1, πi2 = σ2, . . . , πik = σk for some i1 < i2 < · · · < ik.

Recall the matrices Mcol(π; k) and M(σ). The (i, j)-entry of Mcol(π; k) is 1 if and
only if j is the i-th element from left among 1, 2, . . . , k in π. Thus Mcol(π; k) = M(σ)
means the arrangements of 1, 2, . . . , k in π and in σ are identical. Hence π contains σ
as a subsequence if and only if Mcol(π; k) = M(σ). If both π and σ are involutions, the
following holds.

Proposition 4.2. Let π ∈ Sn and σ ∈ Sk be involutions. Then π contains σ as a

subsequence if and only if the initial k-pattern of π is σ.

Proof. The permutation π contains σ as a subsequence if and only if Mcol(π; k) = M(σ).
The initial k-pattern of π is σ if and only if Mrow(π; k) = M(σ). If Mcol(π; k) = M(σ),
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then Mcol(π; k) is symmetric. Thus by Proposition 1.3, we have Mrow(π; k) = Mcol(π; k) =
M(σ). Similarly, if Mrow(π; k) = M(σ) then we get Mcol(π; k) = M(σ). Thus these two
conditions are equivalent.

Jaggard [1] found a formula for the number of involutions π ∈ Sn containing σ as a
subsequence.

Theorem 4.3 (Jaggard, 2005). For σ ∈ Sk and n ≥ k, the number of involutions in

Sn which contain σ as a subsequence equals

∑

j∈J(σ)

(

n − k

k − j

)

tn−2k+j,

where tm is the number of involutions in Sm and t0 = 1.

Inspired by the above theorem, we can go on one step further. Using Proposition 4.2,
we can convert Theorem 4.3 to the next lemma.

Lemma 4.4. Let J be a j-set with max(J) = k and n be an integer with n > k. Let

i(J, n) be the number of involutions π ∈ Sn satisfying J(π) ∩ [k] = J . Then

i(J, n) = pk(J)
∑

j∈J

(

n − k

k − j

)

tn−2k+j.

Proof. Let π ∈ Sn be an involution with J(π) ∩ [k] = J . Let σ be the initial k-pattern
of π. Then J(σ) = J . We can divide the set of such π’s as follows.

⋃

σ∈Sk, J(σ)=J

{π ∈ Sn : n ∈ J(π), the initial k-pattern of π is σ}

Since π and σ are involutions, by Proposition 4.2, this set is equal to
⋃

σ∈Sk , J(σ)=J

{π ∈ Sn : n ∈ J(π), π contains σ as a subsequence}.

Thus by Theorem 4.3, the number of π is

∑

σ∈Sk ,J(σ)=J

∑

j∈J(σ)

(

n − k

k − j

)

tn−2k+j .

Since J(σ) = J for all σ in the summation, we are done.

On the other hand the number i(J, n) of involutions π ∈ Sn with max(J) = k and
J(π) ∩ [k] = J has the following expression:

i(J, n) =
∑

A⊂{k+1,k+2,...,n−1}

pn(J ∪ A ∪ {n})

So we obtain the following proposition.
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Proposition 4.5. Let J be a j-set with max(J) = k. Then for n > k,

pn(J ∪ {n}) = pk(J)
∑

j∈J

(

n − k

k − j

)

tn−2k+j −
∑

A

pn(J ∪ A ∪ {n}),

where the last summation is over all nonempty subsets of {k + 1, . . . , n − 1}.

Proposition 4.5 allows us to compute pn(J) for j-sets J with max(J) = n. We can use
induction on n and d = n − max(J \ {n}).

We now turn to computing pn(J) for j-sets J with max(J) < n.

Proposition 4.6. Let J be a j-set with max(J) = k. Then for n > k,

pn(J) =
n!

k!
pk(J) −

n
∑

i=k+1

n!

i!
pi(J ∪ {i}).

Proof. It is equivalent to

n!

k!
pk(J) = pn(J) +

n
∑

i=k+1

n!

i!
pi(J ∪ {i}).

Consider the number of permutations π = π1π2 · · ·πn ∈ Sn with J(π) ∩ [k] = J . There
are

(

n

k

)

ways of choosing the first k elements for π. For each choice there are pk(J)
allowed arrangements, and the rest can be arranged in (n − k)! ways. Thus there are
(

n

k

)

pk(J)(n− k)! permutations π ∈ Sn with J(π)∩ [k] = J . This is the left hand side. To
get the right hand side, we classify such π’s according to the minimum of J(π) \ [k], if
nonempty. If J(π) \ [k] is empty then such π’s are counted by pn(J).

Lemma 4.7. Let J be a j-set with max(J) = k. Then for n > k, pn(J ∪ {n}) and pn(J)
are divisible by pk(J).

Proof. In view of Proposition 4.6, it is sufficient to prove for pn(J ∪ {n}). We induct on
n − k. If n − k = 1, then it is derived from Lemma 4.4.

Assume for all n, k with n − k < r. For the case n − k = r,

pn(J ∪ {n}) = i(J, n) −
∑

A

pn(J ∪ A ∪ {n}),

where the sum is over all nonempty subsets A of {k +1, . . . , n−1}. The number i(J, n) is
divisible by pk(J) by Lemma 4.4. Let A = {a1, a2, . . . , as}. Then pn(J∪A∪{n}) = pn(J∪
{a1, a2, . . . , as, n}). From the induction hypothesis we obtain a sequence of divisibility
relations,

pk(J) | pa1
(J ∪ {a1}) | · · · | pas

(J ∪ {a1, a2, . . . , as}) | pn(J ∪ A ∪ {n}).

Thus pn(J ∪ {n}) is divisible by pk(J).
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Using Lemma 4.7 and a similar argument, we can prove the following divisibility
property.

Theorem 4.8. Let J , J ′ be j-sets such that max(J) = k, max(J ′) ≤ n and J = J ′ ∩ [k],
then pn(J ′) is divisible by pk(J).

Corollary 4.9. For all J and n, pn(J) is even.

Proof. p2({0, 1, 2}) = 2. Because every j-set contains {0, 1, 2}, pn(J) is divisible by
p2({0, 1, 2}) = 2.
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