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Abstract

We introduce and develop a two-parameter chromatic symmetric function for a
simple graph G over the field of rational functions in q and t , Q (q, t). We derive its
expansion in terms of the monomial symmetric functions, mλ, and present various
correlation properties which exist between the two-parameter chromatic symmetric
function and its corresponding graph.

Additionally, for the complete graph G of order n, its corresponding two parame-
ter chromatic symmetric function is the Macdonald polynomial Q(n). Using this, we
develop graphical analogues for the expansion formulas of the two-row Macdonald
polynomials and the two-row Jack symmetric functions.

Finally, we introduce the “complement” of this new function and explore some
of its properties.

1. Preliminaries.

We briefly define some of the basic concepts used in the development of our two
parameter chromatic symmetric function. In general, our notation will be consistent with
that of [1].

Let G be a finite, simple graph; G has no multiple edges or loops. Denote the edge
set of G by E(G) and the vertex set of G by V (G). The order of the graph G, denoted
o(G), is the size of its vertex set V (G) and the size of the graph G, denoted s(G), is equal
to the number of edges in E(G). A subgraph of G , G′ , is a graph whose vertex set and
edge set are contained in those of G. For a subset V ′(G) ⊆ V (G), the subgraph induced

by V ′(G) , GI , is the subgraph of G which contains all edges in E(G) which connect any
two vertices in V ′(G).

For the graph G, denote the edge of E(G) which joins the vertices vi, vj ∈ V (G) by
vivj ; we say that vi and vj are the endvertices of the edge vivj. A walk in G is a sequence
of vertices and edges, v1, v1v2, . . . , vl−1vl, vl, denoted v1 . . . vl; the length of this walk is l.
A path is a walk with distinct vertices and a trail is a walk with distinct edges. A trail
whose endvertices are equal, v1 = vl, is called a circuit. A walk of length ≥ 3 whose
vertices are all distinct, except for coinciding endvertices, is called a cycle. The graph G
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is said to be connected if for every pair of vertices {vi, vj} ∈ V (G), there is a path from
vi to vj. A tree is a connected, acyclic graph.

Let V (G) = {v1, . . . , vn}. Denote the number of edges emminating from the vertex
vi ∈ V (G) by d(vi), the degree of the vertex vi. The degree sequence of G, denoted by
deg(G), is a weakly decreasing sequence (or partition) of nonnegative integers, deg(G) =
(d1, . . . , dn), such that the length of deg(G) is equal to |V (G)| and (d1, . . . , dn) represents
the degrees of the vertices of V (G), arranged in decreasing order. Since each edge of G
has two endvertices, it follows that

∑n

i=1 di = 2s(G); thus, deg(G) ` 2s(G).
A coloring of the graph G is a function k : V (G) → N. The coloring k is said to be

proper if k(vi) 6= k(vj) whenever vivj ∈ E(G).
Additionally, we will use the following consistent with [2].

(a; q)0 = 1

(a; q)n =

n−1
∏

i=0

(1 − aqi)

(a; q)n =
(a; q)∞

(aqn; q)∞

(a1, . . . , am; q)n = (a1; q)n · · · (am; q)n

(a; q) = (a; q)1

2. A Two-Parameter Chromatic Symmetric Function.

Let G be a simple graph with vertex set V (G) = {v1, . . . , vn} and let k : V (G) → N be
a coloring from the set of vertices of the graph G into N = {1, 2, . . .}. An edge vivj ∈ E(G)
is colored c by k if k(vi) = k(vj) = c. Denote mi(k) to be the number of monochromatic
edges of G which are colored i ∈ N with respect to the coloring k. Denote R(k) to be the
range of the coloring k.

For i ∈ N, as in [6], set

Vi = |{vj ∈ V (G) : k(vj) = i}| (1)

i.e. the number of vertices of V (G) colored i by k. For i ∈ R(k), define

mi =

{

(mi(k) + 1) if (mi(k) + 1) ≤ Vi

Vi otherwise.
(2)

Let x = {x1, x2, . . .} be a set of commuting indeterminates. For the coloring k :
V (G) → N, set

xk =

n
∏

i=1

xk(vi) (3)

for vi ∈ V (G).
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Definition 2.1. For a simple graph G , o(G) = n,

YG(x; q, t) =
∑

k

(

n

V1, V2, . . .

)−1(
∏

i∈R(k)

(t; q)mi

(q; q)mi

)

xk

where k ranges over all colorings of G.

It follows from Definition 2.1 and (3) that YG(x; q, t) is a symmetric function of degree
n.

Remark 2.1. The papers [6] and [7], by Richard Stanley, served as inspiration for
this work. Note however, that his chromatic symmetric function described is [6] and [7]
and the present two-parameter chromatic symmetric function are entirely different. Some
of the prominent differences include, for example, that the function in this paper is a
two-parameter symmetric function in q and t and that the colorings considered here are
not necessarily proper. Even if we set q = 1

t
to kill the terms corresponding to colorings

that are not proper, the remaining coefficients are different from Stanley’s. See [6] and
[7] for further details.

Definition 2.2. Let λ = (λ1, . . . , λn) be a partition and G be a simple graph.
A general distinct coloring is a coloring of G , km

λ : V (G) → N , which sends λi-many
vertices to one color and λj-many vertices to another color, for all i 6= j.

The basic coloring of G of type λ , kλ : V (G) → N , is the set of all general distinct
colorings {km

λ } of the graph G.

Remark 2.2. Note that for kλ = {km
λ }, each general distinct coloring km

λ : V (G) → N

corresponds to a unique, ordered grouping of the vertices of V (G) into disjoint subsets of
size λi , 1 ≤ i ≤ n.

In other words, the map km
λ is a general distinct coloring if it partitions V (G) into

disjoint subsets of size λ1, λ2, . . . , λn such that the vertices in each subset are all mapped
to the same color and such that the vertices in distinct subsets are mapped to distinct
colors by km

λ .

Additionally, for o(G) = d, there are
(

d

λ1,...,λn

)

-many general distinct colorings, km
λ ,

within kλ ; |kλ| =
(

d

λ1,...,λn

)

.

Example 2.1. Let λ = (3, 2, 1, 1) and V (G) = {v1, . . . , v7}. Let {j} denote a subset of
vertices of V (G) of size j. The basic coloring of G of type λ = (3, 2, 1, 1) includes all general
distinct colorings km

λ : V (G) → N such that km
λ ({3}) 6= km

λ ({2}) 6= km
λ ({1}) 6= km

λ ({1});
each m corresponds to a specific ordered grouping, ({3}, {2}, {1}, {1}), of disjoint j-
element subsets of V (G) , j ∈ {1, 2, 3, 3}. Note that |kλ| =

(

7
3,2,1,1

)

= 420, the number of
general distinct colorings, km

λ , included in the basic coloring kλ:

kλ = {({v1, v2, v3}, {v4, v5}, {v6}, {v7}), ({v1, v2, v3}, {v4, v5}, {v7}, {v6}), . . .}. �
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Example 2.2. Consider the simple graph G such that V (G) = {v1, v2, v3, v4} and
E(G) = {v1v2, v1v3, v2v3, v2v4}.

#
#
#
##

r r

r r

v1 v2

v3 v4

There are five possible basic colorings k : V (G) → N : (1.) the coloring of type λ = (14)
sending each vertex to a different color, (2.) the coloring of type λ = (4) sending all
vertices to the same color, (3.) the coloring of type λ = (3, 1) which sends three vertices
to the same color and the remaining one to a different color, (4.) the coloring of type
λ = (2, 1, 1) sending two vertices to the same color and sending the remaining two vertices
to two other distinct colors, and (5.) the coloring of type λ = (2, 2) which sends two
vertices to the same color and the remaining two vertices to the same color (distinct from
the first).

Restrict the number of variables to four such that x = {x1, x2, x3, x4}. Therefore, the
range of k becomes {1, 2, 3, 4} , k : V (G) → {1, 2, 3, 4}. We will compute YG(x; q, t) via
computing the function of each of the five basic colorings.

Within the first basic coloring, there are
(

4
1,1,1,1

)

= 4! general distinct colorings, each

with mi = 1 for all i ∈ {1, 2, 3, 4}:

(t; q)4

(q; q)4
x1x2x3x4.

For the second basic coloring, there is
(

4
4

)

= 1 general distinct coloring and four specific
colorings. Since the range of the coloring is restricted to {1, 2, 3, 4} , each of these gives
mi = 4 for all i ∈ {1, 2, 3, 4}:

(t; q)4

(q; q)4
(x4

1 + x4
2 + x4

3 + x4
4).

There are
(

4
3,1

)

= 4 general distinct colorings within the third basic coloring. For

{3}, three of these give mi = 3 and one gives mi = 2 , km
λ = ({v1, v3, v4}, {v2}) for all

i ∈ {1, 2, 3, 4}:

3

4

(t; q)3(t; q)

(q; q)3(q; q)
(x3

1x2 + x3
2x3 + . . .) +

1

4

(t; q)2(t; q)

(q; q)2(q; q)
(x3

1x2 + x3
2x3 + . . .).

Within the fourth basic coloring, there are
(

4
2,1,1

)

= 12 general distinct colorings. For

the subset {2}, eight of these give mi = 2 and four give mi = 1 for all i ∈ {1, 2, 3, 4}.
Thus, we have:

2

3

(t; q)2(t; q)(t; q)

(q; q)2(q; q)(q; q)
(x2

1x2x3 + x1x
2
2x3 + . . .) +

1

3

(t; q)3

(q; q)3
(x2

1x2x3 + x2
2x1x3 + . . .).
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Lastly, within the fifth basic coloring, there are
(

4
2,2

)

= 6 general distinct colorings,
yielding:

2

3

(t; q)2(t; q)

(q; q)2(q; q)
(x2

1x
2
2 + x2

2x
2
3 + . . .) +

1

3

(t; q)2(t; q)2

(q; q)2(q; q)2
(x2

1x
2
2 + x2

2x
2
3 + . . .).

Thus,

YG(x; q, t) =
(t; q)4

(q; q)4
x1x2x3x4 +

(t; q)4

(q; q)4
(x4

1 + x4
2 + x4

3 + x4
4)

+

(

3

4

(t; q)3(t; q)

(q; q)3(q; q)
+

1

4

(t; q)2(t; q)

(q; q)2(q; q)

)

(x3
1x2 + x3

2x3 + . . .)

+

(

2

3

(t; q)2(t; q)(t; q)

(q; q)2(q; q)(q; q)
+

1

3

(t; q)3

(q; q)3

)

(x2
1x2x3 + x1x

2
2x3 + . . .)

+

(

2

3

(t; q)2(t; q)

(q; q)2(q; q)
+

1

3

(t; q)2(t; q)2

(q; q)2(q; q)2

)

(x2
1x

2
2 + x2

2x
2
3 + . . .). �

As in [5], a set partition P of the set S is a collection of disjoint subsets {S1, . . . , Sr}
whose union is S. The set partition P has type µ if µ = ( |S1|, . . . , |Sr| ) where |S1| ≥
. . . ≥ |Sr|.

Let λ = (λ1, . . . , λr) be a partition of n. Denote

W
′

λ = W
′

λ1
] . . . ] W

′

λr
(4)

to be the disjoint union of subsets of V (G) such that for 1 ≤ i ≤ r , W
′

λi
is a subset of

V (G) of size λi and W
′

λi
∩ W

′

λj
= ∅ for all i 6= j. Thus, W

′

λ is a set partition of V (G) of
type λ.

Now, for λ ` n and the graph G, restrict the set partition W
′

λ of V (G) to all of the
possible distinct ordered subset compositions of V (G) where each distinct ordered subset
composition is a unique, ordered grouping V (G) as dicated by the partition λ. Denote
this new “restricted set” of W

′

λ as Wλ.

Example 2.3. Consider the graph

#
#
#
##

r r

r r

v1 v2

v3 v4
and the partition λ = (2, 2). Then,

Wλ =

{ {v1, v2} ∪ {v3, v4} ,

{v3, v4} ∪ {v1, v2}

{v1, v3} ∪ {v2, v4}

{v2, v4} ∪ {v1, v3}

{v1, v4} ∪ {v2, v3}

{v2, v3} ∪ {v1, v4} }. �
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Moreover, let W ∗
λi

be the set of all distinct two-element subsets {vi, vj} , i 6= j , of Wλi
.

Viewing each two element subset {vi, vj} ∈ W ∗
λi

as the possible edge vivj ∈ E(G),
define:

Pλi
=

{

(|W ∗
λi
∩ E(G)| + 1) if (|W ∗

λi
∩ E(G)| + 1) ≤ |Wλi

|

|Wλi
| otherwise,

(5)

where Pλi
= 1 if (W ∗

λi
∩ E(G)) = ∅.

For a partition µ = (µ1, . . . , µl), the monomial symmetric function, mµ, is given by:
mµ =

∑

i1<...<il
xµ1

i1
xµ2

i2
· · ·xµl

il
.

Proposition 2.1. For the simple graph G of order n,

YG(x; q, t) =
∑

λ`n

(

n

λ1, . . . , λr

)−1(
∑

Wλ⊆V (G)

( r
∏

i=1

(t; q)Pλi

(q; q)Pλi

))

mλ

where Wλ ⊆ V (G) runs over all possible distinct ordered subset compositions for the
partition λ = (λ1, . . . , λr) ; Wλ and Pλi

as defined above.

Proof. Since YG(x; q, t) is a symmetric function of degree n, it can be expressed in
terms of monomial symmetric functions, mλ, such that λ ` n. Since k : V (G) → N ranges
over all possible colorings of G, we obtain the functions mλ such that λ = (λ1, . . . , λr)
runs through all partitions of n, where λi ≡ Vj , j ranging throughout R(k) such that
|Vj| = λi.

For λ = (λ1, . . . , λr) ` n, there are
(

n

λ1,...,λr

)

possible distinct general colorings within

the basic coloring kλ; sending λi-many vertices to the same color j ∈ R(k) , 1 ≤ i ≤ r ,
and where the vertices of λi are sent to a distinct color from those of λm , ∀i 6= m.

Since Wλ = Wλ1 ] . . . ] Wλr
partitions the vertices of V (G) into all possible disjoint

subsets such that |Wλi
| = λi, and since Wλ ⊆ V (G) runs over all distinct ordered Wλ

(with respect to the composition of Wλi
, ∀i), we obtain all distinct general colorings ki

λ of
G within kλ. Since the “specific” colorings within each km

λ have the same coefficient (ref.
Example 2.2), we may consider the coefficient of mλ , λ ` n , via the general coefficients
for a coloring of type λ , kλ , with respect to the individual coefficients for each km

λ . Since
l(λ) = |R(k)| for the coloring k, one can see by comparing the mi to the Pλi

that these
terms coincide. Thus, the coefficent of the monomial mλ in YG(x; q, t) is equal to

(

n

λ1, . . . , λr

)−1(
∑

Wλ⊆V (G)

( r
∏

i=1

(t; q)Pλi

(q; q)Pλi

))

. �
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Example 2.4. For the graph G of Example 2.2, it is easily seen that

YG(x; q, t) =
(t; q)4

(q; q)4
m(1,1,1,1) +

(t; q)4

(q; q)4

m(4)

+

(

3

4

(t; q)3(t; q)

(q; q)3(q; q)
+

1

4

(t; q)2(t; q)

(q; q)2(q; q)

)

m(3,1)

+

(

2

3

(t; q)2(t; q)(t; q)

(q; q)2(q; q)(q; q)
+

1

3

(t; q)3

(q; q)3

)

m(2,1,1)

+

(

2

3

(t; q)2(t; q)

(q; q)2(q; q)
+

1

3

(t; q)2(t; q)2

(q; q)2(q; q)2

)

m(2,2). �

3. Some Properties of YG(x;q, t).

In this section, we will explore some of the basic properties and correlations between
a finite, simple graph G and the symmetric function YG(x; q, t).

Proposition 3.1. Let G be a simple graph. G has order d and size s if the multiplicity
of the term

(t; q)2(t; q)
(d−2)

(q; q)2(q; q)(d−2)
m(2,1(d−2)) (6)

in YG(x; q, t) is 2s
d(d−1)

.

Proof. Let G be a graph of order d and size s. The multiplicity of the term (6)

in YG(x; q, t) corresponds to
(

d

2,1(d−2)

)−1
multiplied by the number of pairs of vertices

{vi, vj} ∈ V (G) such that vivj ∈ E(G) (where P(2) = 2) multiplied by (d − 2)! :
For {vi, vj} ∈ V (G) such that vivj ∈ E(G), consider the number of possible gen-

eral distinct colorings km
(2,1(d−2))

: V (G) → N of type (2, 1(d−2)) such that km
(2,1(d−2))

(vi) =

km
(2,1(d−2))

(vj) and such that km
(2,1(d−2))

distinguishes all remaining vertices in V (G) from each

other and from vi and vj. Since s(G) = s, there are s possible such two element subsets
{vi, vj} of V (G). For each of these subsets, since o(G) = d, there are (d − 2) remaining
vertices in V (G) \ {vi, vj}. Thus, there are (d − 2)! different general distinct colorings
km

(2,1(d−2))
distinguishing among V (G) \ {vi, vj} and {vi, vj}. Hence, the multiplicity of the

desired term is
(

d

2, 1(d−2)

)−1

s (d − 2)! =
2s

d(d − 1)
. �

Remark 3.1. Conversely to Proposition 3.1, consider YG(x; q, t) in which the term

(t; q)2(t; q)
r

(q; q)2(q; q)(r
m(2,1r)

appears.
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Note that the monomial symmetric function m(2,1r), for some r ≥ 0, appears in
YG(x; q, t) if and only if o(G) = 2 + r since (2, 1r) ` (2 + r). Furthermore, by Propo-
sition 2.1, the coefficient of the monomial m(2,1r) is equal to

(

2 + r

2, 1r

)−1(
∑

Wλ⊆V (G)

( 2+r
∏

i=1

(t; q)Pλi

(q; q)Pλi

))

.

For
∑

Wλ⊆V (G)

( 2+r
∏

i=1

(t; q)Pλi

(q; q)Pλi

)

,

we have Pλ1 = 2 and Pλ2 = . . . = Pλr
= 1. Hence, by definition of Pλi

, and since
|Wλi

| = 2, it follows that the multiplicity of (6) is:

(

2 + r

2, 1r

)−1

· |E(G)| · r!

=
2

(2 + r)!
· |E(G)| · r!

=
2|E(G)|

(2 + r)(1 + r)
.

Therefore, given the multiplicity of (6), we may recover |E(G)|.

Proposition 3.2. Let G and H be graphs with degree sequences deg(G) and deg(H),
respectively. Then o(G) = o(H) = d , s(G) = s(H) ≤ d, and deg(G) = deg(H) if and
only if the multiplicity of the term

(t; q)2(t; q)
(d−2)

(q; q)2(q; q)(d−2)
m(2,1(d−2))

is ≤ 2
(d−1)

and is equal in both YG(x; q, t) and YH(x; q, t) and if the coefficients of m((d−1),1)

in YG(x; q, t) and YH(x; q, t) are equal.

Proof. (⇒) Suppose that o(G) = o(H) = d , s(G) = s(H) ≤ d, and deg(G) =
deg(H). Let deg(G) = (β1, . . . , βn) = deg(H) ; β1 ≥ . . . ≥ βn , n ≤ d, and

∑n

i=1 βi =
2s(G). By Proposition 3.1, we know that the multiplicity of the term (6) is equal in both
YG and YH and is ≤ 2

(d−1)
. By the definitions of YG(x; q, t) and YH(x; q, t), the coefficients

of m((d−1),1) are given by

(

d

(d − 1), 1

)−1(
∑

Wλ⊆V (G)

( 2
∏

i=1

(t; q)Pλi

(q; q)Pλi

))

=
1

d

(

∑

W((d−1),1)⊂V (G)

(t; q)P(d−1)
(t; q)P(1)

(q; q)P(d−1)
(q; q)P(1)

)

.
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Note that there are d-many distinct subsets W((d−1),1) = W(d−1) ] W(1) of V (G) (resp.,
V (H)). Moreover, note that each βi ∈ deg(G) (resp., deg(H)) directly corresponds to one
vertex vj ∈ V (G), where βi indicates the degree of the vertex vj , d(vj) = βi. Thus, sending
the vertex vj to W(1) amounts to removing all edges from E(G) (resp., E(H)) which are
incident with the vertex vj in the computation of |W ∗

(d−1) ∩E(G)|+ 1 = P(d−1) , W(d−1) =

V (G) \ {vj}. This implies that |W ∗
(d−1) ∩ E(G)| = |E(G)| − βi (resp. for H). Repeating

this for each βi ∈ deg(G) = deg(H) and the corresponding two vertices (one for deg(G)
and possibly a different one for deg(H)) gives the coefficients of m((d−1),1) in YG(x; q, t)
and YH(x; q, t) to be equal.

(⇐) From Proposition 3.1, the multiplicity of the term (6) being equal and ≤ 2
(d−1)

in

YG and YH tells us that o(G) = o(H) = d and that s(G) = s(H) ≤ d.
Suppose that the coefficients of the term m((d−1),1) in both YG(x; q, t) and YH(x; q, t)

are equal. We must show that deg(G) = deg(H). For 1 ≤ l ≤ (d − 1), consider the
multiplicity Kl of the term

(t; q)l(t; q)

(q; q)l(q; q)
m((d−1),1)

in YG(x; q, t) and YH(x; q, t).
Suppose that l = (d−1). Then there exists K(d−1) vertices in V (G) such that |W ∗

(d−1)∩

E(G)| = (d − 1) or (d − 2), and similarly for V (H). We need to show that the number
of vertices in V (H) such that |W ∗

(d−1) ∩ E(G)| = (d − 1) (resp. (d − 2)) is equal to the

number of vertices in V (H) such that |W ∗
(d−1) ∩ E(H)| = (d − 1) (resp. (d − 2)).

Note that the multiplicity of

(t; q)(d−1)(t; q)

(q; q)(d−1)(q; q)
m((d−1),1) (7)

corresponds to the number of vertices in V (G) and V (H) such that d(vi) = 1 or d(vi) = 0.
Consider the vertices vi ∈ V (G) and vj ∈ V (H), for which W(1) = {vi} and W(1) = {vj} in
W((d−1),1), such that P(d−1) ≤ (d − 2). For each W((d−1),1) ⊂ V (G) and W((d−1),1) ⊂ V (H)
such that P(d−1) is equal for both V (G) and V (H) and P(d−1) ≤ (d − 2), we have that
|W ∗

(d−1) ∩ E(G)| = (P(d−1) − 1) = |W ∗
(d−1) ∩ E(H)|, by definition of P(d−1). Since the

multiplicity of the coefficient of

(t; q)P(d−1)
(t; q)

(q; q)P(d−1)
(q; q)

m((d−1),1)

in YG and YH is equal, the number of vertices vi ∈ V (G) and vj ∈ V (H) such that
d(vi) = d(vj) = s − P(d−1) must be equal. (Note: P(d−1) + 1 = s − d(vi) + 1.) Thus,
since o(G) = o(H) , s(G) = s(H), and

∑

deg(G) =
∑

deg(H), the number of vertices
with degree 0 in G equals the number of vertices with degree 0 in H and, similarly, the
number of vertices with degree 1 in G equals the number of vertices with degree 1 in H.
Therefore, deg(G) = deg(H). �
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Proposition 3.3. Let G be a simple graph of order d. Any induced subgraph of
G , GI , of order (d − 1) is connected if and only if the multiplicity of the term

(t; q)(d−1)(t; q)

(q; q)(d−1)(q; q)
m((d−1),1)

in YG(x; q, t) is one.

Proof. (⇒) Suppose that any induced subgraph of G , GI , of order (d − 1) is con-
nected. Then, |E(GI)| ≥ (d−2). Hence, for all possible subsets W(d−1) ⊂ V (G) , W(d−1) ⊂
W((d−1),1), it follows that P(d−1) = (d − 1). Hence, the multiplicity term (7) in YG(x; q, t)
is one.

(⇐) Suppose that the multiplicity of term (7) in YG(x; q, t) is one. Then, for all
possible (d − 1)-element subsets W(d−1) ⊂ V (G) , |W ∗

(d−1) ∩ E(G)| ≥ (d − 2). Therefore,

every induced subgraph GI of order (d − 1) must be connected. �

Remark 3.2. By Proposition 3.3, for a graph G of order d, if the multiplicity of (7)
is one in YG(x; q, t), then G is not a tree.

Proposition 3.4. Let G be a simple graph. G has order d and is a cycle of size d if
and only if the multiplicity of the term

(t; q)(d−1)(t; q)

(q; q)(d−1)(q; q)
m((d−1),1)

in YG(x; q, t) is one and the multiplicity of the term

(t; q)2(t; q)
(d−2)

(q; q)2(q; q)(d−2)
m(2,1(d−2))

is 2
(d−1)

.

Proof. (⇒) If o(G) = s(G) = d, we know from Proposition 3.1 that the multiplicity
of the term (6) is 2

(d−1)
. Consider the multiplicity of the term (7). Since G is a cycle

of length d and o(G) = s(G) = d, we know that d(vi) = 2 for all vi ∈ V (G). Thus,
the number of subsets Wλ ⊆ V (G) , Wλ = W(d−1) ] W(1), such that P(d−1) = (d − 1) and
P(1) = 1 is exactly d many, since any choice of (d − 1) vertices is connected by (d − 2)
edges. This implies that the multiplicity of the desired term is

d

(

d

(d − 1), 1

)−1

= 1.

(⇐) From Proposition 3.1 and Remark 3.1, if the multiplicity of the term (6) is 2
(d−1)

for some d, we know that G has order and size d. By Proposition 3.3, the multiplicity of
term (7) being one implies that any (d − 1) element subset of V (G) is connected. Since
o(G) = s(G) = d, the only connected graph fitting this description is a cycle of length
d. �
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4. YG(x;q, t) and Macdonald Polynomials.

Denote the ring of symmetric functions over the field F as ΛF and let Λn
F

denote its
nth graded space. The space Λn

F
consists of all symmetric functions of total degree n ∈ Z,

indexed by the partitions λ = (λ1, . . . , λr) for which
∑

i λi = n. Five important bases
of Λn

F
are: the monomial symmetric functions mλ , the elementary symmetric functions

eλ = eλ1 · · · eλr
, the complete symmetric functions hλ, the Schur functions sλ , and the

power sum symmetric functions pλ = pλ1 · · · pλr
. Of these five bases, all except the power

sum symmetric functions are Z-bases; the power sum symmetric functions are a Q-basis.
Let H = Q (q, t) be the field of rational functions in q and t. In 1988, Macdonald

introduced a new class of two-parameter symmetric functions Pλ(q, t), over the ring ΛH ,
which generalize several classes of symmetric functions. In particular, taking q = t we
obtain the Schur functions, setting t = 1 we have the monomial symmetric functions, and
letting q = 0 gives the Hall-Littlewood functions.

We know from [4] that the (Pλ) are a basis of Λn
H . Further, with respect to the scalar

product:

< pλ, pµ > = δλ,µ

∏

i

imimi!

l(λ)
∏

j=1

1 − qλj

1 − tλj

we have that
< Pλ, Pµ > = 0 if λ 6= µ,

where mi denotes the multiplicity of i in λ and l(λ) denotes the length of λ. We also
know that for each λ, there exists a unique Pλ(q, t) such that:

Pλ = mλ +
∑

µ<λ

cλµmµ where cλµ ∈ Q (q, t).

Define:

Qλ =
Pλ

< Pλ, Pλ >
.

Then, the bases (Pλ) and (Qλ) of Λn
H

are dual to each other, < Qλ, Pµ > = δλ,µ, and from
[4], for γ = (n):

Q(n) =
∑

|λ|=n

∏

i

1

imimi!

l(λ)
∏

j=1

1 − tλj

1 − qλj
pλ

where we set Q0 = 1 and Q−m = 0 for m ∈ Z+.
There turns out to be an interesting connection between our two parameter chromatic

symmetric function YG(x; q, t) and the Macdonald polynomials Qλ. We motivate this
connection via the following definitions and proposition.

The complete graph of order n, denoted Kn, is the graph G which has size
(

n

2

)

; every
two vertices in V (G) are adjacent. We know from [4] that for n ∈ Z+, the Macdonald
polynomial

Q(n) =
∑

λ`n

(t; q)λ

(q; q)λ

mλ
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where we define
(t; q)λ

(q; q)λ

=

r
∏

i=1

(t; q)λi

(q; q)λi

for λ = (λ1, . . . , λr) ` n.
The following proposition is immediate.

Proposition 4.1. Let G be the complete graph of order n , G = Kn , for n ∈ Z+.
Then

YG(x; q, t) = Q(n)(x; q, t).

From [3], we have the following combinatoral formula for a two-row Macdonald poly-
nomial Qλ , λ = (λ1, λ2):

Q(λ1,λ2) =

λ2
∑

i=0

aλ1−λ2
i Q(λ1+i) Q(λ2−i) (8)

where

aλ1−λ2
i =

(

(t−1; q)i(q
λ1−λ2 ; q)i(1 − qλ1−λ2+2i)

(q; q)i(qλ1−λ2+1t; q)i(1 − qλ1−λ2)

)

ti

and aλ1−λ2
0 = 1.

Using the symmetric function YG(x; q, t), we give a graphical analogue of this two-row
formula for any partition λ = (λ1, λ2).

Let G be the complete graph of order (λ1 + λ2) , G = K(λ1+λ2). Then, V (G) =
{v1, . . . , vλ1+λ2}. Denote Wi to be the subset of V (G) containing vertices {vj} for 1 ≤
j ≤ i:

Wi = {v1, . . . , vi}. (9)

Denote W c
i to be the subset of V (G) containing the vertices {vm} such that (i + 1) ≤

m ≤ (λ1 + λ2),
W c

i = {v(i+1), . . . , v(λ1+λ2)}, (10)

and set W0 = ∅.
Let G[V \ Wi] denote the subgraph of G = K(λ1+λ2) obtained by deleting the vertices

in Wi ⊆ V (G) and all edges in E(G) which are incident with them.

Theorem 4.1. Let G = K(λ1+λ2). For the partition λ = (λ1, λ2),

Qλ = Q(λ1,λ2) =

λ2
∑

i=0

aλ1−λ2

(λ2−i) YG[V \Wi](x; q, t) YG[V \W c
i ](x; q, t)

where
YG[V \W c

i
](x; q, t) = 1 if V \ W c

i = ∅

and where aλ1−λ2

(λ2−i) is defined above.
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Proof. Note that the complete graph G = K (λ1+λ2) contains all of the complete graphs
K l for 0 < l < (λ1 + λ2). Since G[V \ Wi] is the complete graph on (λ1 + λ2 − i)-many
vertices, G[V \ Wi] = K(λ1+λ2−i), it follows that YG[V \Wi](x; q, t) = Q(λ1+λ2−i). Similarly,
G[V \ W c

i ] = Ki which in turn implies that YG[V \W c
i ](x; q, t) = Q(i). Expressing (8) as

Q(λ1+λ2) =

λ2
∑

i=0

aλ1−λ2

(λ2−i) Q(λ1+λ2−i) Q(i)

the result follows. �

Example 4.1. Consider the expression of the two-row Macdonald polynomial Q(3,2).
By Theorem 4.1, we have

Q(3,2) =
2

∑

i=0

a(2−i) YG[V \Wi](x; q, t) YG[V \W c
i ](x; q, t)

where G = K5. Thus,

Q(3,2) = a(2) YG[V \W0](x; q, t) YG[V \W c
0 ](x; q, t)

+ a(1) YG[V \W1](x; q, t) YG[V \W c
1 ](x; q, t)

+ a(0) YG[V \W2](x; q, t) YG[V \W c
2 ](x; q, t).

#
#
#
##

r r

r r

v1 v2

v3 v4

c
c
c
cc   
   

   

````````̀

aaaaa

!!
!!!

rv5

G[V \W0]

#
#
#
##

r

r r

v2

v3 v4
   

   
   

aaaaa

!!
!!!

rv5

G[V \W1]

r

v1

G[V \W c
1 ]

r r

v3 v4
   

   
   

!!
!!!

rv5

G[V \W2]

r r

v1 v2

G[V \W c
2 ]

Computing the respective YG[V \Wi](x; q, t) and YG[V \W c
i ](x; q, t) for 0 ≤ i ≤ 2 yields:

Q(3,2) =

(

(t−1; q)2

(q2t; q)2

(1 − q5)

(1 − q)
t2

)

Q(5)+

(

(t−1; q)

(q2t; q)

(1 − q3)

(1 − q)
t

)

Q(4)Q(1) + Q(3)Q(2). �

For the parameter α, the Jack symmetric functions, Jλ, are defined by:

Jλ = Qλ(α) = lim
t→1

Qλ(t
α, t)
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where we set q = tα in Qλ(x; q, t).
In [3], we have a formula for the Jack functions Jλ , λ = (λ1, λ2):

J(λ1,λ2) = Q(λ1,λ2)(α) =

λ2
∑

i=0

aλ1−λ2
i (α) Q(λ1+i)(α) Q(λ2−i)(α)

where

aλ1−λ2
i = (−1)i

(

(1 − α) · · · (1 − (i − 1)α)

i!

)

·

(

(λ1 − λ2 + 1) · · · (λ1 − λ2 + i − 1)(λ1 − λ2 + 2i)

(1 + (λ1 − λ2 + 1)α) · · · (1 + (λ1 − λ2 + i)α)

)

.

Set q = tα in the two-parameter symmetric function YG(x; q, t). Define

YG(α) = lim
t→1

YG(x; tα, t).

Similar to Theorem 4.1, we obtain a graphical analogue for the expansion of the two-
row Jack symmetric functions J(λ1,λ2) using YG(α).

Corollary 4.1. Let G = K(λ1+λ2). For the partition λ = (λ1, λ2),

J(λ1,λ2) = Q(λ1 ,λ2)(α) =

λ2
∑

i=0

aλ1−λ2

(λ2−i)(α) YG[V \Wi](α) YG[V \W c
i ](α)

where
YG[V \W c

i ](α) = 1 if V \ W c
i = ∅,

aλ1−λ2

(λ2−i) defined above, and aλ1−λ2
0 (α) = 1.

5. The Symmetric Function Yc

G
(x;q, t).

We now introduce the “complement,” Y c
G(x; q, t), of the two-parameter symmetric

function YG(x; q, t).

Define

mc
i =

{

(
(

Vi

2

)

− mi(k) + 1) if (
(

Vi

2

)

− mi(k) + 1) ≤ Vi

Vi otherwise.
(11)

Definition 5.1.

Y c
G(x; q, t) =

∑

k

(

n

V1, V2, . . .

)−1(
∏

i∈R(k)

(t; q)mc
i

(q; q)mc
i

)

xk

where k ranges over all colorings of G.
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Now, define

P c
λi

=

{

(|W ∗
λi
| − |W ∗

λi
∩ E(G)| + 1) if (|W ∗

λi
| − |W ∗

λi
∩ E(G)| + 1) ≤ |Wλi

|

|Wλi
| otherwise.

(12)

Note that |W ∗
λi
| =

(

|Wλi
|

2

)

.

Proposition 5.1. For the simple graph G of order n,

Y c
G(x; q, t) =

∑

λ`n

(

n

λ1, . . . , λr

)−1(
∑

Wλ⊆V (G)

( r
∏

i=1

(t; q)P c
λi

(q; q)P c
λi

))

mλ

where Wλ ⊆ V (G) runs over all possible distinct ordered subset compositions for the
partition λ = (λ1, . . . , λr) ; Wλ and P c

λi
defined above.

Proof. Similar to the proof of Proposition 2.1, comparing the mc
i to the P c

λi
for the

basic coloring kλ of type λ = (λ1, . . . , λr), and noting that |W ∗
λi
| =

(

|Wλi
|

2

)

, we see that
the coefficient of mλ in Y c

G(x; q, t) is equal to

(

n

λ1, . . . , λr

)−1(
∑

Wλ⊆V (G)

( r
∏

i=1

(t; q)P c
λi

(q; q)P c
λi

))

. � (13)

Let G be a simple, finite graph of order n. Then, the complement of the graph G,
denoted Gc, is the graph of order n such that vivj ∈ E(Gc) if and only if vivj /∈ E(G).
Thus, if G has size d, it follows that Gc has size (

(

n

2

)

− d).

Theorem 5.1. Y c
G(x; q, t) = YGc(x; q, t).

Proof. Let G be a simple graph of order n with complement Gc. We want to show
that for λ ` n, the coefficient of the monomial symmetric function mλ in Y c

G(x; q, t) and
YGc(x; q, t) are equal.

For λ ` n, the coefficient of mλ in Y c
G(x; q, t) is given by (13) and the coefficient of mλ

is YGc(x; q, t) is given by

(

n

λ1, . . . , λr

)−1(
∑

Wλ⊆V (Gc)

( r
∏

i=1

(t; q)Pλi

(q; q)Pλi

))

(14)

where

Pλi
=

{

(|W ∗
λi
∩ E(Gc)| + 1) if (|W ∗

λi
∩ E(Gc)| + 1) ≤ |Wλi

|

|Wλi
| otherwise.

(15)

Since o(G) = o(Gc) ⇒ V (G) = V (Gc), we have that Wλ ⊆ V (G) ≡ Wλ ⊆ V (Gc). Thus,
for 1 ≤ i ≤ r , |Wλi

| is equal for both G and Gc and similarly, |W ∗
λi
| is equal for both G

and Gc. By definition of Gc,

|W ∗
λi
∩ E(Gc)| = (

(

|Wλi
|

2

)

− |W ∗
λi
∩ E(G)|) = (|W ∗

λi
| − |W ∗

λi
∩ E(G)| ).
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This implies that, with respect to Gc and G , Pλi
= P c

λi
. Therefore, the coeffients (13)

and (14) of mλ in Y c
G(x; q, t) and YGc(x; q, t) are equal. �

Using Y c
G(x; q, t), we obtain the following analogues to Propositions 3.1 – 3.4 for Gc.

Proposition 5.1. Let G be a simple graph. Gc has order n and size p if and only if
the multiplicity of the term

(t; q)2(t; q)
(n−2)

(q; q)2(q; q)(n−2)
m(2,1(n−2)) (16)

is 2p

n(n−1)
in Y c

G(x; q, t).

Proposition 5.2. Let G and H be graphs with degree sequences deg(G) and deg(H),
respectively. Then o(Gc) = o(Hc) = n , s(Gc) = s(Hc) ≤ n, and deg(Gc) = deg(Hc) if
and only if the multiplicity of the term

(t; q)2(t; q)
(n−2)

(q; q)2(q; q)(n−2)
m(2,1(n−2))

is ≤ 2
(n−1)

and is equal in both Y c
G(x; q, t) and Y c

H(x; q, t) and if the coefficients of m((n−1),1)

in Y c
G(x; q, t) and Y c

H(x; q, t) are equal.

Proposition 5.3. Let G be a simple graph of order n. Any induced subgraph, Gc
I ,

of order (n − 1) of Gc is connected if and only if the multiplicity of the term

(t; q)(n−1)(t; q)

(q; q)(n−1)(q; q)
m((n−1),1)

in Y c
G(x; q, t) is one.

Proposition 5.4. Let G be a simple graph. Gc has order n and is a cycle of size n if
and only if the multiplicity of the term

(t; q)(n−1)(t; q)

(q; q)(n−1)(q; q)
m((n−1),1)

in Y c
G(x; q, t) is one and the multiplicity of the term

(t; q)2(t; q)
(n−2)

(q; q)2(q; q)(n−2)
m(2,1(n−2))

is 2
(n−1)

.
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