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Abstract

We define an excedance number for the multi-colored permutation group i.e. the
wreath product (Zr1

× · · · ×Zrk
) o Sn and calculate its multi-distribution with some

natural parameters.
We also compute the multi-distribution of the parameters exc(π) and fix(π) over

the sets of involutions in the multi-colored permutation group. Using this, we count
the number of involutions in this group having a fixed number of excedances and
absolute fixed points.

1 Introduction

Let r1, . . . , rk and n be positive integers. The multi-colored permutation group Gr1,...,rk;n

is the wreath product:
(Zr1

× Zr2
× · · · × Zrk

) o Sn.

The symmetric group Sn is a special case for ri = 1, 1 ≤ i ≤ k. In Sn one can define the
following well-known parameters: Given σ ∈ Sn, i ∈ [n] is an excedance of σ if σ(i) > i.
The number of excedances is denoted by exc(σ). Two other natural parameters on Sn are
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the number of fixed points and the number of cycles of σ, denoted by fix(σ) and cyc(σ)
respectively.

Consider the following generating function over Sn:

Pn(q, t, s) =
∑

σ∈Sn

qexc(σ)tfix(σ)scyc(σ).

Pn(q, 1, 1) is the classical Eulerian polynomial, while Pn(q, 0, 1) is the counter part for
the derangements, i.e. the permutations without fixed points, see [4].

In the case s = −1, the two polynomials Pn(q, 1,−1) and Pn(q, 0,−1) have simple
closed formulas:

Pn(q, 1,−1) = −(q − 1)n−1, (1)

Pn(q, 0,−1) = −q[n− 1]q, (2)

where [n]q = qn−1
q−1

.

Recently, Ksavrelof and Zeng [3] proved some new recursive formulas which induce the
above equations. In [1], the corresponding excedance number for the colored permutation
groups Gr,n = Zr o Sn was defined. It was proved there that:

PGr,n(q, 1,−1) = (qr − 1)PGr,n−1
(q, 1,−1),

PGr,n(q, 0,−1) = [r]q(PGr,n−1
(q, 0,−1) − qn−1[r]n−1

q ),

and hence,

PGr,n(q, 1,−1) = −
(qr − 1)n

q − 1
,

PGr,n(q, 0,−1) = −q[r]nq [n− 1]q.

In this paper we generalize our parameters and formulas to the case of the multi-colored
permutation groups. Explicitly, denote r = r1 · · · rk. We get the following theorems:

Theorem 1.1.

PGr1,...,rk;n(q, 1,−1) = (qr − 1)PGr1,...,rk;n−1
(q, 1,−1).

Hence,
PGr1,...,rk;n(q, 1,−1) = (−1 −K(q)) (qr − 1)n−1,

where

K(q) = K(q; r1, . . . , rk) =

k
∑

m=1

rm+1 · · · rk

rm−1
∑

t=1

qt r
rm .

For the derangements, we have:
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Theorem 1.2.

PGr1,...,rk;n(q, 0,−1) = (1 +K(q))
(

PGr1,...,rk;n−1
(q, 0,−1) − (qr +K(q))n−1

)

.

Hence, we have:

PGr1,...,rk;n
(q, 0,−1) = (qr + K(q)) (1 + K(q)) ·

(

(1 + K(q))
n−2

−

n−2
∑

k=1

(qr + K(q))
k
(1 + K(q))

n−2−k

)

for all n ≥ 2.

An element σ in Gr1,...,rk;n is called an involution if σ2 = 1. The set of involutions in
Gr1,...,rk;n will be denoted by Ir1,...,rk;n.

In [2], the multi-distribution of the parameters exc, fix and csum on the set of involu-
tions in the complex reflection groups was considered. We cite the following result from
there. (The relevant definitions will be given in Section 6).

Theorem 1.3. (See Corollary 5.2 in [2])
The polynomial

∑

π∈Gr,n

ufix(π)vexcA(π)wcsum(π) is given by

n
∑

j=n/2

(n− j)!

(

n

n− j, n− j, 2j − n

)

u2j−n(v + (r − 1)wr)n−j

2n−j
µ2j−n

r . (3)

where µr = 1 if r is odd, and µr = 1 + w
r
2 otherwise.

Here, we generalize this result to Gr1,...,rk;n. We prove:

Theorem 1.4. The polynomial
∑

π∈Gr1,...,rk;n

ufix(π)vexcA(π)wcsum(π) is given by

n
∑

j=n/2

(n− j)!

(

n

n− j, n− j, 2j − n

)

u2j−n(v + (r − 1)wr)n−j

2n−j
µ2j−n. (4)

where µ = 1 if r is odd, and µ = 1 + 2εw
r
2 otherwise (where ε = #{ri | 1 ≤ i ≤ k, ri ≡ 0

(mod 2)}). Hence, we have that the number of involutions π ∈ Gr1,...,rk;n with exc(π) = m
is:







y!
(

n
y, y, n−2y

)

( r
2
)y r ≡ 1 (mod 2)

n
∑

j= n
2

(n− j)!
(

n
n−j, n−j, j−y, y−n+j

)

( r
2
)n−j2ε(y−n+j) r ≡ 0 (mod 2)

where y = m
r
.

Note that every Abelian group G can be presented as a direct product of cyclic groups,
and thus this work generalizes the well-known excedance number to the wreath product
of Sn by any Abelian group. Nevertheless, this parameter depends on the order of the
cyclic factors chosen to appear in the presentation of G. Hence, it is an invariant of the
pair (G, (r1, . . . , rk)) where G = Zr1

× · · · × Zrk
.

The paper is organized as follows. In Section 2, we give the needed definitions. In
Section 3, we define the statistics on Gr1,...,rk;n. Section 4 deals with the proof of Theorem
1.1. Section 5 deals with derangements in Gr1,...,rk;n and the proof of Theorem 1.2. In
Section 6, we deal with the set of involutions in Gr1,...,rk;n and the proof of Theorem 1.4.
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2 The group of multi-colored permutations

Definition 2.1. Let r1, . . . , rk and n be positive integers. The group of multi-colored
permutations of n digits is the wreath product

Gr1,...,rk;n = (Zr1
× Zr2

× · · · × Zrk
) o Sn = (Zr1

× Zr2
× · · · × Zrk

)n
o Sn,

consisting of all the pairs (Z, τ) where Z = (zj
i ) (1 ≤ i ≤ n, 1 ≤ j ≤ k) is an n × k

matrix such that the elements of column j (1 ≤ j ≤ k) belong to Zrj
and τ ∈ Sn. The

multiplication is defined by the following rule: Let Z, U be two n × k matrices as above
and let σ, τ ∈ Sn. Then

(Z, τ) · (U, σ) = ((zj
i + uj

τ−1(i)), τ ◦ τ
′)

(here, in each column j, the + is taken modulo rj).

Example 2.2. Let r1 = 3, r2 = 2, r3 = 2, r4 = 3 and n = 3. Define

π1 = (Z1, τ1) =









0 1 0 2
2 0 1 2
1 1 0 1



 ,

(

1 2 3
3 2 1

)





and

π2 = (Z2, τ2) =









0 0 1 0
0 1 1 1
2 1 0 2



 ,

(

1 2 3
2 3 1

)



 .

Then we have:

π1 · π2 =









2 0 0 2
1 0 1 2
2 0 0 1



 ,

(

1 2 3
2 1 3

)





π2 · π1 =









2 0 0 1
2 1 0 0
1 1 1 1



 ,

(

1 2 3
1 3 2

)



 .

Here is another description of the group Gr1,...,rk;n. Consider the alphabet

Σ = {i[z
1
i ,...,zk

i ] | zj
i ∈ Zrj

, 1 ≤ i ≤ n, 1 ≤ j ≤ k}.

The set Σ can be seen as the set [n] = {1, . . . , n}, colored by k palettes of colors, the
palette numbered j having rj colors.

If we denote by θj the cyclic operator which colors the digit i by first color from the
j-th palette, then an element of Gr1,...,rk;n is a multi-colored permutation, i.e. a bijection
π : Σ → Σ such that

π((θε1
1 ◦ θε2

2 ◦ · · · ◦ θεk

k )(i)) = (θε1
1 ◦ θε2

2 ◦ · · · ◦ θεk

k )(π(i))
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where εi ∈ {0, 1}, 1 ≤ i ≤ k.
In particular, if k = 1 we get the group Gr1,n = Cr1

oSn. This case has several subcases,
for example if we take r = r1 = 1, then we get the symmetric group Sn, while r = 2 yields
the hyperoctahedral group Bn, i.e., the classical Coxeter group of type B.

Here is an algebraic description of Gr1,...,rk;n. Define the following set of generators:
T = {t1, t2, . . . , tk, s1, . . . , sn−1} with the following relations:

• tri

i = 1, (i ∈ {1, . . . , k})

• titj = tjti, (i, j ∈ {1, . . . , k})

• (tis1)
2ri = 1, (i ∈ {1, . . . , k})

• (titjs1)
2rirj = 1, (1 ≤ i < j ≤ k)

• s2
i = 1, (i ∈ {1, . . . , n− 1})

• sisjsi = sjsisj, (1 ≤ i < j < n, j − i = 1)

• sisj = sjsi, (1 ≤ i < j < n, j − i > 1)

• tisj = sjti, (1 ≤ i ≤ k, 1 < j < n).

Realizing ti (1 ≤ i ≤ k) as the multi-colored permutation taking 1 to 1~ei (where ~ei is
the i-th standard vector) fixing pointwise the other digits, and si as the adjacent Coxeter
transposition (i, i + 1) (1 ≤ i < n), it is easy to see that Gr1,...,rk;n is actually the group
generated by T subject to the above relations. A Dynkin-type diagram for Gr1,...,rk;n is
presented in Figure 1.

k

r2t

t 1

s2 s3 s4 sn−1

2

t k−1

t k

s1

rk

r1

2r

2r
2r

1

2

Figure 1: The “Dynkin diagram” of Gr1,...,rk;n
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3 Statistics on Gr1,...,rk;n

We start by defining an order on the set:

Σ = {i(z
1
i ,...,zk

i ) | zj
i ∈ Zrk

, 1 ≤ i ≤ n, 1 ≤ j ≤ k}.

Define rmax = max{r1, . . . , rk}. For any two vectors

~v = (v1, . . . , vk), ~w = (w1, . . . , wk) ∈ Zr1
× · · · × Zrk

,

we write ~v ≺ ~w if

w1 · r
k−1
max + · · ·+ wk−1 · rmax + wk < v1 · r

k−1
max + · · ·+ vk−1 · rmax + vk.

For example, if r1 = r2 = r3 = 3 then (2, 0, 1) ≺ (1, 1, 0).
We also write i~v ≺ j ~w if:

1. ~v 6= ~w and ~v ≺ ~w, or

2. ~v = ~w and i < j.

Based on this order, we define the excedance set of a permutation π on Σ :

Exc(π) = {i ∈ Σ | π(i) � i},

and the excedance number is defined to be exc(π) = |Exc(π)|.

For simplifying the computations, we define the excedance number in a different way.
The set Σ can be divided into layers, according to the palettes. Explicitly, for each
~v ∈ Zr1

× · · · × Zrk
, define the layer Σ~v = {1~v, . . . , n~v}. We call the layer Σ

~0 the principal
part of Σ. We will show that exc(π) can be computed using parameters defined only on

Σ
~0.

Let π = (σ, (z1
1 , . . . , z

k
1 ), (z1

2 , . . . , z
k
2 ), . . . , (z1

n, . . . , z
k
n)) ∈ Gr1,...,rk;n and let 1 ≤ p ≤ k.

Define:

csump(π) =
n
∑

i=1

zp
i ·

p−1
∏

t=1

χ(zt
i = 0),

where χ(P ) is 1 if the property P holds and 0 otherwise.
The parameter csump(π) sums the colors of palette p where a color of a digit is counted

only if there are no colors of preceding palettes on this digit.
Here is an easier way to understand the parameters csump(π):
For π = (σ, (z1

1 , . . . , z
k
1 ), (z1

2 , . . . , z
k
2 ), . . . , (z1

n, . . . , z
k
n)) ∈ Gr1,...,rk;n, write the n × k

matrix Z = (zj
i ). Then, csump is just the sum of the elements of the p-th column where

we are ignoring the elements which are not leading in their rows.
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Example 3.1. Let

π =

((

1 2 3
3 1 2

)

, (1, 2, 0, 1), (0, 0, 1, 2), (0, 2, 1, 1)

)

∈ G2,3,2,3;3.

Then Z =





1 2 0 1
0 0 1 2
0 2 1 1





and thus we have:

csum1(π) = 1, csum2(π) = 2, csum3(π) = 1, csum4(π) = 0.

Now define:
ExcA(π) = {i ∈ [n− 1] | π(i) � i} and excA(π) = |ExcA(π)|.

Proposition 3.2. Let π = (Z, σ). Write r =
k
∏

j=1

rj. Then:

exc(π) = r · excA(π) +

k
∑

p=1

(

csump(π) ·

k
∏

q=1,q 6=p

rq

)

.

Proof. Let i ∈ [n]. Write π(i
~0) = j~zi. We divide our treatment according to ~zi =

(z1
i , . . . , z

k
i ).

• ~zi = ~0: In this case, i ∈ ExcA(π) if and only if σ(i) > i or in other words: π
(

i
~0
)

� i
~0.

This happens, if and only if, for each ~α = (α1, . . . , αk) where 0 ≤ αt ≤ rt − 1, we

have π
(

i~α
)

� i~α. Thus i contributes
k
∏

j=1

rj = r to exc(π).

• ~zi = (z1
i , . . . , z

k
i ) 6= ~0. In this case i = i

~0 6∈ Exc(π). We check now for which ~v,

i~v ∈ Exc(π). Since π(i
~0) = j ~zi , we have π(i~v) = j~v+~zi. Let m ∈ {1, . . . , k} be

the minimal index such that zm
i 6= 0 and zt

i = 0 for all t < m. Note that for all
~0 � ~v � (0, . . . , 0, rm − zm

i , 0, . . . , 0), π(i~v) = j~v+~zi ≺ i~v, hence i~v 6∈ Exc(π).

Now, for all

(0, . . . , 0, rm − zm
i , 0, . . . , 0) � ~v � (0, . . . , 0, rm − 1, rm+1 − 1, . . . , rk − 1),

π(i~v) = j~v+~zi � i~v, and hence i~v ∈ Exc(π). So, it contributes zm
i ·rm+1 · · · rk elements

to the excedance set.

In the same way, for each ~w = (α1, . . . , αm−1, 0, . . . , 0) 6= ~0 and for all

(0, . . . , 0, rm − zm
i , 0, . . . , 0) � ~v � (0, . . . , 0, rm − 1, rm+1 − 1, . . . , rk − 1),
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π(i~w+~v) = j ~w+~v+~zi � i~w+~v, and hence i~w+~v ∈ Exc(π). So it contributes (r1 · · · rm−1 −
1) · zm

i · rm+1 · · · rk elements to the excedance set.

Hence, this i contributes

r1 · · · rm−1 · z
m
i · rm+1 · · · rk = zm

i

k
∏

q=1,q 6=m

rq.

Now, we sum the contributions over all i ∈ {1, 2, . . . , n}. Since we have excA(π) digits
which satisfy ~zi = ~0 and σ(i) > i, their total contribution is r · excA(π), which is the first
summand of exc(π).

The other digits have ~zi 6= ~0, so their contribution is

∑

{i|~zi 6=~0}

(

zm
i

k
∏

q=1,q 6=m

rq

)

=

k
∑

p=1

((

n
∑

i=1

zp
i ·

p−1
∏

t=1

χ(zt
i = 0)

)

k
∏

q=1,q 6=p

rq

)

=

k
∑

p=1

(

csump(π) ·

k
∏

q=1,q 6=p

rq

)

,

which is the second summand of exc(π), and hence we are done.

Example 3.3. Let

π =

(

1 2 3
3(0,0) 1(2,1) 2(0,1)

)

=









0 0
2 1
0 1



 ,

(

1 2 3
3 1 2

)



 ∈ G3,2;3.

We write π in its extended form:

X ∇ X z X

1(1,0) 2(1,0) 3(1,0) 1(0,1) 2(0,1) 3(0,1) 1(0,0) 2(0,0) 3(0,0)

3(1,0) 1(0,1) 2(1,1) 3(0,1) 1(2,0) 2(0,0) 3(0,0) 1(2,1) 2(0,1)









X ∇ z X ∇ X ∇ z

1(2,1) 2(2,1) 3(2,1) 1(2,0) 2(2,0) 3(2,0) 1(1,1) 2(1,1) 3(1,1)

3(2,1) 1(1,0) 2(2,0) 3(2,0) 1(1,1) 2(2,1) 3(1,1) 1(0,0) 2(1,0)

We have exc(π) = 13, while csum1(π) = 2 and csum2(π) = 1.

Recall that any permutation of Sn can be decomposed into a product of disjoint
cycles. This notion can be easily generalized to the group Gr1,...,rk;n as follows. Given any
π ∈ Gr1,...,rk;n we define the cycle number of π = (Z, σ) to be the number of cycles in σ.

We say that i ∈ [n] is an absolute fixed point of π ∈ Gr1,...,rk;n if σ(i) = i.
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4 Proof of Theorem 1.1

In this section we prove Theorem 1.1. The way to prove this type of identities is to
construct a subset S of Gr1,...,rk;n whose contribution to the generating function is exactly
the right side of the identity. Then, we have to construct a killing involution on Gr1,...,rk;n−
S, i.e., an involution on Gr1,...,rk;n − S which preserves the number of excedances but
changes the sign of every element of Gr1,...,rk;n − S and hence shows that Gr1,...,rk;n − S
contributes nothing to the generating function.

Recall that r = r1 · · · rk. We divide Gr1,...,rk;n into 2r + 1 disjoint subsets as follows:

K = {π ∈ Gr1,...,rk;n | |π(n)| 6= n, |π(n− 1)| 6= n},

T ~v
n = {π ∈ Gr1,...,rk;n | π(n) = n~v}, (~v ∈ Zr1

× · · · × Zrk
),

R~v
n = {π ∈ Gr1,...,rk;n | π(n− 1) = n~v}, (~v ∈ Zr1

× · · · × Zrk
),

We first construct a killing involution on the set K. Let π ∈ K. Define ϕ : K → K
by

π′ = ϕ(π) = (π(n− 1), π(n))π.

Note that ϕ exchanges π(n− 1) with π(n). It is obvious that ϕ is indeed an involution.
We will show that exc(π) = exc(π′). First, for i < n − 1, it is clear that i ∈ Exc(π)

if and only if i ∈ Exc(π′). Now, as π(n − 1) 6= n, n − 1 /∈ Exc(π) and thus n /∈ Exc(π ′).
Finally, π(n) 6= n implies that n− 1 /∈ Exc(π′) and thus exc(π) = exc(π′).

On the other hand, cyc(π) and cyc(π′) have different parities due to a multiplication
by a transposition. Hence, ϕ is indeed a killing involution on K.

We turn now to the sets T ~v
n (~v = (z1

n, . . . , z
k
n) ∈ Zr1

× · · · × Zrk
). Note that there

is a natural bijection between T ~v
n and Gr1,...,rk;n−1 defined by ignoring the last digit. Let

π ∈ T ~v
n . Denote the image of π ∈ T ~v

n under this bijection by π′. Since n 6∈ ExcA(π), we
have excA(π) = excA(π′).

Let m ∈ {1, . . . , k} be the minimal index such that zm
n 6= 0 and zt

n = 0 for all t < m.
Then, csumm(π′) = csumm(π) − zm

n , and csump(π
′) = csump(π) for 1 ≤ p ≤ k, p 6= m.

Finally, since n is an absolute fixed point of π, cyc(π′) = cyc(π) − 1. Hence, we get that
the total contribution of T ~v

n is:

PT~v
n

= −q
zm
n

k
Q

q=1,q 6=m

rq

PGr1,...,rk;n−1
(q, 1,−1) = −qzm

n
r

rmPGr1,...,rk;n−1
(q, 1,−1),

where m is defined as above.

Now, we treat the sets R~v
n (~v = (z1

n, . . . , z
k
n) ∈ Zr1

× · · · × Zrk
). There is a bijection

between R~v
n and T ~v

n using the same function ϕ we used above. Let π ∈ R~v
n. Define

ϕ : R~v
n → T ~v

n by
π′ = ϕ(π) = (π(n− 1), π(n))π.
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When we compute the change in the excedance, we split our treatment into two cases:
~v = ~0 and ~v 6= ~0.

We start with the case ~v = ~0. Note that n − 1 ∈ ExcA(π) (since π(n − 1) = n) and
n 6∈ ExcA(π). On the other hand, in π′, n−1, n 6∈ ExcA(π′). Hence, excA(π)−1 = excA(π′).

Now, for the case ~v 6= ~0 : n−1, n 6∈ ExcA(π) (since π(n−1) = n~v is not an excedance).
We also have: n− 1, n 6∈ ExcA(π′) and thus ExcA(π) = ExcA(π′) for π ∈ R~v

n where ~v 6= ~0.
In both cases, we have that csump(π) = csump(π

′) for each 1 ≤ p ≤ k. Hence, we
have that exc(π) − r = exc(π′) for ~v = ~0 and exc(π) = exc(π′) for ~v 6= ~0.

As before, the number of cycles changes its parity due to the multiplication by a
transposition, and hence: (−1)cyc(π) = −(−1)cyc(π′).

Hence, the total contribution of the elements in R~v
n is

qrPGr1,...,rk;n−1
(q, 1,−1)

for ~v = ~0, and

q
zm
n

k
Q

q=1,q 6=m

rq

PGr1,...,rk;n−1
(q, 1,−1) = qzm

n
r

rmPGr1,...,rk;n−1
(q, 1,−1)

for ~v 6= ~0.

In order to calculate
∑

~v∈Zr1×···×Zrk

PT~v
n

and
∑

~v∈Zr1×···×Zrk

PR~v
n
, we have to divide Zr1

×

· · · × Zrk
into sets according to the minimal index m such that zm

n 6= 0 and zt
n = 0 for all

t < m.
For each m ∈ {1, . . . , k + 1}, denote:

Wm = {~v = (z1
n, . . . , z

k
n) ∈ Zr1

× · · · × Zrk
|zm

n 6= 0, zt
n = 0, ∀t < m}.

Note that Wk+1 = {~0}.
It is easy to see that {W1, . . . ,Wk,Wk+1} is a partition of Zr1

× · · · × Zrk
.

Hence

∑

~v∈Zr1
×···×Zrk

PT~v
n

=

k+1
∑

m=1





∑

~v∈Wm

PT~v
n



 =

(

−1 +

k
∑

m=1

rm+1 · · · rk

rm−1
∑

t=1

−qt
r

rm

)

PGr1,...,rk;n−1
(q, 1,−1).

Similarly, we get:

∑

~v∈Zr1×···×Zrk

PR~v
n

=

(

qr +

k
∑

m=1

rm+1 · · · rk

rm−1
∑

t=1

qt r
rm

)

PGr1,...,rk;n−1
(q, 1,−1).

Now, if we sum up all the parts, we get:

PGr1,...,rk;n(q, 1,−1) =
∑

~v∈Zr1×···×Zrk

PT~v
n

+
∑

~v∈Zr1×···×Zrk

PR~v
n

= (qr − 1)PGr1,...,rk;n−1
(q, 1,−1)
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as needed.

From now on, we denote

K(q) = K(q; r1, . . . , rk) =

k
∑

m=1

rm+1 · · · rk

rm−1
∑

t=1

qt r
rm .

Note that:
1 +K(q) =

∑

~v∈Zr1×···×Zrk

qexc(1~v).

Now, for n = 1, Gr1,...,rk;1 is Zr1
× · · · × Zrk

, and thus

PGr1,...,rk;1
(q, 1,−1) = −1 −K(q).

Hence, we have
PGr1,...,rk;n(q, 1,−1) = (−1 −K(q)) (qr − 1)n−1,

and we have finished the proof of Theorem 1.1.

5 Derangements in Gr1,...,rk;n and the proof of Theorem

1.2

We start with the definition of a derangement.

Definition 5.1. An element σ ∈ Gr1,...,rk;n is called a derangement if it has no abso-
lute fixed points, i.e. |π(i)| 6= i for every i ∈ [n]. Denote by Dr1,...,rk;n the set of all
derangements in Gr1,...,rk;n.

We prove now Theorem 1.2.
We divide Dr1,...,rk;n into r + 2 = r1r2 · · · rk + 2 disjoint subsets in the following way:

A~v
r1,...,rk;n = {π ∈ Dr1,...,rk;n | π(2) = 1~v, |π(1)| 6= 2}, ~v ∈ Zr1

× · · · × Zrk
.

Br1,...,rk;n = {π ∈ Dr1,...,rk;n | |π| = (123 · · ·n)}.

D̂r1,...,rk;n = Dr1,...,rk;n −





⋃

~v∈Zr1×···×Zrk

A~v
r1,...,rk;n ∪ Br1,...,rk;n



 .

We start by constructing a killing involution ϕ on D̂r1,...,rk;n. Given any π ∈ D̂r1,...,rk;n,
let i be the first number such that |π(i)| 6= i+ 1. Define

π′ = ϕ(π) = (π(i), π(i+ 1))π.
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It is easy to see that ϕ is a well-defined involution on D̂r1,...,rk;n. We proceed to prove
that exc(π) = exc(π′). Indeed, csump(π) = csump(π

′) for all 1 ≤ p ≤ k.
Let i be the first number such that |π(i)| 6= i + 1, so that in the pass from π to π ′

we exchange π(i) with π(i + 1). For every j 6= i, i + 1, clearly j ∈ ExcA(π) if and only if
j ∈ ExcA(π′). Since π ∈ Dr1,...,rk;n, |π(i)| 6= i+1 and |π(j)| = j+1 for j < i, we have that
|π(i)|, |π(i+ 1)| ∈ {1, i+ 2, . . . , n}. Thus, exchanging π(i) with π(i + 1) does not change
ExcA(π).

Note also that the parity of cyc(π′) is opposite to the parity of cyc(π) due to the mul-
tiplication by a transposition. Hence, we have proven that ϕ is indeed a killing involution.

Now, let us calculate the contribution of each set in our decomposition to

PGr1,...,rk;n(q, 0,−1).

As we have shown, D̂r1,...,rk;n contributes nothing.
Let ~v = (z1

2 , . . . , z
n
2 ). Define a bijection

ψ : A~v
r1,...,rk;n → Dr1,...,rk;n−1

by: ψ(π) = π′ where π′(1) = (|π(1)| − 1)z1(π) and for j > 1, π′(j) = (|π(j + 1)| − 1)zj+1(π).
For example, if π = (3(0,1,0)1(0,0,0)4(2,2,2)2(0,0,1)), then π′ = (2(0,1,0)3(2,2,2)1(0,0,1)). It is easy
to see that excA(π) = excA(π′). On the other hand, let m ∈ {1, . . . , k} be the minimal
index such that zm

2 6= 0 and zt
n = 0 for all t < m. Then csumm(π′) = csumm(π)− zm

2 , and
csump(π

′) = csump(π) for 1 ≤ p ≤ k, p 6= m.
We have also: cyc(π) = cyc(π′) and thus the contribution of A~v

r,n to PGr1,...,rk;n(q, 0,−1)
is

PA~v
r1,...,rk;n

= q
zm
2

k
Q

q=1,q 6=m

rq

PGr1,...,rk;n−1
(q, 0,−1) = qzm

2
r

rmPGr1,...,rk;n−1
(q, 0,−1)

where m is defined as above.
Finally, we treat the set Br1,...,rk;n. Here for every π ∈ Br1,...,rk;n we have cyc(π) = 1.
We calculate now:

PBr1,...,rk;n(q, 0,−1) = −
n
∏

s=1

∑

~vs∈Zr1×···×Zrk

qexc(2~v13~v2 ···n~vn−11~vn )

= − (qr +K(q))n−1 · (1 +K(q)) .

To summarize, we get:

PGr1,...,rk;n(q, 0,−1) =





∑

~v=(z1
2 ,...,zk

2 )∈Zr1×···×Zrk

PA~v
r1,...,rk;n



 + PBr1,...,rk;n

=

(

k+1
∑

m=1

∑

~v∈Wm

PA~v
r1,...,rk;n

)

+ PBr1,...,rk;n

= (1 +K(q))PGr1,...,rk;n−1
(q, 0,−1) − (qr +K(q))n−1 · (1 +K(q))

= (1 +K(q))
(

PGr1,...,rk;n−1
(q, 0,−1) − (qr +K(q))n−1

)

,
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so we get:

PGr1,...,rk;n(q, 0,−1) = (1 +K(q))
(

PGr1,...,rk;n−1
(q, 0,−1) − (qr +K(q))n−1

)

.

Now, for n = 2 we have:

PGr1,...,rk;2
(q, 0,−1) = (qr +K(q)) · (1 +K(q)) .

By a direct computation, one can now get:

PGr1,...,rk;n
(q, 0,−1) = (qr + K(q)) (1 + K(q)) ·

(

(1 + K(q))
n−2

−

n−2
∑

k=1

(qr + K(q))
k
(1 + K(q))

n−2−k

)

for all n ≥ 2 as in Theorem 1.2.

6 Involutions in Gr1,...,rk;n

We recall that an element σ in Gr1,...,rk;n is called an involution if σ2 = 1. The set of
involutions in Gr1,...,rk;n will be denoted by Ir1,...,rk;n.

We consider the multi-distribution of the parameters exc, fix and csum on Ir1,...,rk;n,
where csum(π) here is the total contribution of all the csump-s from all the palettes:

csum(π) = exc(π) − r · excA(π) =

k
∑

p=1

(

csump(π) ·

k
∏

q=1,q 6=p

rq

)

.

We start by classifying the involutions of Gr1,...,rk;n. As in the case of Gr,n, each
involution of Gr1,...,rk;n can be decomposed into a product of ’atomic’ involutions of two
types: absolute fixed points and 2-cycles.

An absolute fixed point must be of the form π(i) = i~v where 2~v = ~0.
The 2-cycles have the form π(i) = j~v1 ; π(j) = i~v2 where ~v1, ~v2 ∈ Z1 × · · · × Zk and

~v1 + ~v2 = ~0.

Now, we compute recurrence and explicit formulas for

fr1,...,rk;n(u, v, w) =
∑

π∈Ir1,...,rk;n

ufix(π)vexc(π)wcsum(π).

Let π be any involution in Ir1,...,rk;n. Then we have either π(n) = n~v or π(n) = k~v with
k < n.

For π ∈ Ir1,...,rk;n such that π(n) = n~v, define π′ ∈ Ir1,...,rk;n−1 by ignoring the last digit
of π. For π ∈ Ir1,...,rk;n with π(n) = k~v and π(k) = n(r1,...,rk)−~v, define π′′ ∈ Ir1,...,rk;n−2 in
the following way: Write π in its complete notation, i.e. as a matrix of two rows. The
first row of π′′ is (1, 2, . . . , n− 2) while the second row is obtained from the second row of
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π by ignoring the digits n and k, and the other digits are placed in an order preserving
way with respect to the second row of π. Here is an explicit formula for the map π 7→ π ′′.

π′′(i) =















π(i) 1 ≤ i < k and π(i) < k
π(i) − 1 1 ≤ i < k and π(i) > k
π(i− 1) k ≤ i < n and π(i) < k

π(i− 1) − 1 k ≤ i < n and π(i) > k

Note that the map π 7→ π′ is a bijection from the set

{π ∈ Ir1,...,rk;n | π(n) = n~v} (~v fixed)

to Ir1,··· ,rk;n−1, while π 7→ π′′ is a bijection from the set

{π ∈ Ir1,...,rk;n | π(n) = k~v} (~v fixed)

to Ir1,...,rk;n−2.
For any ~v, if π(n) = n~v then:

fix(π) = fix(π′) + 1,

excA(π) = excA(π′).

Since ~v satisfies 2~v = 0, we have two cases. If ~v = ~0, then:

csum(π) = csum(π′).

On the other hand, if ~v = (z1, . . . , zk) 6= ~0, then there is some m, 1 ≤ m ≤ k, such that
zm 6= 0, and zi = 0 for all 1 ≤ i < m. In this case, ~v contributes zm · r

rm
to csum(π). But

since π is an involution, we have zm = rm

2
, and thus we have:

csum(π) = csum(π′) +
r

2
.

If π(n) = t ~v1 , then the parameters satisfy

fix(π) = fix(π′′),

excA(π) = excA(π′′) + δ~v,~0.

where δ~v1,~v2
is a generalized Kronecker Delta:

δ~v1,~v2
=

{

1 ~v1 = ~v2

0 ~v1 6= ~v2
.

Note that π(t) = n ~v2 , where ~v1 +~v2 = 0. Again, we have two cases. If ~v1 = ~0, then ~v2 = ~0,
and:

csum(π) = csum(π′).
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On the other hand, if ~v1 = (z1, . . . , zk) 6= ~0, then there is some m, 1 ≤ m ≤ k, such that
zm 6= 0, and zi = 0 for all 1 ≤ i < m. Since ~v1 +~v2 = 0, we have that ~v2 = (z′1, . . . , z

′
k) 6= ~0

with z′m 6= 0, z′i = 0 for all 1 ≤ i < m, and zm + z′m = rm. Now, ~v1 contributes zm · r
rm

to
csum(π) while ~v2 contributes z′m · r

rm
to csum(π). Hence, their total contribution is:

zm ·
r

rm

+ z′m ·
r

rm

= (zm + z′m) ·
r

rm

= rm ·
r

rm

= r.

Thus we have:
csum(π) = csum(π′′) + r(1 − δ~v,~0).

Now define
ε = #{ri | 1 ≤ i ≤ k, ri = 0 (mod 2)}.

Define also

µ = µr1,...,rk
=

{

1 + 2εw
r
2 ε 6= 0

1 ε = 0
.

The above consideration gives the following recurrence formula:

fr1,...,rk;n(u, v, w) = uµfr1,...,rk;n−1(u, v, w)

+(n− 1)(v + (r − 1)wr)fr1,...,rk;n−2(u, v, w), n ≥ 1.

Using the same technique used in [2], we get the following explicit formula:

Corollary 6.1. The polynomial fr1,...,rk;n(u, v, w) is given by

n
∑

j=n/2

(n− j)!

(

n

n− j, n− j, 2j − n

)

u2j−n(v + (r − 1)wr)n−j

2n−j
µ2j−n. (5)

If we substitute w = 1 and compute the coefficient of umv` in Formula (5), we get the
following result:

Corollary 6.2. The number of involutions in Gr1,...,rk;n with exactly m absolute fixed
points and excA(π) = ` is given by

(
n−m

2
)!(r − 1)

n−m
2

−`

(

n
n−m

2
, m, n−m

2
− `, `

)

(1 + 2ε)1−y

2
n−m

2

,

where y ∈ {0, 1} and y ≡ r (mod 2).

We turn now to the computation of the number of involutions with a fixed number of
excedances. We do this by substituting u = 1 and v = wr in Formula (5).

Corollary 6.3. The number of involutions π ∈ Gr1,...,rk;n with exc(π) = m is:






y!
(

n
y, y, n−2y

)

( r
2
)y r ≡ 1 (mod 2)

n
∑

j= n
2

(n− j)!
(

n
n−j, n−j, j−y, y−n+j

)

( r
2
)n−j2ε(y−n+j) r ≡ 0 (mod 2) ,

where y = m
r
.
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