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Abstract

Let Sn denote the symmetric group on [n] = {1, . . . , n}. A family I ⊆ Sn is
intersecting if any two elements of I have at least one common entry. It is known
that the only intersecting families of maximal size in Sn are the cosets of point
stabilizers. We show that, under mild restrictions, analogous results hold for the
alternating group and the direct product of symmetric groups.

1 Introduction

Let Sn (or Sym([n])) denote the symmetric group on the symbol-set [n] = {1, . . . , n}.
Throughout, the product (or composition) of two permutations g, h ∈ Sn, denoted by gh,
will always mean ‘do h first followed by g’. We say that a family I ⊆ Sn of permutations
is intersecting if {x : g(x) = h(x)} 6= ∅ for every g, h ∈ I, i.e. the Hamming distance
dH(g, h) = |{x : g(x) 6= h(x)}| ≤ n − 1 for every g, h ∈ I. In a setting of coding theory,
Deza and Frankl [5] studied extremal problems for permutations with given maximal or
minimal Hamming distance. Among other results, they proved that if I is an intersecting
family in Sn then |I| ≤ (n − 1)!. Recently, Cameron and Ku [4] showed that equality
holds if and only if I = {g ∈ Sn : g(x) = y} for some x, y ∈ [n], i.e. I is a coset of a
point stabilizer. This can also be deduced from a more general theorem of Larose and
Malvenuto [8] about Kneser-type graphs.
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Theorem 1.1 ([5], [4], [8]) Let n ≥ 2 and I be an intersecting family in Sn. Then

|I| ≤ (n − 1)!. Moreover, equality holds if and only if I = {g ∈ Sn : g(x) = y} for some

x, y ∈ [n].

Here we extend the study of intersecting families of Sn to that of the alternating group
An and the direct product of symmetric groups Sn1

×· · ·×Snq
. We say that a family I ⊆ An

(or respectively I ⊆ Sn1
×· · ·×Snq

) is intersecting if {x : g(x) = h(x)} 6= ∅ for any g, h ∈ I
(or respectively if, for every (g1, . . . , gq), (h1, . . . , hq) ∈ I, we have {x : gi(x) = hi(x)} 6= ∅
for some i). Our main results characterize intersecting families of maximal size in these
groups.

Theorem 1.2 Let n ≥ 2 and I be an intersecting family in An. Then |I| ≤ (n − 1)!/2.
Moreover, if n 6= 4, then equality holds if and only if I = {g ∈ An : g(x) = y} for some

x, y ∈ [n].

The following example shows that the condition n 6= 4 in Theorem 1.2 is necessary for
the case of equality: {(1, 2, 3, 4), (1, 3, 4, 2), (2, 3, 1, 4)} (we use the notation (a1, . . . , an)
to denote the permutation that maps i to ai).

Theorem 1.3 Let 2 ≤ m ≤ n and I be an intersecting family in Sym(Ω1) × Sym(Ω2),
Ω1 = [m], Ω2 = [n]. Then |I| ≤ (m−1)!n!. Moreover, for m < n such that (m, n) 6= (2, 3),
equality holds if and only if I = {(g, h) : g(x) = y} for some x, y ∈ Ω1, while for m = n
such that (m, n) 6= (3, 3), equality holds if and only if I = {(g, h) : g(x) = y} for some

x, y ∈ Ω1 or I = {(g, h) : h(x) = y} for some x, y ∈ Ω2.

The following examples show that the conditions (m, n) 6= (2, 3), (3, 3) in Theorem 1.3
are necessary for the case of equality:
• J23 = {((1, 2), (2, 3, 1)), ((1, 2), (1, 2, 3)), ((1, 2), (3, 1, 2)), ((2, 1), (2, 1, 3)), ((2, 1),
(3, 2, 1)), ((2, 1), (1, 3, 2))}.
• J33 = {((1, 3, 2), (1, 2, 3)), ((2, 1, 3), (1, 2, 3)), ((2, 1, 3), (1, 3, 2)), ((2, 1, 3), (2, 1, 3)),
((2, 1, 3), (3, 2, 1)), ((2, 3, 1), (1, 2, 3)), ((2, 3, 1), (2, 3, 1)), ((2, 3, 1), (3, 1, 2)), ((3, 1, 2),
(1, 3, 2)), ((3, 1, 2), (2, 1, 3)), ((3, 1, 2), (3, 2, 1)), ((3, 2, 1), (1, 2, 3))}.
For the direct product of finitely many symmetric groups, we prove

Theorem 1.4 Let 2 ≤ n1 = · · · = np < np+1 ≤ · · · ≤ nq, 1 ≤ p ≤ q. Let G =
Sn1

× · · · × Snq
be the direct product of symmetric groups Sni

acting on Ωi = {1, . . . , ni}.
Suppose I is an intersecting family in G. Then

|I| ≤ (n1 − 1)!

q
∏

i=2

ni!.

Moreover, except for the following cases:

• n1 = · · · = np = 2 < np+1 = 3 ≤ np+2 ≤ · · · ≤ nq for some 1 ≤ p < q,
• n1 = n2 = 3 ≤ n3 ≤ · · · ≤ nq,

• n1 = n2 = n3 = 2 ≤ n4 ≤ · · · ≤ nq,

equality holds if and only if I = {(g1, . . . , gq) : gi(x) = y} for some i ∈ {1, . . . , p},
x, y ∈ Ωi.

the electronic journal of combinatorics 14 (2007), #R25 2



The following examples show that the conditions for the case of equality are necessary:
• Sn1

× · · · × Snp−1
× J23 × Snp+2

× · · · × Snq
where n1 = · · · = np−1 = 2,

• J33 × Sn3
× · · · × Snq

,
• J222 × Sn4

× · · · × Snq
,

where J23 ⊆ S2 ×S3 and J33 ⊆ S3 ×S3 are defined above and J222 ⊆ S2 ×S2 ×S2 is given
by

{((1, 2), (1, 2), (1, 2)), ((1, 2), (2, 1), (2, 1)), ((1, 2), (1, 2), (2, 1)), ((2, 1), (1, 2), (2, 1))}.

In Section 2, we deduce Theorem 1.2 from a more general result by following an
approach similar to [8], except that we utilize GAP share package GRAPE to establish the
base cases needed for induction.

In Section3, we prove a special case of Theorem 1.4, namely when ni = n ≥ 4 for
all 1 ≤ i ≤ q. This is also a special case of a more general problem of determining
independent sets of maximal size in tensor product of regular graphs, see [3] and [9] for
recent interests in this area. For similar problems in extremal set theory, we refer the
reader to [1] and [6].

In Section 4, we first prove Theorem 1.3, followed by a proof of Theorem 1.4.
We shall require the following tools from the theory of graph homomorphisms. Recall

that a clique in a graph is a set of pairwise adjacent vertices, while an independent set

is a set of pairwise non-adjacent vertices. For a graph Γ, let α(Γ) denote the size of the
largest independent set in Γ. For any two graphs Γ1 and Γ2, a map φ from the vertex-set
of Γ1, denoted by V (Γ1), to the vertex-set V (Γ2) is a homomorphism if φ(u)φ(v) is an
edge of Γ2 whenever uv is an edge of Γ1, i.e. φ is an edge-preserving map.

Proposition 1.5 (Corollary 4 in [4]) Let C be a clique and A be an independent set

in a vertex-transitive graph on n vertices. Then |C| · |A| ≤ n. Equality implies that

|C ∩ A| = 1.

The following fundamental result of Albertson and Collins [2], also known as the ‘No-
Homomorphism Lemma’, will be useful.

Proposition 1.6 Let Γ1 and Γ2 be graphs such that Γ2 is vertex transitive and there

exists a homomorphism φ : V (Γ1) → V (Γ2). Then

α(Γ1)

|V (Γ1)|
≥

α(Γ2)

|V (Γ2)|
. (1)

Furthermore, if equality holds in (1), then for any independent set I of cardinality α(Γ2)
in Γ2, φ−1(I) is an independent set of cardinality α(Γ1) in Γ1.

2 Intersecting families in the alternating group

Throughout, An denotes the group of all even permutations of [n]. Let Γ(An) be the
graph whose vertex-set is An such that two vertices g, h are adjacent if and only if they
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do not intersect, i.e. g(x) 6= h(x) for all x ∈ [n]. Clearly, left multiplication by elements
of An is a graph automorphism; so Γ(An) is vertex-transitive. By Proposition 1.5, the
bound in Theorem 1.2 is attained provided there exists a clique of size n in Γ(An), i.e.
a Latin square whose rows are even permutations. Indeed, such a Latin square can be
constructed as follows: consider the cyclic permutations (1, 2, . . . , n), (n, 1, 2, . . . , n − 1),
. . . , (2, 3, . . . , n, 1). If n is odd then these permutations form the rows a Latin square as
desired. If n is even then exactly half of these permutations are odd. Now, interchange
the entries containing the symbols n− 2 and n in these odd permutations. Together with
the remaining even ones, they form a desired Latin square.

It remains to prove the case of equality of Theorem 1.2. It is feasible, by using GAP [7],
to establish Theorem 1.2 for n = 2, 3, 5, 6, 7. For n ≥ 8, we shall deduce Theorem 1.2
from the more general Theorem 2.1. The inductive argument in our proof is similar to [8]
which we reproduce here for the convenience of the reader, except that we verify our base
cases (see Lemma 2.4 and Lemma 2.5) with the help of a computer instead of proving
them directly by hand, as in Lemma 4.5 of [8].

Define An(b1, . . . , br) = {g ∈ An : ∃u ∈ {0, 1, . . . , n − 1} such that g(i + u) = bi ∀i =
1, . . . , r} where i + u is in modulo n. For example, A5(1, 2, 3) consists of all even permu-
tations of the form (1, 2, 3, ∗, ∗), (∗, 1, 2, 3, ∗), (∗, ∗, 1, 2, 3), (3, ∗, ∗, 1, 2), (2, 3, ∗, ∗, 1).

Theorem 2.1 For n ≥ 8, let I be an intersecting family of maximal size in An(b1, . . . , br)
where 1 ≤ r ≤ n − 5. Then I = Iq

p ∩ An(b1, . . . , br) for some p, q ∈ {1, . . . , n} where

Iq
p = {g ∈ An : g(p) = q}.

Lemma 2.2 Let Γ(An)(b1, . . . , br) denote the subgraph of Γ(An) induced by An(b1, . . . , br).
Then, for 1 ≤ r ≤ n − 3,

(i) Γ(An)(b1, . . . , br) contains a clique of size n;

(ii) the graphs Γ(An)(b1, . . . , br) and Γ(An)(1, . . . , r) are isomorphic, under an isomor-

phism which preserves the independent sets of the form I q
p ∩ Γ(An)(b1, . . . , br).

(iii) Γ(An)(b1, . . . , br) is vertex-transitive.

Proof. (i) Let {b1, . . . , bn} = [n]. The construction is similar to that given above for the
graph Γ(An). Indeed, choose an even permutation w such that w(i) = bi for all 1 ≤ i ≤ n
(the existence of such a permutation is guaranteed by the condition n − r ≥ 3) and let
W = {w, wc, wc2, . . . , wcn−1} where c = (n, 1, 2, . . . , n − 1). If n is odd then W is the
desired clique; otherwise wci is odd if and only if i is odd. For these odd permutations,
interchange the entries containing bn−2 and bn so that they become even. Together with
the even permutations in W , they are now as required.

(ii) Let h ∈ An such that h(bi) = i for all 1 ≤ i ≤ r. Then the map g 7→ hg is the
required isomorphism.

(iii) Let g, h ∈ Γ(An)(1, . . . , r). Suppose g(i) = h(j) = 1 for some i, j ∈ {1, . . . , n}.
Express g and h as g′(n, 1, 2, . . . , n − 1)i−1 and h′(n, 1, 2, . . . , n − 1)j−1 respectively such
that g′ and h′ are permutations fixing 1, . . . , r. Then the map φ : Γ(An(1, . . . , r)) →
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Γ(An(1, . . . , r)) given by w 7→ h′g′−1w(n, 1, 2, . . . , n − 1)j−i is a graph automorphism
sending g to h. �

Lemma 2.3 Let r ≤ n − 4. If I is an independent set of Γ(An)(b1, . . . , br) of maximal

size then I ∩ Γ(An)(b1, . . ., br, br+1) is an independent set of Γ(An)(b1, . . . , br, br+1) of

maximal size.

Proof. Applying Lemma 2.2 to Γ1 = Γ(An)(b1, . . . , br+1) and Γ2 = Γ(An)(b1, . . . , br), we
have the inclusions

Kn ↪→ Γ1 ↪→ Γ2 ↪→ Γ(An)

so that
1

n
≥

α(Γ1)

|V (Γ1)|
≥

α(Γ2)

|V (Γ2)|
≥

α(Γ(An))

|V (Γ(An))|
=

1

n
.

The result follows from Proposition 1.6. �

Lemma 2.4 Let n ≥ 8 and r = n − 5. Decompose An(1, . . . , r) into Bn(u) = {g ∈
An(1, . . . , r) : g(1 + u) = 1}, u = 0, 1, . . . , n − 1.
Suppose I ⊆ Cn = Bn(0) ∪

(
⋃4

u=1 Bn(u) ∪ Bn(n − u)
)

is an intersecting family. Then

|I| ≤ 60 with equality if and only if I consists of g such that g(p) = q for some p, q ∈
{1, . . . , n}.

Proof. It is readily checked (by using GAP) that the result holds for 8 ≤ n ≤ 14. So
let n ≥ 15 and proceed by induction on n. Suppose n is odd. Let Γ1 denote the graph
whose vertex-set V1 is Cn−2 such that two vertices are adjacent if and only if they do not
intersect. Similarly, Γ2 denotes such a graph on V2 = Cn. Define a map φ : Cn−2 → Cn

such that if g ∈ Bn−2(u) then

φ(g)(i) =















g(i) + 2 if 1 ≤ i ≤ u,
1 if i = u + 1,
2 if i = u + 2,
g(i − 2) + 2 if u + 3 ≤ i ≤ n.

Since φ is a graph isomorphism (for n ≥ 15) which also preserves independent sets of the
form Iq

p ∩ Cn−2, the result holds by induction for odd n ≥ 15. The case for even n is
similar. �

Lemma 2.5 Let n ≥ 8 and r = n − 5. Suppose I ⊆ An(b1, . . . , br) is an intersecting

family. Then |I| ≤ 60 with equality if and only if I consists of g such that g(p) = q for

some p, q ∈ {1, . . . , n}.

Proof. By (ii) of Lemma 2.2, we assume, without loss of generality, that An(b1, . . . , br) =
An(1, . . . , r) and the identity (1, 2, . . . , n) ∈ I. Since every other element of I must inter-
sect the identity element, we deduce that I ⊆ Cn = Bn(0) ∪

(
⋃4

u=1 Bn(u) ∪ Bn(n − u)
)

.
The result now follows from Lemma 2.4. �
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Proof of Theorem 2.1. We shall imitate the proof of Theorem 4.2 in [8] by Larose and
Malvenuto. For the argument to work for even permutations, we require a slightly greater
degree of freedom, i.e k = n−r ≥ 5, which is assumed by the theorem. As before, we may
assume that Γ(An)(b1, . . . , br) = Γ(An)(1, . . . , r). Recall that Iq

p = {g ∈ An : g(p) = q}.
For r = n − 5, this is Lemma 2.5. Assuming 1 ≤ r ≤ n − 6, we proceed by induction

on k = n − r.
Case I. There exists β 6∈ {1, . . . , r} with the property that I ∩ Γ(An)(1, . . . , r, β) =
Iq
p ∩ Γ(An)(1, . . . , r, β) for some q 6∈ {1, . . . , r, β}.

Let g ∈ I. Then there exists some u such that g(i + u) = i for all 1 ≤ i ≤ r. It is
enough to show that g(p) = q. Now, construct another permutation h ∈ I in the following
order:

(i) set h(p) = q,

(ii) since n− r ≥ 6, there are at least 5 choices of v such that p 6∈ {1 + v, 2 + v . . . , (r +
1) + v}. Pick one of such v so that v 6= u and g((r + 1) + v) 6= β. Next, define
h(i + v) = i for all 1 ≤ i ≤ r and h((r + 1) + v) = β.

(iii) there are at least 4 entries of h which have not yet been defined. Choose the
remaining entries of h so that it is even and has no intersections with g in these
entries.

Since both g, h ∈ I, we deduce that g(p) = h(p) = q.
By the inductive hypothesis and Lemma 2.3, it remains to consider:

Case II. For every β 6∈ {1, . . . , r} there exists p and q ∈ {1, . . . , r, β} such that I ∩
Γ(An)(1, . . . , r, β) = Iq

p ∩ Γ(An)(1, . . . , r, β).
By permuting and relabeling entries, we may assume that the identity id = (1, . . . , n) ∈

I. Thus, id ∈ I ∩ Γ(An)(1, . . . , r, r + 1) = Iq
p ∩ Γ(An)(1, . . . , r, r + 1). Without loss of

generality, we may assume that p = q = 1 so that I now contains all even permutations
which fix 1, . . . , r, r + 1. We shall prove that I = I1

1 ∩ Γ(An)(1, . . . , r). Suppose, for a
contradiction, that there exists g ∈ I such that g(1) 6= 1, i.e. g(i + u) = i, 1 ≤ i ≤ r, for
some u 6= 0. Note that g((r + 1) + u) = β 6= r + 1, otherwise g ∈ Γ(An)(1, . . . , r + 1),
forcing g ∈ I1

1 ∩ Γ(An)(1, . . . , r + 1). By induction again, we have

g ∈ I ∩ Γ(An)(1, . . . , r, β) = Iq′

p′ ∩ Γ(An)(1, . . . , r, β)

for some q′ ∈ {1, . . . , r, β}. As above, we conclude that I contains all even permutations
h such that h(i + u) = i for all 1 ≤ i ≤ r and h((r + 1) + u) = β. If β 6= (r + 1) + u, then
we can find such a permutation h which is fixed-point free, contradicting the fact that
id ∈ I. So β = (r + 1) + u. Since now β 6∈ {1, . . . , r, r + 1} and n − r ≥ 6, we can always
find an even permutation w ∈ I which fixes all 1 ≤ i ≤ r + 1 but does not intersect with
h, a contradiction. �
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3 A special case of Theorem 1.4

In this section we give the proof of a special case of Theorem 1.4, namely when all the
ni’s are equal to n ≥ 4. Throughout, G denotes the direct product of q copies of the
symmetric group Sn acting on [n].

Theorem 3.1 Let q ≥ 1, n ≥ 4. Suppose I is an intersecting family of maximal size in

G. Then

|I| = (n − 1)!n!q−1.

Moreover, I = {(g1, . . . , gq) : gi(x) = y} for some 1 ≤ i ≤ q and x, y ∈ [n].

For our purpose, it is useful to view G as a subgroup of Sym(Ω), where Ω = {1, . . . , qn},
which preserves a partition of Ω in the following way: let Σ be the partition of Ω into equal-
sized subsets Ωi = [(i− 1)n+1, in], i = 1, . . . , q, then G consists of g ∈ Sym(Ω) such that
Ωg

i = Ωi for each i. For example, we identify the identity element Id = (id, . . . , id) ∈ G
with (1, 2, . . . , qn) ∈ Sym(Ω). Therefore, a family I ⊆ G is intersecting if and only if it
is an intersecting family of Sym(Ω). Moreover, for any g ∈ G and I ⊆ G, we can now
define Fix(g) = {x ∈ Ω : g(x) = x} and Fix(I) = {Fix(g) : g ∈ I} by regarding them as
permutations of Ω.

For a proof of Theorem 3.1, we shall consider the cases 4 ≤ n ≤ 5 and n ≥ 6 separately.
Indeed, when n = 4, 5, the result can be deduced from the following theorem of Alon et
al. [3]. Recall that the tensor product of two graphs Γ1 and Γ2, denoted by Γ1 × Γ2, is
defined as follows: the vertex-set of Γ1 × Γ2 is the Cartesian product of V (Γ1) and V (Γ2)
such that two vertices (u1, v1), (u2, v2) are adjacent in Γ1 ×Γ2 if u1u2 is an edge of Γ1 and
v1v2 is an edge of Γ2. Let Γq denote the tensor product of q copies of Γ.

Theorem 3.2 (Theorem 1.4 in [3]) Let Γ be a connected d-regular graph on n vertices

and let d = µ1 ≥ µ2 ≥ · · · ≥ µn be its eigenvalues. If

α(Γ)

n
=

−µn

d − µn

(2)

then for every integer q ≥ 1,

α(Γq)

nq
=

−µn

d − µn

.

Moreover, if Γ is also non-bipartite, and if I is an independent set of size −µn

d−µn
nq in Γq,

then there exists a coordinate i ∈ {1, . . . , q} and a maximum-size independent set J in Γ,

such that

I = {(v1, . . . , vq) ∈ V (Γq) : vi ∈ J}.

Theorem 3.3 Theorem 3.1 holds for n = 4, 5.
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Proof. Let n ∈ {4, 5} and Γn = Γ(Sn) be the graph whose vertex-set is Sn such that two
vertices are adjacent if they do not intersect. It is easy to check that Γn is non-bipartite,
connected and d(n)-regular where d(n) is the number of derangements in Sn. In particular
d(4) = 9 and d(5) = 44. Moreover, an independent set in Γq

n is an intersecting family in
G. A MAPLE computation shows that the smallest eigenvalue of Γ4 and Γ5 are −3 and
−11 respectively. The result now follows from Theorem 1.1 and Theorem 3.2. �

We believe that relation (2) holds for Γ(Sn) in general so that Theorem 3.1 follows
immediately from Theorem 1.1 and Theorem 3.2. However, it seems difficult to compute
the smallest eigenvalue of this graph. We conjecture the following:

Conjecture 1 Let n ≥ 2. Then the smallest eigenvalue of Γ(Sn) is −d(n)
n−1

.

The rest of the proof of Theorem 3.1 is combinatorial. Our method combines ideas
from [4] and an application of the ‘No-Homomorphism Lemma’.

3.1 Closure under fixing operation

Let x ∈ {1, . . . , n}, g ∈ Sn. We define the x-fixing of g to be the permutation /xg ∈ Sn

such that

(i) if g(x) = x, then /xg = g,

(ii) if g(x) 6= x, then

/xg(y) =







x if y = x,
g(x) if y = g−1(x),
g(y) otherwise.

Note that we can apply the fixing operation to an element g ∈ G by regarding g as an
element of Sym(Ω). We also say that a family I ⊆ Sn is closed under the fixing operation

if
for every x ∈ {1, . . . , n} and g ∈ I, we have /x g ∈ I.

Let DSn
(g) = {w ∈ Sn : w(i) 6= g(i) ∀i = 1, ..., n}. The authors of [4] proved the

following:

Lemma 3.4 (Proposition 6 in [4]) Let n ≥ 2k. Then, for any g1, g2, ....., gk ∈ Sn, we

have DSn
(g1) ∩ DSn

(g2) ∩ ..... ∩ DSn
(gk) 6= ∅.

Lemma 3.5 (Theorem 8 in [4]) Let n ≥ 6 and I ⊆ Sn be an intersecting family of

maximal size such that the identity element id ∈ I. Then I is closed under the fixing

operation.

Lemma 3.6 (Theorem 10 in [4]) Let S ⊆ Sn be an intersecting family of permutations

which is closed under the fixing operation. Then Fix(S) is an intersecting family of subsets.

The proof of Lemma 3.5 given in [4] can be easily modified to yield a similar result
for G. For the convenience of the reader, we include the proof below.
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Proposition 3.7 Let n ≥ 6 and I ⊆ G be an intersecting family of maximal size such

that Id ∈ I, q ≥ 1. Then I is closed under the fixing operation.

Proof. Let L denote the set of all n-subsets L of Sym(Ω) such that for each i, the
elements of L restricted to Ωi form the rows of a Latin square of order n. Clearly, L 6= ∅.
By Proposition 1.5, for every L ∈ L,

|L ∩ I| = 1. (3)

Assume, for a contradiction, that I is not closed under the fixing operation. Then
there exists g ∈ I such that g(x) 6= x and /xg 6∈ I for some i ∈ {1, . . . , q}, x ∈ Ωi.
Without loss of generality, we may assume that i = x = 1 (so /1g 6∈ I) and consider the
following cases:
Case I. g(1) = 2 and g(2) = 1.

Let Ω∗1 = Ω1 \ {1, 2}. Consider the identity element Id restricted to Ω∗1, denoted by
Id∗ = Id|Ω∗

1
, and the permutation g restricted to Ω∗1, denoted by g∗ = g|Ω∗

1
, which belong

to Sym(Ω∗1) = G∗. By Lemma 3.4, there exists h∗ ∈ DG∗(Id∗) ∩ DG∗(g∗). Construct a
new permutation h′ ∈ G∗ as follows:

h′(y) =







h∗(y) if y ∈ Ω∗1,
2 if y = 1,
1 if y = 2.

Applying Lemma 3.4 to each block Ωi for i = 2, . . . , q, we find a permutation h′′ ∈
DG′′(Id′′)∩DG′′(g′′) where Id′′ = Id|Ω2∪···∪Ωq

and g′′ = g|Ω2∪···∪Ωq
, G′′ = Sym(Ω2∪· · ·∪Ωq).

Now, define h ∈ G by

h(y) =

{

h′(y) if y ∈ Ω1,
h′′(y) otherwise .

Then /1g and h form a Latin rectangle of order 2 × qn which can now be completed to
an element L ∈ L (since every Latin rectangle of order 2 × n on Ωi can be completed to
a Latin square of order n on Ωi). It is readily checked that no rows of L can lie in I,
contradicting (3).
Case II. g(1) = 2 and g(3) = 1.

Let Ω∗1, Id∗, G∗ and h′′ be defined as above. Now define g∗ ∈ G∗ by

g∗(y) =

{

g(y) if y ∈ Ω∗1 \ {3},
g(2) if y = 3.

By Lemma 3.4, there is a permutation h∗ ∈ DG∗(Id∗) ∩ DG∗(g∗).
Construct h′ ∈ Sym(Ω1) as follows:

h′(y) =















2 if y = 1,
h∗(3) if y = 2,
1 if y = 3,
h∗(y) otherwise .

Again, defining h ∈ G as above yields a contradiction. �

It now follows immediately from Lemma 3.6 that

the electronic journal of combinatorics 14 (2007), #R25 9



Proposition 3.8 Let q ≥ 1, n ≥ 6 and I ⊆ G be an intersecting family of maximal size

such that Id ∈ I. Then Fix(I) is an intersecting family of subsets of Ω.

3.2 Proof of Theorem 3.1

By Theorem 3.3, we may assume that n ≥ 6. For 1 ≤ i ≤ n, define c(→i), c(←i) ∈ Sn by:

c(→i)(j) = n − i + j, 1 ≤ j ≤ n

c(←i)(j) = i + j, 1 ≤ j ≤ n

where the right hand side is in modulo n and 0 is written as n. In fact, we have already
seen such cyclic permutations in Section 2, namely c(→1) = (n, 1, 2, . . . , n−1), c(→i) = ci

(→1)

for all 1 ≤ i ≤ n, and c(→n) is the identity. Observe that by right multiplication, c(→i) acts
on Sn by cyclicly (modulo n) moving each entry of g in i number of steps to the right.
For example, if g = (1, 3, 4, 2, 5), then gc(→2) = (2, 5, 1, 3, 4).

We proceed with induction on q. Let Γ′ and Γ be the graphs formed on the vertex
sets G′ = Sym(Ω1) × · · · × Sym(Ωq−1) and G = Sym(Ω1) × · · · × Sym(Ωq) respectively
such that two vertices are adjacent if and only if none of their entries agree. Clearly,

φ∗ : V (Γ′) → V (Γ),

(g1, . . . , gq−1) 7→ (g1, . . . , gq−1, g1), (4)

defines a homomorphism from Γ′ to Γ.
As before, let L denote the set of all n-subsets L of Sym(Ω) such that for each i, the

elements of L restricted to Ωi form a Latin square of order n. By Proposition 1.5, I has
the right size. Also, α(Γ′)

|V (Γ′)|
= α(Γ)
|V (Γ)|

.

Now, Proposition 1.6 implies that φ−1
∗ (I) is an independent set of maximal size in Γ′.

Without loss of generality, we may assume that the identity Id = (id, . . . , id) ∈ I so that,
by the inductive hypothesis, we only need to consider the following cases:
Case I. φ−1

∗ (I) = {(g1, . . . , gq−1) ∈ G′ : gu(z) = z} = Jz
z , for some u 6= 1, z ∈ Ωu.

Let Φ1 = φ∗(J
z
z ) = {(g1, . . . , gq−1, g1) ∈ G : gu(z) = z} ⊆ I. Clearly we can find a

permutation gu ∈ Sym(Ωu) with gu(z) = z such that gu(x) 6= x for all x 6= z. Moreover,
for i 6= u, we can choose gi ∈ Sym(Ωi) such that it has no fixed points. Therefore our
choice of the permutation g = (g1, . . . , gq−1, g1) ∈ Φ1 fixes a unique point, namely z. It
follows from Proposition 3.8 that all permutations in I must fix z.
Case II. φ−1

∗ (I) = {(g1, . . . , gq−1) ∈ G′ : g1(1) = 1} = J1
1 .

As above, let Φ1 = φ∗(J
1
1 ) = {(g1, . . . , gq−1, g1) ∈ G : g1(1) = 1} ⊆ I. We define

another homomorphism from Γ′ to Γ as follows:

φ∗∗ : V (Γ′) → V (Γ),

(g1, . . . , gq−1) 7→ (g1, . . . , gq−1, g1c(→1)). (5)

By induction, there exists i ∈ {1, . . . , q − 1} such that

φ−1
∗∗ (I) = {(g1, . . . , gq−1) ∈ G′ : gi(u) = v} = Jv

u ,
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for some u, v ∈ Ωi. Let

Φ2 = φ∗∗(J
v
u) ⊆ I.

Suppose that i 6= 1. Then it is easy to see that there exist permutations g ∈ Φ1,
h ∈ Φ2 such that Fix(g−1h) = ∅, that is they do not intersect, thus contradicting the
intersection property of I. Therefore it suffices to consider the following cases where u,
v ∈ Ω1.
Subcase i. u 6= 1, v = 1.

Assume for a moment that u 6= n. Let g = (g1, . . . , gq−1, g1) ∈ Φ1 where g1 = (1, a2,
· · · , au, · · · , an) ∈ Sym(Ω1). Then there exists a permutation h = (h1, . . . , hq−1, h1c(→1)) ∈
G where h1 = g1c(→u−1) and Fix(g−1

j hj) = ∅ for all j = 2, . . . , q−1. Obviously, h ∈ Φ2 ⊆ I

and Fix(g−1
1 h1) = Fix(g−1

1 h1c(→1)) = ∅. Hence Fix(g−1h) = ∅, which is a contradiction.
So u = n.

Choose h = (h1, . . . , hq−1, h1c(→1)) ∈ Φ2 such that h1 = (n−1, n, 2, 3, · · · , n−2, 1) and
Fix(id−1

j hj) = ∅ for all j = 2, . . . , q − 1 (idj denotes the identity in Sym(Ωj)). Moreover
h1c(→1) fixes exactly one point since n > 3. Hence |Fix(h)| = 1 and so by Proposition
3.8, all permutations in I must fix a common point.
Subcase ii. u = v = 1.

Choose h = (h1, . . . , hq−1, h1c(→1)) ∈ Φ2 such that h1 = (1, n, 2, 3, · · · , n − 1) and
Fix(id−1

j hj) = ∅. Clearly h fixes exactly one point and so we are done as before.
Subcase iii. u 6= 2, v 6= 1.

Take any permutation h1 ∈ Sn with h1(2) = 1 and h1(u) = v, say h1 = (a1, 1, a3, · · · ,
au−1, v, au+1, · · · , an). Let g1 = h1c(←1) = (1, a3, · · · , au−1, v, au+1, · · · , an, a1) so that
g = (g1, g1, . . . , g1) ∈ Φ1 ⊆ I and h = (h1, . . . , h1, h1c(→1)) ∈ Φ2 ⊆ I. But it is easy to see
that both g and h cannot agree in any entry, which is a contradiction.
Subcase iv. u = 2, v 6= 1.

Choose h1 = (a1, v, 1, a4, a5, · · · , an) ∈ Sn. Let g1 = h1c(←2) = (1, a4, a5, · · · , an, a1, v)
so that g = (g1, . . . , g1) ∈ Φ1 ⊆ I and h = (h1, . . . , h1, h1c(→1)) ∈ Φ2 ⊆ I. Again, both g
and h do not intersect, which is a contradiction.

This concludes the proof. �

4 Intersecting families in the direct product of sym-

metric groups

Let Sm and Sn denote the symmetric groups acting on the symbol-set Ω1 = {1, 2, . . . , m}
and Ω2 = {1, 2, . . . , n} respectively. The group Sm × Sn consists of ordered pairs (g, h)
where g ∈ Sm, h ∈ Sn. Recall that a family I ⊆ Sm × Sn is intersecting if, for any
(g1, h1), (g2, h2) ∈ I, either {x : g1(x) = g2(x)} 6= ∅ or {x : h1(x) = h2(x)} 6= ∅.
Proof of Theorem 1.3 Let Γ denote the graph whose vertex-set is Sm × Sn such that
two vertices (g1, h1) and (g2, h2) are adjacent if and only if {x : g1(x) = g2(x)} = ∅ and
{x : h1(x) = h2(x)} = ∅. Clearly, Γ is vertex-transitive. As before, to obtain the upper
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bound of |I|, it is enough to show that there exists a clique of size m. Indeed, this is given
by a Latin square of order m on Ω1 and a Latin rectangle of order m × n on Ω2.

For a proof of the characterization, we first form (m−1)! Latin squares L1, . . . , L(m−1)!

on the symbol-set Ω1 as follows: for each g ∈ {g ∈ Sm : g(1) = 1} in the point stabilizer
of 1, form a Latin square whose rows consist of g and all its cyclic shifts. Clearly, these
Latin squares partition Sm.

For each Ll, denote the i-th row by rl
i. Let T l

i = {h ∈ Sn : (rl
i, h) ∈ I}. Further,

decompose T l
i into T l

i1, . . . , T
l
in where T l

ij = {h ∈ T l
i : h(j) = 1}. Now, consider the

following cases:
Case I. There exist k, α1 6= α2, β1 6= β2 such that T k

α1β1
6= ∅ and T k

α2β2
6= ∅.

Suppose {α1, . . . , αm} = Ω1. Choose pairwise distinct elements β1, . . . , βm ∈ Ω2.
Consider the sets U l

j =
⋃m

i=1 T l
αi(βi+j), 0 ≤ j ≤ n − 1, where βi + j is in modulo n. Then

(m − 1)!n! = |I| =

(m−1)!
∑

l=1

n−1
∑

j=0

|U l
j|. (6)

Since U l
j is intersecting, we have |U l

j| ≤ (n − 1)!. In fact, it follows from (6) that |U l
j| =

(n − 1)! so that U l
j must be a coset of a point stabilizer for every 0 ≤ j ≤ n − 1 and

1 ≤ l ≤ (m − 1)! (by Theorem 1.1).
Suppose m < n− 1. Since 1 appears in at least two (e.g. the β1- and β2-entry) but in

at most m ≤ n− 2 different entries in U k
0 , we deduce that it cannot be a coset of a point

stabilizer. Suppose m = n − 1. Then Uk
0 = {h ∈ Sn : h(βn) = γ} for some βn, γ ∈ Ω2

where βn = Ω2 \ {β1, . . . , βn−1} and γ 6= 1. Moreover, since m = n − 1 > 2, we must
have T k

αn−1βn
= ∅ in order to preserve intersection with elements in U k

0 (note that this
conclusion is not true if (m, n) = (2, 3)). Replacing our choice of βn−1 by βn, the symbol
1 now appears in exactly n− 2 different entries in the new U k

0 so that it cannot be a coset
of a point stabilizer, a contradiction.

So, we may assume that m = n. It is readily checked that the result holds for n = 2.
For n ≥ 4, the result follows from Theorem 3.1.
Case II. For all k, there exist αk, βk such that T k

αkβk
6= ∅ and T k

ij = ∅ for all i 6= αk.

If T k
αk

6= Sn for some k then |I| < (m − 1)!n!, which is a contradiction. So T k
αk

= Sn

for all k. In order to preserve intersection, the maximality of I (by Theorem 1.1) implies
that I = {(g, h) : g(x) = y} for some x, y ∈ Ω1.
Case III. For all k, there exist αk, βk such that T k

αkβk
6= ∅ and T k

ij = ∅ for all j 6= βk.

If T k
iβk

is not a coset of the stabilizer of 1 in Sn for some i, k, then |I| < (m−1)!m(n−
1)! ≤ (m − 1)!n!, contradicting the maximality of I. So |I| = (m − 1)!m(n − 1)!. Again,
the maximality of I implies that m = n and so I has the required shape as above. �

Proof of Theorem 1.4 As before, the upper bound of |I| is given by the existence of
Latin squares of order n1 and Latin rectangles of order n1 × ni for all n1 < ni. It remains
to consider the case of equality with the following possibilities:
P1. 4 ≤ n1 ≤ · · · ≤ nq;
P2. 3 = n1 < n2 ≤ · · · ≤ nq;
P3. 2 = n1 < n2 ≤ · · · ≤ nq with 4 ≤ n2;

the electronic journal of combinatorics 14 (2007), #R25 12



P4. 2 = n1 = n2 < n3 ≤ · · · ≤ nq with 4 ≤ n3.
By Theorem 3.1, we may assume that 2 ≤ n1 = · · · = np < np+1 ≤ · · · ≤ nq for some

1 ≤ p < q subject to the above possibilities. Set m = n1 = · · · = np and n = np+1 so
that m < n. For each 1 ≤ i ≤ p, we first partition Sni

into (m − 1)! Latin squares Lil,
1 ≤ l ≤ (m − 1)!, whose rows are ril

1 , . . . , ril
m. Next, for every choice of l̃ = (l1, . . . , lp)

where 1 ≤ l1, . . . , lp ≤ (m−1)!, construct mp−1 Latin rectangles as follows: fix π to be the
cyclic permutation (m, 1, 2, . . . , m − 1), then for every choice of j̃ = (j2, j3, . . . , jp) where
0 ≤ j2, . . . , jp ≤ m − 1, construct a Latin rectangle whose rows consist of the following
permutations from Sn1

× · · · × Snp
:

(r1l1
1 , r2l2

πj2(1)
, . . . , r

plp

πjp (1)
),

(r1l1
2 , r2l2

πj2(2)
, . . . , r

plp

πjp (2)
),

...

(r1l1
m , r2l2

πj2 (m)
, . . . , r

plp

πjp(m)
).

Denote this Latin rectangle by L(l̃, j̃) and its i-th row by ri(l̃, j̃) = (r1l1
i , r2l2

πj2 (i)
, . . . , r

plp

πjp(i)
).

Observe that these Latin rectangles partition Sn1
×· · ·×Snp

and there are (m−1)!pmp−1 =

(m − 1)!m!p−1 such Latin rectangles. Now, for each row ri(l̃, j̃), define

T (ri(l̃, j̃)) = {(hp+1, . . . , hq) ∈ Snp+1
× · · ·Snq

: (r1l1
i , r2l2

πj2(i)
, . . . , r

plp

πjp (i)
, hp+1, . . . , hq) ∈ I}.

Further, partition T (ri(l̃, j̃)) into

T (ri(l̃, j̃))j = {(hp+1, . . . , hq) ∈ T (ri(l̃, j̃)) : hp+1(j) = 1}, 1 ≤ j ≤ n.

We shall prove the theorem by induction on q ≥ 2. The base case q = 2 is the
statement of Theorem 1.3. By the inductive hypothesis, we may assume that the result
is true for Snp+1

× · · · × Snq
where 4 ≤ np+1 = · · · = nr < nr+1 ≤ · · · ≤ nq for some

p + 1 ≤ r ≤ q. We proceed by considering the following cases:
Case I. There exist l̃, j̃, u 6= u′, v 6= v′ such that T (ru(l̃, j̃))v 6= ∅ and T (ru′(l̃, j̃))v′ 6= ∅.

Suppose {u1 = u, u2 = u′, u3, . . . , um} = {1, . . . , m}. Choose m pairwise distinct
elements v1 = v, v2 = v′, v3, . . . , vm from Ωp+1 = {1, . . . , n}. Consider the sets

U (l̃,j̃)
w =

m
⋃

i=1

T (rui
(l̃, j̃))vi+w, 0 ≤ w ≤ n − 1,

where vi + w is in modulo n. Then

(m − 1)!m!p−1

q
∏

i=p+1

ni! = |I| =
∑

(l̃,j̃)

n−1
∑

w=0

|U (l̃,j̃)
w |. (7)
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Since U
(l̃,j̃)
w is intersecting, it follows from (7) that |U

(l̃,j̃)
w | = (n − 1)!

∏q

i=p+2 ni! so that,

by the inductive hypothesis, each U
(l̃,j̃)
w has the form {(hp+1, . . . , hq) ∈ Snp+1

× · · · × Snq
:

hs(x) = y} for some p + 1 ≤ s ≤ r, x, y ∈ Ωs.
Suppose m < n − 1 (this covers the possibilities P3 and P4). Since 1 appears in

at least two (e.g. the v1- and v2-entry) but in at most m ≤ n − 2 different entries

in the Snp+1
-coordinate of elements in U

(l̃,j̃)
0 , it cannot be a coset of a point stabilizer.

So m = n − 1 > 2 (since the possibilities P3 and P4 are now excluded). Since 1

appears in exactly n − 1 different entries in the Snp+1
-coordinate of elements in U

(l̃,j̃)
0 ,

we deduce that U
(l̃,j̃)
0 = {(hp+1, . . . , hq) ∈ Snp+1

× · · · × Snq
: hp+1(vn) = z} for some

vn = Ωp+1 \ {v1, . . . , vn−1} and z 6= 1. Moreover, since m = n − 1 > 2, we must have

T (run−1
(l̃, j̃))vn

= ∅ in order to preserve intersection with elements in U
(l̃,j̃)
0 . Replacing

our choice of vn−1 by vn, the symbol 1 now appears in exactly n − 2 different entries in

the Snp+1
-coordinate of elements in the new U

(l̃,j̃)
0 so that it cannot be a coset of a point

stabilizer, a contradiction.
Case II. For all l̃, j̃, there exist u, v such that T (ru(l̃, j̃))v 6= ∅ and T (ru′(l̃, j̃))v′ = ∅ for
all u′ 6= u.

If T (ru(l̃, j̃))v 6= Snp+1
× · · · × Snq

for some (l̃, j̃), then |I| < (m − 1)!m!p−1
∏q

i=p+1 ni!,

which is a contradiction. So T (ru(l̃, j̃))v = Snp+1
×· · ·×Snq

for all (l̃, j̃). In order to preserve
intersection, the maximality of I (using Theorem 3.1 if P1 occurs or Theorem 1.1 if P2
or P3 occurs or Theorem 1.3 if P4 occurs) implies that I = {(h1, . . . , hq) : hi(x) = y} for
some i ∈ {1, . . . , p}, x, y ∈ Ωi.
Case III. For all l̃, j̃, there exist u, v such that T (ru(l̃, j̃))v 6= ∅ and T (ru′(l̃, j̃))v′ = ∅ for
all v′ 6= v.

If T (ru′(l̃, j̃))v 6= {(hp+1, . . . , hq) : hp+1(v) = 1} for some u′ and (l̃, j̃), then |I| <
(m − 1)!m!p−1 · m · (n − 1)! ·

∏q

i=p+2 ni!, contradicting the maximality of I. So |I| =

(m − 1)!m!p−1 · m · (n − 1)! ·
∏q

i=p+2 ni!. Again, the maximality of I implies that m = n,
a contradiction. �
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[6] P. Frankl, An Erdős-Ko-Rado theorem for direct products, European Journal of Com-

binatorics 17 (1996), 727–730.

[7] The GAP Group (2002), GAP–Groups, Algorithms and Programming, Aachen, St
Andrews, Available from: http://www-gap.dcs.st-and.ac.uk/ gap.

[8] B. Larose and C. Malvenuto, Stable sets of maximal size in Kneser-type graphs,
European Journal of Combinatorics 25 (2004), 657–673.

[9] B. Larose and C. Tardif, Projectivity and independent sets in powers of graphs,
Journal of Graph Theory 40 Issue 3 (2002), 162–171.

the electronic journal of combinatorics 14 (2007), #R25 15


